SlideShare a Scribd company logo
1 of 17
Transformation of a Mismatched
 Nonlinear Dynamic Systems into
      Strict Feedback Form
            by Johanna L. Mathieu and J. Karl Hedrick
       Department of Mechanical Engineering, University of
                    California, Berkeley, USA

    Journal of Dynamic Systems, Measurement and Control,
                  Transactions of the ASME
                    Vol. 133, July 2011, Q2
CONTROL OF ROBOT AND VIBRATION LABORATORY
                  Speaker: Ittidej Moonmangmee
                     3rd years of PhD student
                     Lecturer at STOU
                      December 1, 2012
Johanna L. Mathieu
2012, PostDoc at EEH – Power Systems Laboratory, ETH Zurich
2006 – 2012, MS/PhD Student at the University of California,
Berkeley, USA
2006 – 2012, Affiliate at the Lawrence Berkeley National
Laboratory, Berkeley, California, USA
2008, Visiting researcher at the Bangladesh University of
Engineering and Technology Department of Civil Engineering,
Dhaka, Bangladesh
2005, Research Assistant at the MIT Sea Grant College
Program, Cambridge, Massachusetts, USA
2004 – 2005, U.S. Peace Corps Volunteer, Tanzania
2000 – 2004, BS Student at the Massachusetts Institute of
Technology, Cambridge, Massachusetts, USA

                                                    J. Karl Hedrick (born 1944) is an American control
                                                    theorist and a Professor in the Department of
                                                    Mechanical Engineering at the University of California,
                                                    Berkeley. He has made seminal contributions in
                                                    nonlinear control and estimation. Prior to joining the
                                                    faculty at the University of California, Berkeley he was a
                                                    professor at the Massachusetts Institute of Technology
                                                    from 1974 to 1988. Hedrick received a bachelor's degree in
                                                    Engineering Mechanics from the University of Michigan
                                                    (1966) and a M.S. and Ph.D from Stanford University
                                                    (1970, 1971). Hedrick is the head of the Vehicle Dynamics
                                                    Laboratory at UC Berkeley.
                                                    In 2006, he was awarded the Rufus Oldenburger Medal
                                                    from the American Society of Mechanical Engineers.
4/18
Outline

1.   Objective
2.   Dynamic System Description & Controllability
          A bicycle example
3.   Control Using Feedback Linearization
4.   Dynamic Surface Control (DSC)
          Transformation into Strict Feedback Form
          Sliding Surface & Control law
5.   Simulation & Results
6.   Conclusions
5/18
 Objective

1. Transform a mismatched nonlinear system into a strict
   feedback form (also with a mismatched)
2. Design two controllers via
       (i) Feedback Linearization method
       (ii) Dynamic Surface Control method
   to the bicycle tracks a desired trajectory
   steering angular velocity
   of the handle bars


                                                  desired trajectory

                forward velocity of the bicycle

3. Simulate and compare two controllers performance
6/18
 Dynamic System Description
              steering angle



                   heading angle




MIMO System

Two inputs:
  u1 forward velocity of the bicycle
  u2 angular velocity of the handle bars
Two outputs:
7/18
Controllability




See [Daizhan, C., Xiaoming, H, and Tielong, S., Analysis
and Design of Nonlinear Control Systems, 2010]
8/18
  Control using Feedback Linearization
 Dynamic Extension:
   See [Sastry’s Nonlinear
   Systems, 1999]




#Relative degree = #State = 6
 So, it has no zero dynamics
  Minimum-phase
9/18
Control using Feedback Linearization
10/18
Transformation into Strict Feedback Form

 Goal:
         Extended state equation  Strict feedback form
         (available for Dynamic Surface Control (DSC) design)




                                    Design a controller by
                                Dynamic Surface Control (DSC)
11/18
Transformation into Strict Feedback Form
12/18
Dynamic Surface Control (DSC)
13/18
Dynamic Surface Control (DSC)
14/18
Simulation and Results




                     x1 error
                                   x1 position error




                     x2 error
                                   x2 position error


                                               t

                  MATLAB ode45
                  Disturbances:           Uncertainty bounds:
                    w1 = 0.10 + 0.02r1(t)         δ1, δ2, δ4 = 0.2,
                    w2 = 0.15 + 0.02r2(t)                δ3 = 0.25
                    w3 = 0.20 + 0.02r3(t)    and δ5, δ6, δ7, δ8 are
                    w4 = 0.10 + 0.02r4(t)        change with the
                  where r i(t)  1)
                                  (0,       function of the state.
15/18
       Simulation and Results
                                  Control saturated:
                                    -10 to +10
u2 (rad/s)




