SlideShare ist ein Scribd-Unternehmen logo

Not only SQL

Introduction to NoSQL with some focus on Cassandra, CouchDB and Neo4j

1 von 40
Downloaden Sie, um offline zu lesen
Not only SQL ,[object Object],[object Object],[object Object],[object Object]
What? ,[object Object]
What? ,[object Object],[object Object],[object Object],[object Object]
Why? ,[object Object],[object Object],[object Object],[object Object],[object Object]
CAP what? ,[object Object],[object Object],[object Object],[object Object],[object Object]
Consistency ,[object Object],[object Object],[object Object],[object Object]
Anzeige

Recomendados

Yahoo! Hadoop User Group - May Meetup - Extraordinarily rapid and robust data...
Yahoo! Hadoop User Group - May Meetup - Extraordinarily rapid and robust data...Yahoo! Hadoop User Group - May Meetup - Extraordinarily rapid and robust data...
Yahoo! Hadoop User Group - May Meetup - Extraordinarily rapid and robust data...Hadoop User Group
 
Data vizualisation: d3.js + sinatra + elasticsearch
Data vizualisation: d3.js + sinatra + elasticsearchData vizualisation: d3.js + sinatra + elasticsearch
Data vizualisation: d3.js + sinatra + elasticsearchMathieu Elie
 
Fusion-io and MySQL at Craigslist
Fusion-io and MySQL at CraigslistFusion-io and MySQL at Craigslist
Fusion-io and MySQL at CraigslistJeremy Zawodny
 
MySQL And Search At Craigslist
MySQL And Search At CraigslistMySQL And Search At Craigslist
MySQL And Search At CraigslistJeremy Zawodny
 
Embulk and Machine Learning infrastructure
Embulk and Machine Learning infrastructureEmbulk and Machine Learning infrastructure
Embulk and Machine Learning infrastructureHiroshi Toyama
 
Type safe, versioned, and rewindable stream processing with Apache {Avro, K...
Type safe, versioned, and rewindable stream processing  with  Apache {Avro, K...Type safe, versioned, and rewindable stream processing  with  Apache {Avro, K...
Type safe, versioned, and rewindable stream processing with Apache {Avro, K...Hisham Mardam-Bey
 
Data normalization weaknesses
Data normalization weaknessesData normalization weaknesses
Data normalization weaknessesIvan Novikov
 

Más contenido relacionado

Was ist angesagt?

The MEAN Stack: MongoDB, ExpressJS, AngularJS and Node.js
The MEAN Stack: MongoDB, ExpressJS, AngularJS and Node.jsThe MEAN Stack: MongoDB, ExpressJS, AngularJS and Node.js
The MEAN Stack: MongoDB, ExpressJS, AngularJS and Node.jsMongoDB
 
«Scrapy internals» Александр Сибиряков, Scrapinghub
«Scrapy internals» Александр Сибиряков, Scrapinghub«Scrapy internals» Александр Сибиряков, Scrapinghub
«Scrapy internals» Александр Сибиряков, Scrapinghubit-people
 
Lessons Learned Migrating 2+ Billion Documents at Craigslist
Lessons Learned Migrating 2+ Billion Documents at CraigslistLessons Learned Migrating 2+ Billion Documents at Craigslist
Lessons Learned Migrating 2+ Billion Documents at CraigslistJeremy Zawodny
 
What Every Developer Should Know About Database Scalability
What Every Developer Should Know About Database ScalabilityWhat Every Developer Should Know About Database Scalability
What Every Developer Should Know About Database Scalabilityjbellis
 
Woo: Writing a fast web server @ ELS2015
Woo: Writing a fast web server @ ELS2015Woo: Writing a fast web server @ ELS2015
Woo: Writing a fast web server @ ELS2015fukamachi
 
MongoFr : MongoDB as a log Collector
MongoFr : MongoDB as a log CollectorMongoFr : MongoDB as a log Collector
MongoFr : MongoDB as a log CollectorPierre Baillet
 
Painless OO XML with XML::Pastor
Painless OO XML with XML::PastorPainless OO XML with XML::Pastor
Painless OO XML with XML::Pastorjoelbernstein
 
