Anzeige
Anzeige

Más contenido relacionado

Anzeige

Más de Purple Vision(20)

Anzeige

Último(20)

Avoid email meltdown through segementation (web edit)

  1. Avoid email meltdown: how segmentation can improve response retention and reputation Steve Thomas, Purple Vision @stevethomas393 @purple_vision
  2. What is Segmentation? • Classification of the population into subgroups such that the subgroups are: – Distinguishable – Identifiable – Manageable – Fit for purpose
  3. Why Segment? • Appreciation of motivations – Communication – Tone of voice – Increased returns • Facilitates Different Marketing Strategies – Product segmentation • Identification of ‘look alikes’ – Individual – Area
  4. One size doesn’t fit all
  5. How to segment? Frequency Recency Value
  6. Frequency Recency Value Creating segments
  7. 9 Creating segments 8 4 13 6 7 2 Frequency Recency Value
  8. Profiling
  9. Look alike logic Universe Your Database Your Sector Charity Supporters
  10. Profile variables • Income • Housing Tenure • Spending Power • Education • Occupation • Social Grade • Age • Children • Household Size • Property Type • Urbanicity • Retail Accessibility
  11. Example profiles - Age TotalSketch Attributes Supporters Regional Base Penetration Index Counts % Counts % % 0 100 200 Age – Example 1 Rank 91-100 (High) 933 16.8% 23092 11.2% 4.04 150 █████ Rank 81-90 1012 18.2% 19816 9.6% 5.11 190 █████████ Rank 71-80 852 15.3% 20846 10.1% 4.09 152 █████ Rank 61-70 697 12.5% 20417 9.9% 3.41 127 ███ Rank 51-60 643 11.6% 23081 11.2% 2.79 104 Rank 41-50 459 8.3% 22491 10.9% 2.04 76 ██ Rank 31-40 316 5.7% 22152 10.7% 1.43 53 █████ Rank 21-30 202 3.6% 17995 8.7% 1.12 42 ██████ Rank 11-20 201 3.6% 19192 9.3% 1.05 39 ██████ Rank 1-10 (Low) 245 4.4% 17650 8.5% 1.39 52 █████ TOTAL 5560 206732 2.69 Age – Example 2 Rank 91-100 (High) 601 14.5% 23382 11.1% 2.57 130 ███ Rank 81-90 662 15.9% 21810 10.4% 3.04 154 █████ Rank 71-80 465 11.2% 18343 8.7% 2.54 128 ███ Rank 61-70 557 13.4% 23014 10.9% 2.42 123 ██ Rank 51-60 493 11.9% 22896 10.9% 2.15 109 █ Rank 41-50 375 9.0% 20015 9.5% 1.87 95 █ Rank 31-40 387 9.3% 22721 10.8% 1.70 86 █ Rank 21-30 270 6.5% 22811 10.8% 1.18 60 ████ Rank 11-20 171 4.1% 17574 8.4% 0.97 49 █████ Rank 1-10 (Low) 174 4.2% 17887 8.5% 0.97 49 █████ TOTAL 4155 210453 1.97 Age – Example 3 Rank 91-100 (High) 20 2.3% 10642 8.7% 0.19 27 ███████ Rank 81-90 14 1.6% 11145 9.1% 0.13 18 ████████ Rank 71-80 37 4.3% 10021 8.2% 0.37 53 █████ Rank 61-70 133 15.6% 12234 10.0% 1.09 156 ██████ Rank 51-60 144 16.9% 12409 10.1% 1.16 167 ███████ Rank 41-50 124 14.5% 11515 9.4% 1.08 155 █████ Rank 31-40 139 16.3% 14290 11.6% 0.97 140 ████ Rank 21-30 94 11.0% 14826 12.1% 0.63 91 █ Rank 11-20 69 8.1% 12608 10.3% 0.55 79 ██ Rank 1-10 (Low) 80 9.4% 13232 10.8% 0.60 87 █ TOTAL 854 122922 Sample
