# Sample question paper 2 with solution

Pratima Nayak ,Kendriya Vidyalaya SangathanMicrosoft Educator Expert 2015 um Pratima Nayak ,Kendriya Vidyalaya Sangathan

CBSE Class XII Mathematics sample question paper with solurtion

Maths04 von
Maths04sansharmajs
250 views7 Folien
10.5K views40 Folien
Modul 1 functions von
Modul 1 functionsNorelyana Ali
823 views25 Folien
Assignment of class 12 (chapters 2 to 9) von
Assignment of class 12 (chapters 2 to 9)KarunaGupta1982
296 views8 Folien
IIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's Classes von
IIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's ClassesSOURAV DAS
140 views44 Folien
Chapter 5 indices & logarithms von
Chapter 5 indices & logarithmsatiqah ayie
117.7K views14 Folien

## Was ist angesagt?

Consolidated.m2-satyabama university von
Consolidated.m2-satyabama universitySelvaraj John
2.1K views10 Folien
Chapter 19 indefinite integrals part 2 von
Chapter 19 indefinite integrals part 2STUDY INNOVATIONS
109 views10 Folien
Form 4 add maths note von
Form 4 add maths noteSazlin A Ghani
156.7K views9 Folien
Pc30 June 2001 Exam Ans Key von
Pc30 June 2001 Exam Ans Keyingroy
445 views5 Folien
Assessments for class xi von
Assessments for class xi indu psthakur
7.9K views39 Folien
2.3K views40 Folien

### Was ist angesagt?(19)

Consolidated.m2-satyabama university von Selvaraj John
Consolidated.m2-satyabama university
Selvaraj John2.1K views
Form 4 add maths note von Sazlin A Ghani
Sazlin A Ghani156.7K views
Pc30 June 2001 Exam Ans Key von ingroy
Pc30 June 2001 Exam Ans Key
ingroy445 views
Assessments for class xi von indu psthakur
Assessments for class xi
indu psthakur7.9K views
Wendy Pindah2.3K views
morabisma1.7K views
12 cbse-maths-2014-solution set 1 von vandna123
12 cbse-maths-2014-solution set 1
vandna1231.4K views
Aieee 2003 maths solved paper by fiitjee von Mr_KevinShah
Aieee 2003 maths solved paper by fiitjee
Mr_KevinShah2.4K views
IIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's Classes von SOURAV DAS
IIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's Classes
SOURAV DAS211 views
Nota math-spm von Ragulan Dev
Nota math-spm
Ragulan Dev12.2K views
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II von Rai University
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Rai University10.6K views

## Similar a Sample question paper 2 with solution

Class XII CBSE Mathematics Sample question paper with solution von
Class XII CBSE Mathematics Sample question paper with solutionPratima Nayak ,Kendriya Vidyalaya Sangathan
41.8K views17 Folien
Dpp (31-35) 11th J-Batch Maths.pdf von
Dpp (31-35) 11th J-Batch Maths.pdfSTUDY INNOVATIONS
20 views20 Folien
Trig-2 (Trigonometric Equations & Inequations) (Sol).pdf von
Trig-2 (Trigonometric Equations & Inequations) (Sol).pdfSTUDY INNOVATIONS
23 views6 Folien
Gr 11 equations von
Gr 11 equationsRenate Rohrs
434 views25 Folien
EPCA_MODULE-2.pptx von
2 views55 Folien
Dpp (13-15) 11th J-Batch Maths.pdf von
Dpp (13-15) 11th J-Batch Maths.pdfSTUDY INNOVATIONS
50 views11 Folien