Yahoo! Hadoop User Group - May Meetup - HBase and Pig: The Hadoop ecosystem a...
Yahoo! Hadoop User Group - May Meetup - HBase and Pig: The Hadoop ecosystem a...Yahoo! Hadoop User Group - May Meetup - HBase and Pig: The Hadoop ecosystem a...
Yahoo! Hadoop User Group - May Meetup - HBase and Pig: The Hadoop ecosystem a...Hadoop User Group
 
Monitoramento com ELK - Elasticsearch - Logstash - Kibana
Monitoramento com ELK - Elasticsearch - Logstash - KibanaMonitoramento com ELK - Elasticsearch - Logstash - Kibana
Monitoramento com ELK - Elasticsearch - Logstash - KibanaWaldemar Neto
 
Sphinx at Craigslist in 2012
Sphinx at Craigslist in 2012Sphinx at Craigslist in 2012
Sphinx at Craigslist in 2012Jeremy Zawodny
 
Jassa la GeekMeet Bucuresti
Jassa la GeekMeet BucurestiJassa la GeekMeet Bucuresti
Jassa la GeekMeet Bucurestialexnovac
 
Realtime Search Infrastructure at Craigslist (OpenWest 2014)
Realtime Search Infrastructure at Craigslist (OpenWest 2014)Realtime Search Infrastructure at Craigslist (OpenWest 2014)
Realtime Search Infrastructure at Craigslist (OpenWest 2014)Jeremy Zawodny
 
HTML, Javascript and AJAX
HTML, Javascript and AJAXHTML, Javascript and AJAX
HTML, Javascript and AJAXWan Leung Wong
 
Cassandra at mahalo_com_scale_la_meetup_de
Cassandra at mahalo_com_scale_la_meetup_deCassandra at mahalo_com_scale_la_meetup_de
Cassandra at mahalo_com_scale_la_meetup_demahalomeetup
 
Understanding and tuning WiredTiger, the new high performance database engine...
Understanding and tuning WiredTiger, the new high performance database engine...Understanding and tuning WiredTiger, the new high performance database engine...
Understanding and tuning WiredTiger, the new high performance database engine...Ontico
 

Was ist angesagt? (20)

MongoDB and Node.js
MongoDB and Node.jsMongoDB and Node.js
MongoDB and Node.js
 
The MEAN Stack: MongoDB, ExpressJS, AngularJS and Node.js
The MEAN Stack: MongoDB, ExpressJS, AngularJS and Node.jsThe MEAN Stack: MongoDB, ExpressJS, AngularJS and Node.js
The MEAN Stack: MongoDB, ExpressJS, AngularJS and Node.js
 
«Scrapy internals» Александр Сибиряков, Scrapinghub
«Scrapy internals» Александр Сибиряков, Scrapinghub«Scrapy internals» Александр Сибиряков, Scrapinghub
«Scrapy internals» Александр Сибиряков, Scrapinghub
 
Lessons Learned Migrating 2+ Billion Documents at Craigslist
Lessons Learned Migrating 2+ Billion Documents at CraigslistLessons Learned Migrating 2+ Billion Documents at Craigslist
Lessons Learned Migrating 2+ Billion Documents at Craigslist
 
What Every Developer Should Know About Database Scalability
What Every Developer Should Know About Database ScalabilityWhat Every Developer Should Know About Database Scalability
What Every Developer Should Know About Database Scalability
 
Woo: Writing a fast web server @ ELS2015
Woo: Writing a fast web server @ ELS2015Woo: Writing a fast web server @ ELS2015
Woo: Writing a fast web server @ ELS2015
 
MongoFr : MongoDB as a log Collector
MongoFr : MongoDB as a log CollectorMongoFr : MongoDB as a log Collector
MongoFr : MongoDB as a log Collector
 
Painless OO XML with XML::Pastor
Painless OO XML with XML::PastorPainless OO XML with XML::Pastor
Painless OO XML with XML::Pastor
 
Yahoo! Hadoop User Group - May Meetup - HBase and Pig: The Hadoop ecosystem a...
Yahoo! Hadoop User Group - May Meetup - HBase and Pig: The Hadoop ecosystem a...Yahoo! Hadoop User Group - May Meetup - HBase and Pig: The Hadoop ecosystem a...
Yahoo! Hadoop User Group - May Meetup - HBase and Pig: The Hadoop ecosystem a...
 