                                  Controller gains:
                                    k = [10, 10, 1, 1, 10, 10]
                                  Filter Time Constant:
                 t                   τ = [0.05, 0.05, 0.05, 0.05]
u4 (rad/s)




                           From the dynamic extension:



                 t
u1 (rad/s)




                 t
16/18
Simulation and Results

       Sliding surfaces for x1   Sliding surfaces for x2
17/18
Concluding Remarks

 A new method of defining states was presented for transform
  a nonlinear mismatched system to the strict feedback form
 Two controller techniques were designed
     Feedback linearization (FL) with dynamic extension
     Dynamic surface control (DSC)
 In the disturbance-free case,
      both FL & DSC performed tracking a desired trajectory
 In the present of disturbances,
      the DSC was better to reject it than the FL
 Tracking performance of the DSC can be designed
     by using the 1st order filter
 However, more control effort required for DSC
Thank you
        Please comments and suggests!

CONTROL OF ROBOT AND VIBRATION LABORATORY

More Related Content

Similar to Seminar2012 d

kinematics of 8-axis robot for material handling applications
kinematics of 8-axis robot for material handling applicationskinematics of 8-axis robot for material handling applications
kinematics of 8-axis robot for material handling applicationsjani parth
 
Control System’s Coursework Project Overview
Control System’s Coursework Project OverviewControl System’s Coursework Project Overview
Control System’s Coursework Project OverviewSeth Block
 
Analysis and Design of Conventional Controller for Speed Control of DC Motor ...
Analysis and Design of Conventional Controller for Speed Control of DC Motor ...Analysis and Design of Conventional Controller for Speed Control of DC Motor ...
Analysis and Design of Conventional Controller for Speed Control of DC Motor ...IJERA Editor
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
KNL3353_Control_System_Engineering_Lectu.ppt
KNL3353_Control_System_Engineering_Lectu.pptKNL3353_Control_System_Engineering_Lectu.ppt
KNL3353_Control_System_Engineering_Lectu.pptSherAli984263
 
A fuzzy logic controllerfora two link functional manipulator
A fuzzy logic controllerfora two link functional manipulatorA fuzzy logic controllerfora two link functional manipulator
A fuzzy logic controllerfora two link functional manipulatorIJCNCJournal
 
Design Novel Lookup Table Changed Auto Tuning FSMC: Applied to Robot Manipulator
Design Novel Lookup Table Changed Auto Tuning FSMC: Applied to Robot ManipulatorDesign Novel Lookup Table Changed Auto Tuning FSMC: Applied to Robot Manipulator
Design Novel Lookup Table Changed Auto Tuning FSMC: Applied to Robot ManipulatorCSCJournals
 
Comparative Analysis of PID, SMC, SMC with PID Controller for Speed Control o...
Comparative Analysis of PID, SMC, SMC with PID Controller for Speed Control o...Comparative Analysis of PID, SMC, SMC with PID Controller for Speed Control o...
Comparative Analysis of PID, SMC, SMC with PID Controller for Speed Control o...IJMTST Journal
 
A High Order Sliding Mode Control with PID Sliding Surface: Simulation on a T...
A High Order Sliding Mode Control with PID Sliding Surface: Simulation on a T...A High Order Sliding Mode Control with PID Sliding Surface: Simulation on a T...
A High Order Sliding Mode Control with PID Sliding Surface: Simulation on a T...IJITCA Journal
 
Sliding Mode Methodology Vs. Computed Torque Methodology Using MATLAB/SIMULIN...
Sliding Mode Methodology Vs. Computed Torque Methodology Using MATLAB/SIMULIN...Sliding Mode Methodology Vs. Computed Torque Methodology Using MATLAB/SIMULIN...
Sliding Mode Methodology Vs. Computed Torque Methodology Using MATLAB/SIMULIN...CSCJournals
 
E043036045
E043036045E043036045
E043036045inventy
 
E043036045
E043036045E043036045
E043036045inventy
 
E043036045
E043036045E043036045
E043036045inventy
 
Ch.02 modeling in frequency domain
Ch.02 modeling in frequency domainCh.02 modeling in frequency domain
Ch.02 modeling in frequency domainNguyen_Tan_Tien
 

Similar to Seminar2012 d (20)

kinematics of 8-axis robot for material handling applications
kinematics of 8-axis robot for material handling applicationskinematics of 8-axis robot for material handling applications
kinematics of 8-axis robot for material handling applications
 
Advanced WEC Controls Webinar June 2016
Advanced WEC Controls Webinar June 2016Advanced WEC Controls Webinar June 2016
Advanced WEC Controls Webinar June 2016
 
Hq2513761382
Hq2513761382Hq2513761382
Hq2513761382
 
Hq2513761382
Hq2513761382Hq2513761382
Hq2513761382
 
Design and implementation of active power filter for harmonic elimination and...
Design and implementation of active power filter for harmonic elimination and...Design and implementation of active power filter for harmonic elimination and...
Design and implementation of active power filter for harmonic elimination and...
 