### Similar a Sample question paper 2 with solution(20)

Trig-2 (Trigonometric Equations & Inequations) (Sol).pdf von STUDY INNOVATIONS
Trig-2 (Trigonometric Equations & Inequations) (Sol).pdf
College algebra real mathematics real people 7th edition larson solutions manual von JohnstonTBL
College algebra real mathematics real people 7th edition larson solutions manual
JohnstonTBL726 views
math1مرحلة اولى -compressed.pdf von HebaEng
math1مرحلة اولى -compressed.pdf
HebaEng3 views
Method of Differentiation & L hospital Rule (Sol).pdf von STUDY INNOVATIONS
Method of Differentiation & L hospital Rule (Sol).pdf
2014 st josephs geelong spec maths von Andrew Smith
2014 st josephs geelong spec maths
Andrew Smith312 views
Module 3 quadratic functions von dionesioable
dionesioable3.2K views
Factoring 15.3 and 15.4 Grouping and Trial and Error von swartzje
Factoring 15.3 and 15.4 Grouping and Trial and Error
swartzje3.8K views
Pembahasan ujian nasional matematika ipa sma 2013 von mardiyanto83
Pembahasan ujian nasional matematika ipa sma 2013
mardiyanto8313.9K views

## Más de Pratima Nayak ,Kendriya Vidyalaya Sangathan

Sustained & active_engagement_with_every_child - Pratima Nayak von
Sustained & active_engagement_with_every_child - Pratima NayakPratima Nayak ,Kendriya Vidyalaya Sangathan
2K views67 Folien
Solving addition word problem knowing key words von
Solving addition word problem knowing key wordsPratima Nayak ,Kendriya Vidyalaya Sangathan
1.5K views22 Folien
Project based learning Primary Mathematics von
Project based learning Primary MathematicsPratima Nayak ,Kendriya Vidyalaya Sangathan
991 views23 Folien
Triangles(Tribhuja) in odia language von
Triangles(Tribhuja) in odia languagePratima Nayak ,Kendriya Vidyalaya Sangathan
947 views17 Folien
Tips to deal with adolescent behavior- for parents von
Tips to deal with adolescent behavior- for parentsPratima Nayak ,Kendriya Vidyalaya Sangathan
1.8K views26 Folien
Common problems of adolescentsPratima Nayak ,Kendriya Vidyalaya Sangathan
9.5K views28 Folien

## Último

Parts of Speech (1).pptx von
Parts of Speech (1).pptxmhkpreet001
46 views20 Folien
MercerJesse3.0.pdf von
MercerJesse3.0.pdfjessemercerail
152 views6 Folien
Class 9 lesson plans von
Class 9 lesson plansTARIQ KHAN
82 views34 Folien
DISTILLATION.pptx von
DISTILLATION.pptxAnupkumar Sharma
65 views47 Folien
11.30.23A Poverty and Inequality in America.pptx von
11.30.23A Poverty and Inequality in America.pptxmary850239
130 views18 Folien

### Último(20)

Parts of Speech (1).pptx von mhkpreet001
Parts of Speech (1).pptx
mhkpreet00146 views
Class 9 lesson plans von TARIQ KHAN
Class 9 lesson plans
TARIQ KHAN82 views
11.30.23A Poverty and Inequality in America.pptx von mary850239
11.30.23A Poverty and Inequality in America.pptx
mary850239130 views
Creative Restart 2023: Leonard Savage - The Permanent Brief: Unearthing unobv... von Taste
Creative Restart 2023: Leonard Savage - The Permanent Brief: Unearthing unobv...
Taste55 views
Career Building in AI - Technologies, Trends and Opportunities von WebStackAcademy
Career Building in AI - Technologies, Trends and Opportunities
12.5.23 Poverty and Precarity.pptx von mary850239
12.5.23 Poverty and Precarity.pptx
mary850239381 views
The Future of Micro-credentials: Is Small Really Beautiful? von Mark Brown
The Future of Micro-credentials: Is Small Really Beautiful?
Mark Brown75 views
JQUERY.pdf von ArthyR3
JQUERY.pdf
ArthyR3105 views
BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (FRIE... von Nguyen Thanh Tu Collection
BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (FRIE...
EILO EXCURSION PROGRAMME 2023 von info33492
EILO EXCURSION PROGRAMME 2023
info33492202 views
Retail Store Scavenger Hunt.pptx von jmurphy154
Retail Store Scavenger Hunt.pptx
jmurphy15452 views