Monitoramento com ELK - Elasticsearch - Logstash - Kibana
Monitoramento com ELK - Elasticsearch - Logstash - KibanaMonitoramento com ELK - Elasticsearch - Logstash - Kibana
Monitoramento com ELK - Elasticsearch - Logstash - Kibana
 
Sphinx at Craigslist in 2012
Sphinx at Craigslist in 2012Sphinx at Craigslist in 2012
Sphinx at Craigslist in 2012
 
Jassa la GeekMeet Bucuresti
Jassa la GeekMeet BucurestiJassa la GeekMeet Bucuresti
Jassa la GeekMeet Bucuresti
 
Realtime Search Infrastructure at Craigslist (OpenWest 2014)
Realtime Search Infrastructure at Craigslist (OpenWest 2014)Realtime Search Infrastructure at Craigslist (OpenWest 2014)
Realtime Search Infrastructure at Craigslist (OpenWest 2014)
 
Starting with MongoDB
Starting with MongoDBStarting with MongoDB
Starting with MongoDB
 
HTML, Javascript and AJAX
HTML, Javascript and AJAXHTML, Javascript and AJAX
HTML, Javascript and AJAX
 
A Practical Multi-Tenant Cluster
A Practical Multi-Tenant ClusterA Practical Multi-Tenant Cluster
A Practical Multi-Tenant Cluster
 
Cassandra at mahalo_com_scale_la_meetup_de
Cassandra at mahalo_com_scale_la_meetup_deCassandra at mahalo_com_scale_la_meetup_de
Cassandra at mahalo_com_scale_la_meetup_de
 
Scrapy
ScrapyScrapy
Scrapy
 
AJAX
AJAXAJAX
AJAX
 
Understanding and tuning WiredTiger, the new high performance database engine...
Understanding and tuning WiredTiger, the new high performance database engine...Understanding and tuning WiredTiger, the new high performance database engine...
Understanding and tuning WiredTiger, the new high performance database engine...
 

Destacado

Destacado (6)

The future is bright
The future is brightThe future is bright
The future is bright
 
Spotify services (SDC 2013)
Spotify services (SDC 2013)Spotify services (SDC 2013)
Spotify services (SDC 2013)
 
Oredev 2009 JAX-RS
Oredev 2009 JAX-RSOredev 2009 JAX-RS
Oredev 2009 JAX-RS
 
RESTful web services
RESTful web servicesRESTful web services
RESTful web services
 
Spotify services - Leetspeak 2014
Spotify services - Leetspeak 2014Spotify services - Leetspeak 2014
Spotify services - Leetspeak 2014
 
REST made simple with Java
REST made simple with JavaREST made simple with Java
REST made simple with Java
 

Ähnlich wie Not only SQL

NoSQL: Why, When, and How
NoSQL: Why, When, and HowNoSQL: Why, When, and How
NoSQL: Why, When, and HowBigBlueHat
 
Document Databases & RavenDB
Document Databases & RavenDBDocument Databases & RavenDB
Document Databases & RavenDBBrian Ritchie
 
Lift web framework
Lift web frameworkLift web framework
Lift web frameworkPetr Hošek
 
quick intro to elastic search
quick intro to elastic search quick intro to elastic search
quick intro to elastic search medcl
 
Serverless Analytics with Amazon Redshift Spectrum, AWS Glue, and Amazon Quic...
Serverless Analytics with Amazon Redshift Spectrum, AWS Glue, and Amazon Quic...Serverless Analytics with Amazon Redshift Spectrum, AWS Glue, and Amazon Quic...
Serverless Analytics with Amazon Redshift Spectrum, AWS Glue, and Amazon Quic...Amazon Web Services
 
Using Cassandra with your Web Application
Using Cassandra with your Web ApplicationUsing Cassandra with your Web Application
Using Cassandra with your Web Applicationsupertom
 