Control System’s Coursework Project Overview
Control System’s Coursework Project OverviewControl System’s Coursework Project Overview
Control System’s Coursework Project Overview
 
Research_paper
Research_paperResearch_paper
Research_paper
 
Analysis and Design of Conventional Controller for Speed Control of DC Motor ...
Analysis and Design of Conventional Controller for Speed Control of DC Motor ...Analysis and Design of Conventional Controller for Speed Control of DC Motor ...
Analysis and Design of Conventional Controller for Speed Control of DC Motor ...
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
 
KNL3353_Control_System_Engineering_Lectu.ppt
KNL3353_Control_System_Engineering_Lectu.pptKNL3353_Control_System_Engineering_Lectu.ppt
KNL3353_Control_System_Engineering_Lectu.ppt
 
A fuzzy logic controllerfora two link functional manipulator
A fuzzy logic controllerfora two link functional manipulatorA fuzzy logic controllerfora two link functional manipulator
A fuzzy logic controllerfora two link functional manipulator
 
Design Novel Lookup Table Changed Auto Tuning FSMC: Applied to Robot Manipulator
Design Novel Lookup Table Changed Auto Tuning FSMC: Applied to Robot ManipulatorDesign Novel Lookup Table Changed Auto Tuning FSMC: Applied to Robot Manipulator
Design Novel Lookup Table Changed Auto Tuning FSMC: Applied to Robot Manipulator
 
Simulation Software Performances And Examples
Simulation Software Performances And ExamplesSimulation Software Performances And Examples
Simulation Software Performances And Examples
 
Comparative Analysis of PID, SMC, SMC with PID Controller for Speed Control o...
Comparative Analysis of PID, SMC, SMC with PID Controller for Speed Control o...Comparative Analysis of PID, SMC, SMC with PID Controller for Speed Control o...
Comparative Analysis of PID, SMC, SMC with PID Controller for Speed Control o...
 
A High Order Sliding Mode Control with PID Sliding Surface: Simulation on a T...
A High Order Sliding Mode Control with PID Sliding Surface: Simulation on a T...A High Order Sliding Mode Control with PID Sliding Surface: Simulation on a T...
A High Order Sliding Mode Control with PID Sliding Surface: Simulation on a T...
 
Sliding Mode Methodology Vs. Computed Torque Methodology Using MATLAB/SIMULIN...
Sliding Mode Methodology Vs. Computed Torque Methodology Using MATLAB/SIMULIN...Sliding Mode Methodology Vs. Computed Torque Methodology Using MATLAB/SIMULIN...
Sliding Mode Methodology Vs. Computed Torque Methodology Using MATLAB/SIMULIN...
 
E043036045
E043036045E043036045
E043036045
 
E043036045
E043036045E043036045
E043036045
 
E043036045
E043036045E043036045
E043036045
 
Ch.02 modeling in frequency domain
Ch.02 modeling in frequency domainCh.02 modeling in frequency domain
Ch.02 modeling in frequency domain
 

More from อิทธิเดช มูลมั่งมี

Tricks ทางคณิตศาสตร์กับการแก้ปัญหาฟิสิกส์
Tricks ทางคณิตศาสตร์กับการแก้ปัญหาฟิสิกส์Tricks ทางคณิตศาสตร์กับการแก้ปัญหาฟิสิกส์
Tricks ทางคณิตศาสตร์กับการแก้ปัญหาฟิสิกส์อิทธิเดช มูลมั่งมี
 
เรขาคณิตของการเคลื่อนที่แบบโปรเจกไตล์
เรขาคณิตของการเคลื่อนที่แบบโปรเจกไตล์เรขาคณิตของการเคลื่อนที่แบบโปรเจกไตล์
เรขาคณิตของการเคลื่อนที่แบบโปรเจกไตล์อิทธิเดช มูลมั่งมี
 

More from อิทธิเดช มูลมั่งมี (20)

Peaking phenomenon
Peaking phenomenonPeaking phenomenon
Peaking phenomenon
 
Constructive nonlinear smc
Constructive nonlinear smcConstructive nonlinear smc
Constructive nonlinear smc
 
A contribution to the control of the non holonomic integrator including drift...
A contribution to the control of the non holonomic integrator including drift...A contribution to the control of the non holonomic integrator including drift...
A contribution to the control of the non holonomic integrator including drift...
 