### Sample question paper 2 with solution

• 1. Sample Question Paper MATHEMATICS Class XII Time: 3 Hours Max. Marks: 100 General Instructions 1. All questions are compulsory. 2. The question paper consists of 29 questions divided into three sections A, B and C. Section A comprises of 10 questions of one mark each, section B comprises of 12 questions of four marks each and section C comprises of 07 questions of six marks each. 3. All questions in Section A are to be answered in one word, one sentence or as per the exact requirement of the question. 4. There is no overall choice. However, internal choice has been provided in 04 questions of four marks each and 02 questions of six marks each. You have to attempt only one of the alternatives in all such questions. 5. Use of calculators is not permitted. You may ask for logarithmic tables, if required. SECTION-A 1. If f(x) is an invertible function, find the inverse of f(x)=3x-2.  −1  2. find the principal value of sin −1    2  x + 3y 3. If   7−x y   4 −1 find the value of x and y. = 4  0 4     4. A matrix A of order 3X3 has determinant 5. what is the value of 3A . 5 .Find ∫ x + cos 6 x d ( x) 3 x 2 + sin 6 x 6. Evaluate ∫ xe x dx . Pratima Nayak,KV Teacher
• 2.         7. If p is a unit vector and x + p . x − p =. 80 )( ( ) 8.write the direction cosine of a line equally inclined the three co-ordinate axes. 9.write the value of the following determinant. a −b b−c c −a b−c c−a c−a c −a a −b b−c ( ) ( ) ˆ ˆ 0 ˆ ˆ 10. find the value of p, if 2i + 6 ˆ + 27 k X i + 3 ˆ + pk = j j SECTION-B 5 2  1 −1  1  11.Let the value of 2 tan −1   + sec −1   7  + 2 tan  8   5     OR π  x −1  −1  x + 1  Solve for x, tan −1  ,x≤  + tan  =1  x−2  x+2 2 13.Uasing properties of determinants prove that 2a 2a a −b−c 2b 2b b−c−a = 2c 2c c −a −b (a + b + c) 3 14.Show that the function f(x)= x + 2 is continuous at every x ∈ R but fails to be differentiable at x=-2. OR Verify lagrangesmean value theorem for the following function f(x)= x 2 + 2 x + 3 for [ 4, 6] 15.Differential following function w.r.to x  1 + x2 − 1 tan −1   x     OR Differentiate ( cos x ) sin x + ( sin x ) cos x with respect to x Pratima Nayak,KV Teacher
• 3. 16.Evalute π x sin x ∫ 1 + (cos x) 2 dx 0 17.Solve the following differential equation ( x 2 − y 2 )dx + 2 xydx = 0, y (1) = 1 18.The volume of a spherical balloon is increasing at the rate of 25 cm3 / sec. Find the rate of change of its surface area at the instant when its radius is 5cm. 19.Form the differential equation representing the family of parabola having vertex at origin and axis along positive of X-axis.      ˆ ˆ 20.Find the projection of b + c on a when a = i − 2 ˆ + k , b = + 2 ˆ − 2k and 2ˆ j ˆ i j  ˆ ˆ j c = 2i − ˆ + 4k . 