NoSQL Matters 2013 - Introduction to Map Reduce with Couchbase 2.0
NoSQL Matters 2013 - Introduction to Map Reduce with Couchbase 2.0NoSQL Matters 2013 - Introduction to Map Reduce with Couchbase 2.0
NoSQL Matters 2013 - Introduction to Map Reduce with Couchbase 2.0Tugdual Grall
 
Practical Use of MongoDB for Node.js
Practical Use of MongoDB for Node.jsPractical Use of MongoDB for Node.js
Practical Use of MongoDB for Node.jsasync_io
 
Intro to-html-backbone
Intro to-html-backboneIntro to-html-backbone
Intro to-html-backbonezonathen
 
Fighting Against Chaotically Separated Values with Embulk
Fighting Against Chaotically Separated Values with EmbulkFighting Against Chaotically Separated Values with Embulk
Fighting Against Chaotically Separated Values with EmbulkSadayuki Furuhashi
 
Everyone loves PHP
Everyone loves PHPEveryone loves PHP
Everyone loves PHPAbhijit Das
 
node.js: Javascript's in your backend
node.js: Javascript's in your backendnode.js: Javascript's in your backend
node.js: Javascript's in your backendDavid Padbury
 
Web Development Environments: Choose the best or go with the rest
Web Development Environments:  Choose the best or go with the restWeb Development Environments:  Choose the best or go with the rest
Web Development Environments: Choose the best or go with the restgeorge.james
 
SQL for Elasticsearch
SQL for ElasticsearchSQL for Elasticsearch
SQL for ElasticsearchJodok Batlogg
 
Sparklife - Life In The Trenches With Spark
Sparklife - Life In The Trenches With SparkSparklife - Life In The Trenches With Spark
Sparklife - Life In The Trenches With SparkIan Pointer
 
Ingesting Over Four Million Rows Per Second With QuestDB Timeseries Database ...
Ingesting Over Four Million Rows Per Second With QuestDB Timeseries Database ...Ingesting Over Four Million Rows Per Second With QuestDB Timeseries Database ...
Ingesting Over Four Million Rows Per Second With QuestDB Timeseries Database ...javier ramirez
 
Couchbase - Yet Another Introduction
Couchbase - Yet Another IntroductionCouchbase - Yet Another Introduction
Couchbase - Yet Another IntroductionKelum Senanayake
 

Ähnlich wie Not only SQL (20)

NoSQL: Why, When, and How
NoSQL: Why, When, and HowNoSQL: Why, When, and How
NoSQL: Why, When, and How
 
Document Databases & RavenDB
Document Databases & RavenDBDocument Databases & RavenDB
Document Databases & RavenDB
 
Introducing CouchDB
Introducing CouchDBIntroducing CouchDB
Introducing CouchDB
 
Lift web framework
Lift web frameworkLift web framework
Lift web framework
 
quick intro to elastic search
quick intro to elastic search quick intro to elastic search
quick intro to elastic search
 
DSLs in JavaScript
DSLs in JavaScriptDSLs in JavaScript
DSLs in JavaScript
 
Serverless Analytics with Amazon Redshift Spectrum, AWS Glue, and Amazon Quic...
Serverless Analytics with Amazon Redshift Spectrum, AWS Glue, and Amazon Quic...Serverless Analytics with Amazon Redshift Spectrum, AWS Glue, and Amazon Quic...
Serverless Analytics with Amazon Redshift Spectrum, AWS Glue, and Amazon Quic...
 
Using Cassandra with your Web Application
Using Cassandra with your Web ApplicationUsing Cassandra with your Web Application
Using Cassandra with your Web Application
 
NoSQL Matters 2013 - Introduction to Map Reduce with Couchbase 2.0
NoSQL Matters 2013 - Introduction to Map Reduce with Couchbase 2.0NoSQL Matters 2013 - Introduction to Map Reduce with Couchbase 2.0
NoSQL Matters 2013 - Introduction to Map Reduce with Couchbase 2.0
 
Practical Use of MongoDB for Node.js
Practical Use of MongoDB for Node.jsPractical Use of MongoDB for Node.js
Practical Use of MongoDB for Node.js
 