วารสารคณิตศาสตร์ ฉบับพิเศษ
วารสารคณิตศาสตร์ ฉบับพิเศษวารสารคณิตศาสตร์ ฉบับพิเศษ
วารสารคณิตศาสตร์ ฉบับพิเศษ
 
Sliding Mode Control Stability (Jan 19, 2013)
Sliding Mode Control Stability (Jan 19, 2013)Sliding Mode Control Stability (Jan 19, 2013)
Sliding Mode Control Stability (Jan 19, 2013)
 
Stabilization of Inertia Wheel Pendulum using Multiple Sliding Surface Contro...
Stabilization of Inertia Wheel Pendulum using Multiple Sliding Surface Contro...Stabilization of Inertia Wheel Pendulum using Multiple Sliding Surface Contro...
Stabilization of Inertia Wheel Pendulum using Multiple Sliding Surface Contro...
 
In–Cylinder Air Estimation on Diesel Dual Fuel Engine Using Kalman Filter
In–Cylinder Air Estimation on Diesel Dual Fuel Engine Using Kalman FilterIn–Cylinder Air Estimation on Diesel Dual Fuel Engine Using Kalman Filter
In–Cylinder Air Estimation on Diesel Dual Fuel Engine Using Kalman Filter
 
Sliding Mode Control of Air-Path in Diesel Dual-Fuel Engine
Sliding Mode Control of Air-Path in Diesel Dual-Fuel EngineSliding Mode Control of Air-Path in Diesel Dual-Fuel Engine
Sliding Mode Control of Air-Path in Diesel Dual-Fuel Engine
 
Tricks ทางคณิตศาสตร์กับการแก้ปัญหาฟิสิกส์
Tricks ทางคณิตศาสตร์กับการแก้ปัญหาฟิสิกส์Tricks ทางคณิตศาสตร์กับการแก้ปัญหาฟิสิกส์
Tricks ทางคณิตศาสตร์กับการแก้ปัญหาฟิสิกส์
 
Sliding mode control (revised march, 2012)
Sliding mode control (revised march, 2012)Sliding mode control (revised march, 2012)
Sliding mode control (revised march, 2012)
 
Robust and quadratic stabilization of tora system via dsc technique
Robust and quadratic stabilization of tora system via dsc techniqueRobust and quadratic stabilization of tora system via dsc technique
Robust and quadratic stabilization of tora system via dsc technique
 
Lyapunov stability 1
Lyapunov  stability 1Lyapunov  stability 1
Lyapunov stability 1
 
Lyapunov stability 2
Lyapunov stability 2Lyapunov stability 2
Lyapunov stability 2
 
Sliding mode control (revised march, 2012)
Sliding mode control (revised march, 2012)Sliding mode control (revised march, 2012)
Sliding mode control (revised march, 2012)
 
Calculus of variation ตอนที่ 2
Calculus of variation ตอนที่ 2Calculus of variation ตอนที่ 2
Calculus of variation ตอนที่ 2
 
Calculus of variation ตอนที่ 3 (จบ)
Calculus of variation ตอนที่ 3 (จบ)Calculus of variation ตอนที่ 3 (จบ)
Calculus of variation ตอนที่ 3 (จบ)
 
เรขาคณิตของการเคลื่อนที่แบบโปรเจกไตล์
เรขาคณิตของการเคลื่อนที่แบบโปรเจกไตล์เรขาคณิตของการเคลื่อนที่แบบโปรเจกไตล์
เรขาคณิตของการเคลื่อนที่แบบโปรเจกไตล์
 
Comparison Principle
Comparison PrincipleComparison Principle
Comparison Principle
 
สมการการแปลงพิกัด
สมการการแปลงพิกัดสมการการแปลงพิกัด
สมการการแปลงพิกัด
 
เรขาคณิตของการสะท้อนของแสง
เรขาคณิตของการสะท้อนของแสงเรขาคณิตของการสะท้อนของแสง
เรขาคณิตของการสะท้อนของแสง
 