21.Find the equation of the plan passing through the points (0,-1,0),(1,1,1) and (3,3,0). 22.The probability of A solving a problem is 3/7 and that B solving it is 1/3 what is the probability (i) at least one of them solve the problem? (ii)only one of them will solve the problem? SECTION-C (23) Using matrices solve the following system of linear equations2x-y+z=3, -x+2y-z=-4, x-y+2z=1 OR Using elementary transformations, find the inverse of the following matrix 1 3 − 2 − 3 0 − 5   2 5 0   (24)Determine the points on the curve y = x2 which are nearest to point (0, 5) 4 OR Pratima Nayak,KV Teacher
• 4. Show that the surface area of a closed cuboid with square base and given volume is maximum when it is a cube. (25) Find the area of the region included between parabola y 2 =x and the line x +y =2. a  a−x  (26) Prove that- ∫   a + x  dx = π a − a  (27) Mona wants to invest at most Rs.12000 in Saving certificate (SC) and National saving bonds (NSB).She has to invest at least Rs.2000 in SC and at least Rs.4000 in NSB. If the rate of interest on SC is 8 pa. and the rate of interest on NSB 10pa, how much money should she invest to earn maximum yearly income? Also find the maximum income. (28) Find the foot of perpendicular drawn from the point A (1, 0, 3) to the join of the points B (4, 7, 1) and C (3, 5, 3) and also find the perpendicular distance. (29) Urn A contains 1 white, 2 black, 3 red balls; Urn B Contains 2 white ,1 black ,1red ball; Urn C contains 4 white ,5 black and 3 red balls. One urn is chosen at random and two balls are drawn, these happens to be one white and one red. What is the probability that they come from urn C. Solution SECTION-A 1. f(x)=3x-2 Let y =f(x) y =3x-2 3x+2 =y f −1 ( x) =3x+2 2. y = sin −1 (−1/ 2) = −1 (1/ 2) = 6 − sin −π / 3. x + 3y  7−x  4. 3 A = 33 A = 27 × 5 = 135 y   4 −1 7, − = ⇒ x + 3 y = y = 1, 7 − x = ⇒ x = y = 1 4, − 0 4  0 4     Pratima Nayak,KV Teacher
• 5. 5. I = 1 x + cos 6 x log ( 3 x 2 + sin 6 x ) +c dx = 2 6 + sin 6 x ∫ 3x ∫ xe dx = x ∫ e x dx − ∫ 1.e x dx = xe x − e x + c 6. I= 7. ( x + p ) . ( x − p ) = 80 ⇒ 8. l= m= n= ± 9. Taking operation C1 → C1 + C2 + C3  x    2 2 2  x − p = 80 ⇒ x = 81 ⇒ x = 9 1 3 a −b b−c c −a b−c c−a c−a c −a a −b b−c 10 = 0 2 0 ( 2iˆ + 6 ˆj + 27kˆ ) X (iˆ + 3 ˆj + pkˆ ) =⇒ 1 = 6 = 27 ⇒ P = 27 3 P 2 SECTION-B 5 2  1 −1  1  11. 2 tan −1   + sec −1   7  + 2 tan  8  =  5      1 1  5 2   +  1 1  2  tan −1 + tan −1  + sec −1 = 2 tan −1  5 8  + tan −1  7   1 1 5 8    1 − .   5 8 2 5 2    7  −1     2   3 1  +   3  π −1  1  −1  1  −1 −1  1  −1  4 −1 7 . = 2 tan   + tan  = tan   =  + tan   = tan  = tan (1)  3 1 1 4 3 7 7 1 − ×  1 −   4 7  9 Value= π 4 OR  x −1   x +1  π tan −1  + tan −1  =  x − 2   x + 2 4  Pratima Nayak,KV Teacher