Avro
AvroAvro
Avro
 
Intro to-html-backbone
Intro to-html-backboneIntro to-html-backbone
Intro to-html-backbone
 
Fighting Against Chaotically Separated Values with Embulk
Fighting Against Chaotically Separated Values with EmbulkFighting Against Chaotically Separated Values with Embulk
Fighting Against Chaotically Separated Values with Embulk
 
Everyone loves PHP
Everyone loves PHPEveryone loves PHP
Everyone loves PHP
 
node.js: Javascript's in your backend
node.js: Javascript's in your backendnode.js: Javascript's in your backend
node.js: Javascript's in your backend
 
Web Development Environments: Choose the best or go with the rest
Web Development Environments:  Choose the best or go with the restWeb Development Environments:  Choose the best or go with the rest
Web Development Environments: Choose the best or go with the rest
 
SQL for Elasticsearch
SQL for ElasticsearchSQL for Elasticsearch
SQL for Elasticsearch
 
Sparklife - Life In The Trenches With Spark
Sparklife - Life In The Trenches With SparkSparklife - Life In The Trenches With Spark
Sparklife - Life In The Trenches With Spark
 
Ingesting Over Four Million Rows Per Second With QuestDB Timeseries Database ...
Ingesting Over Four Million Rows Per Second With QuestDB Timeseries Database ...Ingesting Over Four Million Rows Per Second With QuestDB Timeseries Database ...
Ingesting Over Four Million Rows Per Second With QuestDB Timeseries Database ...
 
Couchbase - Yet Another Introduction
Couchbase - Yet Another IntroductionCouchbase - Yet Another Introduction
Couchbase - Yet Another Introduction
 

Último

Traffic Signboard Classification with Voice alert to the driver.pptx
Traffic Signboard Classification with Voice alert to the driver.pptxTraffic Signboard Classification with Voice alert to the driver.pptx
Traffic Signboard Classification with Voice alert to the driver.pptxharimaxwell0712
 
Automate Your Master Data Processes for Shared Service Center Excellence
Automate Your Master Data Processes for Shared Service Center ExcellenceAutomate Your Master Data Processes for Shared Service Center Excellence
Automate Your Master Data Processes for Shared Service Center ExcellencePrecisely
 
AI MODELS USAGE IN FINTECH PRODUCTS: PM APPROACH & BEST PRACTICES by Kasthuri...
AI MODELS USAGE IN FINTECH PRODUCTS: PM APPROACH & BEST PRACTICES by Kasthuri...AI MODELS USAGE IN FINTECH PRODUCTS: PM APPROACH & BEST PRACTICES by Kasthuri...
AI MODELS USAGE IN FINTECH PRODUCTS: PM APPROACH & BEST PRACTICES by Kasthuri...ISPMAIndia
 
Curtain Module Manual Zigbee Neo CS01-1C.pdf
Curtain Module Manual Zigbee Neo CS01-1C.pdfCurtain Module Manual Zigbee Neo CS01-1C.pdf
Curtain Module Manual Zigbee Neo CS01-1C.pdfDomotica daVinci
 
H3 Platform CXL Solution_Memory Fabric Forum.pptx
H3 Platform CXL Solution_Memory Fabric Forum.pptxH3 Platform CXL Solution_Memory Fabric Forum.pptx
H3 Platform CXL Solution_Memory Fabric Forum.pptxMemory Fabric Forum
 
Unlocking the Cloud's True Potential: Why Multitenancy Is The Key?
Unlocking the Cloud's True Potential: Why Multitenancy Is The Key?Unlocking the Cloud's True Potential: Why Multitenancy Is The Key?
Unlocking the Cloud's True Potential: Why Multitenancy Is The Key?GleecusTechlabs1
 
"AIRe - AI Reliability Engineering", Denys Vasyliev
"AIRe - AI Reliability Engineering", Denys Vasyliev"AIRe - AI Reliability Engineering", Denys Vasyliev
"AIRe - AI Reliability Engineering", Denys VasylievFwdays
 