Seminar2012 d

  • 1. Transformation of a Mismatched Nonlinear Dynamic Systems into Strict Feedback Form by Johanna L. Mathieu and J. Karl Hedrick Department of Mechanical Engineering, University of California, Berkeley, USA Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME Vol. 133, July 2011, Q2 CONTROL OF ROBOT AND VIBRATION LABORATORY Speaker: Ittidej Moonmangmee 3rd years of PhD student Lecturer at STOU December 1, 2012
  • 2. Johanna L. Mathieu 2012, PostDoc at EEH – Power Systems Laboratory, ETH Zurich 2006 – 2012, MS/PhD Student at the University of California, Berkeley, USA 2006 – 2012, Affiliate at the Lawrence Berkeley National Laboratory, Berkeley, California, USA 2008, Visiting researcher at the Bangladesh University of Engineering and Technology Department of Civil Engineering, Dhaka, Bangladesh 2005, Research Assistant at the MIT Sea Grant College Program, Cambridge, Massachusetts, USA 2004 – 2005, U.S. Peace Corps Volunteer, Tanzania 2000 – 2004, BS Student at the Massachusetts Institute of Technology, Cambridge, Massachusetts, USA J. Karl Hedrick (born 1944) is an American control theorist and a Professor in the Department of Mechanical Engineering at the University of California, Berkeley. He has made seminal contributions in nonlinear control and estimation. Prior to joining the faculty at the University of California, Berkeley he was a professor at the Massachusetts Institute of Technology from 1974 to 1988. Hedrick received a bachelor's degree in Engineering Mechanics from the University of Michigan (1966) and a M.S. and Ph.D from Stanford University (1970, 1971). Hedrick is the head of the Vehicle Dynamics Laboratory at UC Berkeley. In 2006, he was awarded the Rufus Oldenburger Medal from the American Society of Mechanical Engineers.
  • 3. 4/18 Outline 1. Objective 2. Dynamic System Description & Controllability  A bicycle example 3. Control Using Feedback Linearization 4. Dynamic Surface Control (DSC)  Transformation into Strict Feedback Form  Sliding Surface & Control law 5. Simulation & Results 6. Conclusions
  • 4. 5/18 Objective 1. Transform a mismatched nonlinear system into a strict feedback form (also with a mismatched) 2. Design two controllers via (i) Feedback Linearization method (ii) Dynamic Surface Control method to the bicycle tracks a desired trajectory steering angular velocity of the handle bars desired trajectory forward velocity of the bicycle 3. Simulate and compare two controllers performance
  • 5. 6/18 Dynamic System Description steering angle heading angle MIMO System Two inputs: u1 forward velocity of the bicycle u2 angular velocity of the handle bars Two outputs:
  • 6. 7/18 Controllability See [Daizhan, C., Xiaoming, H, and Tielong, S., Analysis and Design of Nonlinear Control Systems, 2010]
  • 7. 8/18 Control using Feedback Linearization Dynamic Extension: See [Sastry’s Nonlinear Systems, 1999] #Relative degree = #State = 6 So, it has no zero dynamics  Minimum-phase
  • 9. 10/18 Transformation into Strict Feedback Form Goal: Extended state equation  Strict feedback form (available for Dynamic Surface Control (DSC) design) Design a controller by Dynamic Surface Control (DSC)
  • 13. 14/18 Simulation and Results x1 error x1 position error x2 error x2 position error t MATLAB ode45 Disturbances: Uncertainty bounds: w1 = 0.10 + 0.02r1(t) δ1, δ2, δ4 = 0.2, w2 = 0.15 + 0.02r2(t) δ3 = 0.25 w3 = 0.20 + 0.02r3(t) and δ5, δ6, δ7, δ8 are w4 = 0.10 + 0.02r4(t) change with the where r i(t)  1) (0, function of the state.
  • 14. 15/18 Simulation and Results Control saturated: -10 to +10 u2 (rad/s) Controller gains: k = [10, 10, 1, 1, 10, 10] Filter Time Constant: t τ = [0.05, 0.05, 0.05, 0.05] u4 (rad/s) From the dynamic extension: t u1 (rad/s) t
  • 15. 16/18 Simulation and Results Sliding surfaces for x1 Sliding surfaces for x2
  • 16. 17/18 Concluding Remarks  A new method of defining states was presented for transform a nonlinear mismatched system to the strict feedback form  Two controller techniques were designed  Feedback linearization (FL) with dynamic extension  Dynamic surface control (DSC)  In the disturbance-free case, both FL & DSC performed tracking a desired trajectory  In the present of disturbances, the DSC was better to reject it than the FL  Tracking performance of the DSC can be designed by using the 1st order filter  However, more control effort required for DSC
  • 17. Thank you Please comments and suggests! CONTROL OF ROBOT AND VIBRATION LABORATORY