• 6.  x −1 x +1  +   π −1 x−2 x+2  = ⇒ tan  1 −  x − 1   x + 1   4   x − 2  x + 2       ( x − 1)( x + 2 ) + ( x − 2 )( x + 1)  π ⇒ tan −1  =  ( x − 2 )( x + 2 ) − ( x − 1)( x + 1)  4 ⇒ 1 x2 + x − 2 + x2 − x − 2 2x2 − 4 = 1⇒ == 1⇒ x ± 2 2 x − 4 − x +1 −3 2 12. R= {(T1 , T2 ) : T1 ≅ T2 } (i) R is reflexive:T1 ≅ T1 ⇒ (T1 , T1 ) ∈ R ∴ R is reflexive (ii) R is symmetric:Let (T1 , T2 ) ∈ R ⇒ T1 ≅ T2 ⇒ T2 ≅ T1 ⇒ (T2 , T1 ) ∈ R ⇒ R is symmetric. (iii) R is Transitive:Let (T1 , T2 ) ∈ R & (T2 , T3 ) ∈ R ⇒ T1 ≅ T2 , T2 ≅ T3 ⇒ T1 ≅ T3 ⇒ (T1 , T3 ) ∈ R ∴ R is Transitive. ∴ R is equivalence relation. a −b−c 2a 2a 13. = ∆ 2b b−c−a 2b 2c 2c c−a −b R1 → R1 + R2 + R3 a+b+c a+b+c a+b+c = ∆ b−c−a 2b 2b 2c 2c c −a −b Taking (a + b + c) common 1 1 ∆ = (a + b + c) 2b b − c − a 2c 2c 1 2b c−a−b Pratima Nayak,KV Teacher
• 7. C1 → C1 − C 2 , C 2 → C 2 − C 3 0 0 1 ∆ = (a + b + c) a + b + c − (a + b + c) 2b c−a−b a+b+c 0 1 0 0  1 −1 ∆ = (a + b + c) 1 − 1 2b = (a + b + c) 3 0 − 0 + 1  0 1   0 1 c−b−a 3 ∆ = (a + b + c) 3 14. f ( x) = x + 2 f (x) =x+2 if x>-2 f(x) =0 x=-2 if f(x)=-(x+2) if x<-2 For continuity Case(i) When c>-2 lim x →c = lim x →c ( x + 2) = c + 2 = f (c) ∴ f ( x)is continuous for all c > -2 Case(ii) When c <- 2 then lim x →c f ( x) = lim x →c − ( x + 2) = −(c + 2) = f (c) ∴ f(x) is continuous for all c <- 2 Case(iii) When c=-2 lim x →−2+ f ( x) = lim h→0 f (−2 + h) = lim h→0 (−2 + h + 2) = 0 lim x →−2− f ( x) = lim h→0 f (−2 − h) = lim h→0 − (−2 − h + 2) = 0 ∴ lim x →−2 f ( x) = f (−2) ∴ f ( x)is continuous at x=-2 ∴ f ( x)is continuous for all x ∈ R Pratima Nayak,KV Teacher
• 8. For differentiability at x=-2 Rf  (−2) = lim h→0 Lf (−2) = lim h→0 f (−2 + h) − f (−2) = lim h→0 h (−2 + h − 2) − 0 =1 h (2 + h − 2) − 0 f (−2 − h) − f (−2) = −1 = lim h→0 −h −h Lf  (−2) ≠ Rf  (−2) ⇒ f(x) is not diff. at x=-2 OR f(x)= x 2 + 2 x + 3 for [ 4, 6] ⇒ f  ( x) = 2 x + 2  F(x) is a polynomial function ∴ f(x) is continuous for x ∈ [4,6] and differentiabl for x ∈ (4,6) Now ∃x = c ∈ (4,6) s.t. f  (c ) = f (b) − f (a ) ⇒ 2c + 2 = 12 ⇒ c = 5 ∈ (4,6) b−a ∴ Lagranges theorem satisfied.  1 + x 2 − 1 15.y= tan −1   x     Let x= tan θ Y=  1 + tan 2 θ − 1 θ  θ 1 −1 −1  sec θ − 1  −1 1 − cos θ  −1  tan −1   = tan   = tan  sin θ  = tan  tan 2  = 2 = 2 tan x tan θ  tan θ          y= 1 dy 1 tan −1 x ⇒ = 2 dx 2(1 + x 2 ) OR Let y= ( cos x ) sin x + ( sin x ) cos x y=u+v Pratima Nayak,KV Teacher
