Diese Präsentation wurde erfolgreich gemeldet.
Die SlideShare-Präsentation wird heruntergeladen. ×

Turning Analysis into Action with APIs - Superweek 2017

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Wird geladen in …3
×

Hier ansehen

1 von 37 Anzeige

Turning Analysis into Action with APIs - Superweek 2017

Herunterladen, um offline zu lesen

Presentation given by Mark Edmondson and Peter Meyer at Superweek 2017 in Hungary. Includes three examples of using APIs in a tag management solution to give better data to make decisions and use predictions.

Presentation given by Mark Edmondson and Peter Meyer at Superweek 2017 in Hungary. Includes three examples of using APIs in a tag management solution to give better data to make decisions and use predictions.

Anzeige
Anzeige

Weitere Verwandte Inhalte

Diashows für Sie (20)

Andere mochten auch (20)

Anzeige

Ähnlich wie Turning Analysis into Action with APIs - Superweek 2017 (20)

Aktuellste (20)

Anzeige

Turning Analysis into Action with APIs - Superweek 2017

  1. 1. TURNING ANALYSIS INTO ACTION WITH APIs
  2. 2. • Digital business focus • 15+ years of experience • Web Analytics House 2013, 2014, 2015, 2016, 2017 • Value-driven business • More than 40 people in Denmark, Sweden & Norway About IIH Nordic
  3. 3. About Us Mark Edmondson • In digital since 2006 • Data Insight Developer • Google Developer Expert for Google Analytics • RStudio Advocate • cloudyR contributor • @HoloMarkeD Peter Meyer • In digital since 1997 • Analytics Technician • TMS and Analytics implementer • @pmeyerdk
  4. 4. Agenda • What are actionable analysis APIs? • Example 1 - Weather API - IBM • Example 2 - Custom prediction API - Prefetching • Example 3 - Text sentiment API – Google/Algorithmia Machine Learning • Future opportunities
  5. 5. What are Analysis APIs?
  6. 6. Collect Data Analyse Data Change something An Analytics Workflow
  7. 7. Collect Data Analyse Data Change something Reporting APIs Tracking APIs Analysis APIs An Analytics Workflow
  8. 8. Collect Data Analyse Data Change something Reporting APIs Tracking APIs Analysis APIs An Analytics Workflow
  9. 9. Analysis API An API that transforms data into useful information
  10. 10. Examples of actionable analysis APIs • Visualisations for decision support (dashboards) • Multivariant testing • Bid managers • Enrichment of data - weather • Content prediction - prefetching • Text analysis – machine learning API We will talk today about these ones: …but others include:
  11. 11. Weather API (data enrichment)
  12. 12. Deployment • Only one webservice used • Geo- and weather data in one go • A bunch of information returned
  13. 13. Deployment
  14. 14. Analysis • Take daily lag to negate spurious trend correlation • tscount() R package for poisson distribution • 16% ±4% extra visitors on rainy days
  15. 15. URL Prefetching (react to predictions)
  16. 16. Deployment http://code.markedmondson.me/predictClickOpenCPU/supercharge.html
  17. 17. https://www.noisetosignal.io/2016/11/using-google-analytics-to-predict-clicks-and-speed-up-your-website/ Simpler method using offline analysis and deploying through a GTM lookup table
  18. 18. Text Sentiment API (surfacing important features)
  19. 19. Real-time sentiment tracking of customer service forums/comment sections Categorise topics your customers care about
  20. 20. http://bit.ly/Superweek2017-Demo
  21. 21. Deployment - Algorithmia • Stanford NLP Sentiment Analysis • https://algorithmia.com/
  22. 22. Deployment - Algorithmia I really love ice cream very much!
  23. 23. Deployment - Google • Google Cloud Natural Language API (beta) • https://cloud.google.com/natural-language/
  24. 24. Deployment - Google I really love ice cream very much! http://glaforge.appspot.com/article/sentiment-analysis-on-tweets
  25. 25. Recent example at gov.uk https://gdsdata.blog.gov.uk/2016/12/20/using-machine-learning-to-classify-user-comments-on-gov-uk/
  26. 26. Future OpportunitiesThe Horizon
  27. 27. Machine Learning APIs
  28. 28. Preparation for the singularity • Get your data tidy and out of silos • Start prototyping models • Skill up in a ML tech stack
  29. 29. Skill up in a machine learning tech stack • Google BigQuery • Google Compute Engine • Tensorflow • Dataproc (Spark) • Redshift/Athena • Amazon EMR • EC2 • S3 • Amazon Machine Learning • SQL Data Warehouse • Azure • Microsoft R • Microsoft Cognitive Programming languages: R, Python, bash, JavaScript, Scala, Java, Julia(?), SQL
  30. 30. ML: Google Flavoured Build your own self- driving car! ....or for simpler use cases use the pre- trained models available using easy to use APIs
  31. 31. A Microsoft Cognitive API Example https://matt-stannard.blogspot.dk/2016/12/measuring-footfall-with-google.html
  32. 32. • Look to reduce time to actions via APIs • GTM can do more than tracking • Skill up in a machine learning tech stack Summary
  33. 33. Thank you! Mark Edmondson mark@iihnordic.com @HoloMarkeD https://www.linkedin.com/in/markpeteredmondson Peter Meyer peter.meyer@iihnordic.com @pmeyerdk https://www.linkedin.com/in/pmeyerdk

×