Breaking Barriers & Leveraging the Latest Developments in AI Technology
Breaking Barriers & Leveraging the Latest Developments in AI TechnologyBreaking Barriers & Leveraging the Latest Developments in AI Technology
Breaking Barriers & Leveraging the Latest Developments in AI TechnologySafe Software
 
21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN
21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN
21ST CENTURY LITERACY FROM TRADITIONAL TO MODERNRonnelBaroc
 
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, GoogleISPMAIndia
 
"Testing of Helm Charts or There and Back Again", Yura Rochniak
"Testing of Helm Charts or There and Back Again", Yura Rochniak"Testing of Helm Charts or There and Back Again", Yura Rochniak
"Testing of Helm Charts or There and Back Again", Yura RochniakFwdays
 
My sample product research idea for you!
My sample product research idea for you!My sample product research idea for you!
My sample product research idea for you!KivenRaySarsaba
 
Importance of magazines in education ppt
Importance of magazines in education pptImportance of magazines in education ppt
Importance of magazines in education pptsafnarafeek2002
 
How to write an effective Cyber Incident Response Plan
How to write an effective Cyber Incident Response PlanHow to write an effective Cyber Incident Response Plan
How to write an effective Cyber Incident Response PlanDatabarracks
 
Artificial-Intelligence-in-Marketing-Data.pdf
Artificial-Intelligence-in-Marketing-Data.pdfArtificial-Intelligence-in-Marketing-Data.pdf
Artificial-Intelligence-in-Marketing-Data.pdfIsidro Navarro
 
Building Products That Think- Bhaskaran Srinivasan & Ashish Gupta
Building Products That Think- Bhaskaran Srinivasan & Ashish GuptaBuilding Products That Think- Bhaskaran Srinivasan & Ashish Gupta
Building Products That Think- Bhaskaran Srinivasan & Ashish GuptaISPMAIndia
 
How we think about an advisor tech stack
How we think about an advisor tech stackHow we think about an advisor tech stack
How we think about an advisor tech stackSummit
 
2024 February Patch Tuesday
2024 February Patch Tuesday2024 February Patch Tuesday
2024 February Patch TuesdayIvanti
 
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdfIntroducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdfSafe Software
 

Último (20)

Traffic Signboard Classification with Voice alert to the driver.pptx
Traffic Signboard Classification with Voice alert to the driver.pptxTraffic Signboard Classification with Voice alert to the driver.pptx
Traffic Signboard Classification with Voice alert to the driver.pptx
 
Automate Your Master Data Processes for Shared Service Center Excellence
Automate Your Master Data Processes for Shared Service Center ExcellenceAutomate Your Master Data Processes for Shared Service Center Excellence
Automate Your Master Data Processes for Shared Service Center Excellence
 
AI MODELS USAGE IN FINTECH PRODUCTS: PM APPROACH & BEST PRACTICES by Kasthuri...
AI MODELS USAGE IN FINTECH PRODUCTS: PM APPROACH & BEST PRACTICES by Kasthuri...AI MODELS USAGE IN FINTECH PRODUCTS: PM APPROACH & BEST PRACTICES by Kasthuri...
AI MODELS USAGE IN FINTECH PRODUCTS: PM APPROACH & BEST PRACTICES by Kasthuri...
 
Curtain Module Manual Zigbee Neo CS01-1C.pdf
Curtain Module Manual Zigbee Neo CS01-1C.pdfCurtain Module Manual Zigbee Neo CS01-1C.pdf
Curtain Module Manual Zigbee Neo CS01-1C.pdf
 
H3 Platform CXL Solution_Memory Fabric Forum.pptx
H3 Platform CXL Solution_Memory Fabric Forum.pptxH3 Platform CXL Solution_Memory Fabric Forum.pptx
H3 Platform CXL Solution_Memory Fabric Forum.pptx
 
Unlocking the Cloud's True Potential: Why Multitenancy Is The Key?
Unlocking the Cloud's True Potential: Why Multitenancy Is The Key?Unlocking the Cloud's True Potential: Why Multitenancy Is The Key?
Unlocking the Cloud's True Potential: Why Multitenancy Is The Key?
 