  12. Comparative profile - Education TotalSketch Attributes Members Regional Base Penetration Index Counts % Counts % % 0 100 200 Education – Group A Rank 91-100 (High) 1574 28.3% 43382 21.0% 3.63 135 ███ Rank 81-90 1369 24.6% 43322 21.0% 3.16 117 ██ Rank 71-80 871 15.7% 30229 14.6% 2.88 107 █ Rank 61-70 550 9.9% 23148 11.2% 2.38 88 █ Rank 51-60 337 6.1% 17701 8.6% 1.90 71 ███ Rank 41-50 333 6.0% 15203 7.4% 2.19 81 ██ Rank 31-40 240 4.3% 14452 7.0% 1.66 62 ████ Rank 21-30 194 3.5% 13006 6.3% 1.49 55 ████ Rank 11-20 60 1.1% 4479 2.2% 1.34 50 █████ Rank 1-10 (Low) 32 0.6% 1810 0.9% 1.77 66 ███ TOTAL 5560 20673 2 2.69 Education – Group B Rank 91-100 (High) 219 5.3% 24697 11.7% 0.89 45 ██████ Rank 81-90 805 19.4% 51462 24.5% 1.56 79 ██ Rank 71-80 778 18.7% 36515 17.4% 2.13 108 █ Rank 61-70 656 15.8% 25427 12.1% 2.58 131 ███ Rank 51-60 499 12.0% 19525 9.3% 2.56 129 ███ Rank 41-50 444 10.7% 18293 8.7% 2.43 123 ██ Rank 31-40 444 10.7% 17905 8.5% 2.48 126 ███ Rank 21-30 244 5.9% 10397 4.9% 2.35 119 ██ Rank 11-20 52 1.3% 4788 2.3% 1.09 55 ████ Rank 1-10 (Low) 14 0.3% 1444 0.7% 0.97 49 █████ TOTAL 4155 21045 3 1.97 Education – Group C Rank 91-100 (High) 39 4.6% 6970 5.7% 0.56 81 ██ Rank 81-90 110 12.9% 21007 17.1% 0.52 75 ██ Rank 71-80 119 13.9% 17795 14.5% 0.67 96 Rank 61-70 120 14.1% 13430 10.9% 0.89 129 ███ Rank 51-60 94 11.0% 12150 9.9% 0.77 111 █ Rank 41-50 88 10.3% 10279 8.4% 0.86 123 ██ Rank 31-40 103 12.1% 12694 10.3% 0.81 117 ██ Rank 21-30 61 7.1% 9076 7.4% 0.67 97 Rank 11-20 65 7.6% 10093 8.2% 0.64 93 █ Rank 1-10 (Low) 55 6.4% 9428 7.7% 0.58 84 ██ TOTAL 854 12292 2 Sample
  13. TotalSketch Model Members Base Penetration Z-Score Index Counts % Counts % % 0 100 200 Segm ents Segment 6 997 9.4 18688 1.8 5.3 5.33 510 ██████████ >200 Segment 11 1221 11.5 30654 3.0 4.0 3.98 381 ██████████ >200 Segment 2 420 3.9 13293 1.3 3.2 3.16 302 ██████████ >200 Segment 7 653 6.1 22626 2.2 2.9 2.89 276 ██████████ >200 Segment 15 903 8.5 35231 3.5 2.6 2.56 245 ██████████ >200 Segment 3 363 3.4 14471 1.4 2.5 2.51 240 ██████████ >200 Segment 14 784 7.4 33303 3.3 2.4 2.35 225 ██████████ >200 Segment 9 884 8.3 51180 5.0 1.7 1.73 165 ███████ Segment 10 185 1.7 12422 1.2 1.5 1.49 142 ████ Segment 1 616 5.8 42881 4.2 1.4 1.44 137 ████ Segment 13 291 2.7 23724 2.3 1.2 1.23 117 ██ Segment 4 729 6.8 64449 6.3 1.1 1.13 108 █ Segment 8 1051 9.9 111886 11.0 0.9 0.94 90 █ Segment 0 1273 12.0 266869 26.2 0.5 0.48 46 █████ Segment 5 262 2.5 94111 9.2 0.3 0.28 27 ███████ Segment 12 117 1.1 181701 17.9 0.1 0.06 6 █████████ Total 10643 1,017,489 1.05 Best fit model
  14. • New areas may have a different socio- demographic profile to the existing donor base • Different motivations require different communication strategies • Missing all the towns! Where are they?
  15. Implications for marketing – Support activity for the current profile • Post Code initiatives • More effective targeting – Promote to new audiences • Different ways to reach members • May require new approaches & materials – Message by prospect type – Product development – Regeneration
  16. The case study shown during the #CHASE15 event has been removed from the presentation. Please contact us if you would like details from this case study.
  17. Any Questions? @stevethomas393 @purple-vision www.purple-vision.com steve.thomas@purple-vision.com
Anzeige