• 9.  u = (sin x) cos x ⇒ log u = cos x log(sin x) ⇒ d log u cos x cos x + log(sin x)(− sin x) = sin x dx 1 du du sin x cos x ] = cos x. cot x − sin x. log sin x ⇒ = (sin x) cos x [ ( cos x ) + ( sin x ) u dx dx v = (cos x) sin x ⇒ log v = sin x log(cos x) ⇒ 1 dv 1 (− sin x ) + cos x log(cos x) = sin x × cos x v dx dv = (cos x) sin x [− sin x tan x + cos x log cos x ] dx dy du dv = + dx dx dx ⇒ dy sin x cos x ] + (cos x) sin x [− sin x tan x + cos x log cos x ] = (sin x) cos x [ ( cos x ) + ( sin x ) dx π π π x sin x (π − x) sin(π − x) (π − x) sin x dx ⇒ I = ∫ dx ⇒ I = ∫ dx 2 2 2 0 1 + cos (π − x ) 0 1 + cos x 0 1 + cos x 16. I= ∫ π I= ∫ 0 π sin x 1 + cos x 2 π x sin( x) dx 1 + cos 2 ( x) 0 π π sin( x) ∫ ∫ 1 + cos 2I= π dx − ∫ 2 0 ( x) dx ⇒ I = 1 π sin x dx 2 ∫ 1 + cos 2 x 0 Let cosx=t ⇒ − sin xdx = dt −1 [ ] [ ] 1 −1 dt ⇒ π tan −1 t −1 = π tan −1 (1) − tan −1 (− 1) 2 1 1+ t I= π ∫ I= 17. π2 4 dy − ( x 2 − y 2 ) = dx 2 xy Let y=vx ⇒ ⇒v+x dy dv =v+x dx dx 2v dv − x 2 (1 − v 2 ) dx = ⇒ dv = − 2 2 dx x 2x v 1+ v Pratima Nayak,KV Teacher
• 10. ⇒∫ dx 2v dv = − ∫ ⇒ log(1 + v 2 ) = − log x + c ⇒ log( x 2 + y 2 ) − log x = c …….(1) 2 x 1+ v Now put x=1,y=1 C=log2 From (1)  x2 + y2  2 2 log   = log 2 ⇒ ( x + y ) = 2 x x   18.Let any time t,radius=r,volume=V,surface area=S g.t. dV ds = 25cm 3 / sec, = ? dt dt 4 dV dr 1  dr   V = πr 3 ⇒ = 4πr 2 ⇒  = 3 dt dt  dt  r =5 4π S = 4πr 2 ⇒ ds dr = 8πr dt dt  ds  ⇒   = 10cm 2 / sec  dt  r =5 19. Equ. Of parabola y 2 = 4ax ………(i) d.w.r.to x dy 4a y dy = ⇒a= dx 2 y 2 dx From equ. (i) y = 2x dy dx   ˆ  ˆ ˆ ˆ j 20. a = i − 2 ˆ + k , b = + 2 ˆ − 2k , c = 2i − ˆ + 4k . 2ˆ j ˆ i j   ˆ ˆ j ⇒ b + c = 3i + ˆ + 2k      2  b + c .a Projection of b + c on a = = Ans.  a 14 ( ) 21. points (o,-1,0) ,(1,1,1) ,(3,3,0). Pratima Nayak,KV Teacher
• 11. Equ. Of plan passing through point (0,-1,0) A(x-0) + B(y+1) + C(z-0) = 0 ……….(i) Point (1, 1, 1)and (3,3,0) satisfy equ.(i) we get A + 2B + C = 0……….(ii) 3A + 4B + 0.C = 0…….(iii) Solve eque. (i)@ (ii) A B C = = =λ⇒ A −4 3 −2 A = - 4λ , B = 3λ , C = - 2λ Putting in (1) -4 λ x + 3 λ (y + 1) - 2 λ z = 0 -4x + 3 (y + 1) - 2z = 0 4x + 3y + 2z-3 = 0 Ans. 22. Given that probability of A solving the question P(A) = Probability of B solving the question P (B) = − ∴ P( A ) =1 - 1 3 3 4 = 7 7 − and 3 7 P( B ) = 1 - 1 2 = 3 3 − − (1) Probability that at least one of them solve the problem = P(A B ) + P( A B) + P(AB) = 3 2 4 1 3 1 . + . + . 7 3 7 3 7 3 = 6 + 4 + 3 13 = 21 21 Pratima Nayak,KV Teacher
• 12. − − (2) Probability that only one of them will solve the problem = P(A B ) + P( A B) = 3 2 4 1 . + . 7 3 7 3 = 6+4 21 = 10 Ans. 21 SECTION-C (23) Given equations can be written as  2 −1 1   x  3  − 1 2 − 1  y  = − 4       1 −1 2  z  1       ⇒ AX=B → (1) A =4 ≠ 0 ⇒ A −1 exits. A 11 =(-1) 1+1 (4-1)=33 Similarly other cofactors can be obtained.  3 1 − 1 adjA 1  = 1 3 1 Adj. A=  4 A − 1 1 3    From (1) X= A −1 B Pratima Nayak,KV Teacher