"AIRe - AI Reliability Engineering", Denys Vasyliev
"AIRe - AI Reliability Engineering", Denys Vasyliev"AIRe - AI Reliability Engineering", Denys Vasyliev
"AIRe - AI Reliability Engineering", Denys Vasyliev
 
Breaking Barriers & Leveraging the Latest Developments in AI Technology
Breaking Barriers & Leveraging the Latest Developments in AI TechnologyBreaking Barriers & Leveraging the Latest Developments in AI Technology
Breaking Barriers & Leveraging the Latest Developments in AI Technology
 
21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN
21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN
21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN
 
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google
 
5 Tech Trend to Notice in ESG Landscape- 47Billion
5 Tech Trend to Notice in ESG Landscape- 47Billion5 Tech Trend to Notice in ESG Landscape- 47Billion
5 Tech Trend to Notice in ESG Landscape- 47Billion
 
"Testing of Helm Charts or There and Back Again", Yura Rochniak
"Testing of Helm Charts or There and Back Again", Yura Rochniak"Testing of Helm Charts or There and Back Again", Yura Rochniak
"Testing of Helm Charts or There and Back Again", Yura Rochniak
 
My sample product research idea for you!
My sample product research idea for you!My sample product research idea for you!
My sample product research idea for you!
 
Importance of magazines in education ppt
Importance of magazines in education pptImportance of magazines in education ppt
Importance of magazines in education ppt
 
How to write an effective Cyber Incident Response Plan
How to write an effective Cyber Incident Response PlanHow to write an effective Cyber Incident Response Plan
How to write an effective Cyber Incident Response Plan
 
Artificial-Intelligence-in-Marketing-Data.pdf
Artificial-Intelligence-in-Marketing-Data.pdfArtificial-Intelligence-in-Marketing-Data.pdf
Artificial-Intelligence-in-Marketing-Data.pdf
 
Building Products That Think- Bhaskaran Srinivasan & Ashish Gupta
Building Products That Think- Bhaskaran Srinivasan & Ashish GuptaBuilding Products That Think- Bhaskaran Srinivasan & Ashish Gupta
Building Products That Think- Bhaskaran Srinivasan & Ashish Gupta
 
How we think about an advisor tech stack
How we think about an advisor tech stackHow we think about an advisor tech stack
How we think about an advisor tech stack
 
2024 February Patch Tuesday
2024 February Patch Tuesday2024 February Patch Tuesday
2024 February Patch Tuesday
 
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdfIntroducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
 

Not only SQL

  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7. What’s out there? Storage type License Implemented in Amazon Dynamo Key/Value n/a ? Cassandra Columnfamily ASL 2.0 Java CouchDB Document ASL 2.0 Erlang Dynomite Key/Value BSD/MIT-style Erlang HBase Columnfamily ASL 2.0 Java MongoDB Document AGPL v3.0 C++ Neo4J Graph AGPL v3.0 / Comm Java Riak Key/Value ASL 2.0 Erlang Redis Key/Value BSD/MIT-style C Scalaris Key/Value ASL 2.0 Erlang Tokyo Cabinet Key/Value LGPL C Voldemort Key/Value ASL 2.0 Java
  • 8.
  • 9. Distribution * Neo4J HA coming “soon” This is a very simplified view Masterless Master/Slave Hot standby Amazon Dynamo X Cassandra X CouchDB X Dynomite X HBase ? MongoDB X X Neo4J * Riak X Redis X Scalaris X Tokyo Cabinet Voldemort X
  • 10. Common factor “ ...of the web...” Of the who?!
  • 11.
  • 12.
  • 13.
  • 14. These guys can just suck it HTTP/REST is integration that works
  • 16.
  • 17.
  • 18. The Ring 1 2 3 4 5 6 7 8 9 10 11 12
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.  
  • 40.

Hinweis der Redaktion

  1. * Relational not always most suitable model * Schema-less gives freedom * Non-relational gives interesting scalability capabilities (which most provides) * Most provides REST/JSON API ** Very suitable for web dev’t ** Easy peasy to use, regardless of environment
  2. collation - assembling in proper numerical or logical sequence
  3. Simplified view explanation