• 13.  3 1 − 1  3  X   Y  = 1  1 3 1   − 4 ⇒    4  − 1 1 3   1  Z       1  = − 2 ⇒ x=1, y=-2, z=-1    − 1   OR A =AI R 1 → R 1 +3R 1 1 3 − 2  1 0 0 0 9 − 11 = 3 1 0 A      2 5 0  0 0 1      R 1 → R 1 +3R 3 , R 2 → Applying R 3 → R 3 -2R 1 1 9 11 R 2 R 3 → R 3 +R 2 R 3 → R 3R 2 →R 2 + R3 9 25 9 R 1 → R 1 -10 R 3 1 0 0 ⇒ 0 1 0  =   0 0 1    −2 5 4 25 1 25   1 − 2   5 −3  5  − 3 5  11   25  9  25   ⇒ I=BA ⇒ B is inverse of A (24)let (x,y) be the foot of perpendicular on the given curve which is nearest to (0,5) [ D= ( x − 0) + ( y − 5) 2 2 ] 1 2 Pratima Nayak,KV Teacher
• 14. If D is minimum then D 2 = x 2 +(y-5) 2 =E is also minimum dE = 2y-6 dY For minimum distance At y=3 dE = 0 ⇒ y=3 dY d 2E =2 〉 0 dy 2 ⇒ for y=3 ,distance is minimum ⇒ x= ± 2 3 Reqd. point is ( ± 2 3 ,3 ) OR Let x be the side of the square base & y be the height of cuboid V=x 2 y ⇒ y = V x2 Surface area (S)=2x 2 +4 xv / x 2 =ds/dx=4x-4v/x 2 1 For minimum ds/dx=0 => x 3 =v ,x=v 3 1 3 3 S’’ =4+8v/x when x =v =4+8 >0 therefore S is ,minimum 3 When x 3 =v=>x =x 2 y =>x =y There when S is mini mum cuboid is cube. Q25 given curves are y 2 =x and x+y =2 solving points of intersection aare (1,1),(4,-2) 1 The area of shaded region ∫ ( x 2 − x1 )dy −2 1 = ∫ (2 − y − y 2 )dy −2 =9/2 sq units. Pratima Nayak,KV Teacher
• 15. (26) a Given integral = ∫ −a a a (a − x ) 2 2 dx − ∫ −a xdx (a 2 − x ) 2 Putting x=asin θ ,dx=acos θdθ ,and changing limits in second integral Π Π Π Given integral= a  − (−  +a [cos θ ] 2 =a Π 2 2 −Π 2 (27) Let she invests Rs. x in saving certificates and Rs. y in National saving bonds Then LPPis To maximize Z=0.08x+0.1y Subject to constraints x ≥ 2000, y ≥ 4000, x + y ≤ 12000 corner points of feasible region ABC are A(2000,4000), B(8000,4000),c(2000,10000) at A, Z=160+400=560 at B, Z=640+400=1040 at C,Z=160+1000=1160 thus Rs. 2000 should be invested in saving certificates and Rs.10000 in National saving bonds. Maximum yearly income is Rs. 1160. Pratima Nayak,KV Teacher
• 16. (28)Let A(1,0,3),B(4,7,1),C(3,5,3) be the given points . Let P be the foot of perpendicular from A on BC. If P divides BC in k:1 then coordinates of P are ( 3k + 4 5k + 7 3k + 1 ) , , k +1 k +1 k +1 d.r.’s of BC are 1,2,-2 d.r.’s of AP are 2 k + 3 5k + 7 − 2 , , k +1 k +1 k +1 since AP ⊥ BC therefore k= −7 4 5 7 17 thus coordinates of P are ( , , ) 3 3 3 reqd. ⊥ dis tan ce = AP = 117 7 17  5 2 2 2 ( 3 − 1) + ( 3 − 0) + ( 3 − 3)  = 3   (29) Let E1,E2 ,E3 be the events that the balls are drawn from urn A, urn B, urn C respectively and let E be the event that balls drawn are one white and one black Then P(E1)=P(E2)=P(E3)= P(E/E1)= 1 3 C (1,1) * C (3,1) 1 = C (6,2) 3 Similarly P(E/E2)= 1 2 , P(E/E3)= 11 3 Using Bayes’ Theorem reqd. probability= P(E3/E) 2 15 33 = ( )= 1 1 2 59 + + 15 9 33 Pratima Nayak,KV Teacher
Aktuelle SpracheEnglish
Español
Portugues
Français
Deutsche