Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

Team 1: Easy-to-Use Satellite Images Discovery in a Map Viewer

162 Aufrufe

Veröffentlicht am

Team 1: Easy-to-Use Satellite Images Discovery in a Map Viewer

Veröffentlicht in: Daten & Analysen
  • Als Erste(r) kommentieren

  • Gehören Sie zu den Ersten, denen das gefällt!

Team 1: Easy-to-Use Satellite Images Discovery in a Map Viewer

  1. 1. Unifying Data and Metadata Tomáš Řezník, Karel Charvát, Šimon Leitgeb, Štěpán Kafka TEAM 1 Easy-to-Use Satellite Images Discovery in a Map Viewer Orléans OGC/INSPIRE Hackathon, 22/3/2018
  2. 2. Supporting R&I Horizon 2020 projects NextGEOSS 26 partners from 12 countries 2016 – 2020 10.2 mil. € http://nextgeoss.eu Data-Driven Bioeconomy 48 partners from 17 countries 2017 – 2019 16.2 mil. € http://databio.eu Policy Development based on Advanced Geospatial Data Analytics and Visualisation 15 partners from 6 countries 2017 – 2020 3.9 mil. € http://polivisu.eu/
  3. 3. Why? The way we currently handle geospatial metadata. Images adopted from: organicwineexchange.com, vectorstock.com Where can I find information on what’s inside? We have an application exactly for that. Just go into the room at the end of the shop, press the red button to start the scanner and then wait few seconds to see the information that appears.
  4. 4. Current situation
  5. 5. Let’s move on Image adopted from: Reznik, T., Chudy, R., Micietova, E. Normalized evaluation of the performance, capacity and availability of catalogue services: a pilot study based on INfrastruture for SPatial InfoRmation in Europe. International Journal of Digital Earth 9, 325-341 (2016). doi: 10.1080/17538947.2015.1019581
  6. 6. Software ingredients • HSLayers NG • Visualization library based on OL, Cordova, Bootstrap etc. • http://ng.hslayers.org/ • Copernicus Open Access API • Source of Sentinel images • https://scihub.copernicus.eu • NASA API • Source of Landsat (and other images) • https://api.nasa.gov/
  7. 7. Copernicus Open Access API • Sample query https://scihub.copernicus.eu/dhus/search?q=footp rint:%22Intersects(POLYGON((16.75%2049.03,%201 7.12%2049.04,%2017.06%2049.30,%2016.78%204 9.29,%2016.75%2049.03)))%22&FORMAT=json JSON metadata parser
  8. 8. Copernicus Open Access API • API produces JSON, however it is firstly parsed and transformed into GeoJSON to handle geospatial information correctly (Python script developed) • Communication to NASA API in progress JSON metadata parser GeoJSON
  9. 9. Current status
  10. 10. Outlook – Filtering • Sample query https://scihub.copernicus.eu/dhus/search?q=footp rint:%22Intersects(POLYGON((16.75%2049.03,%201 7.12%2049.04,%2017.06%2049.30,%2016.78%204 9.29,%2016.75%2049.03)))%22&FORMAT=json JSON Metadata parser 328 satellite images available radar multispectral x x
  11. 11. Outlook – Notifications New Sentinel-2B image is available. 70.8% cloud coverage DOWNLOAD (SAFE, 750 MB) IGNORE Ongoing work also on integration of the NASA API (https://api.nasa.gov)
  12. 12. May the metadata be with you! Image adopted from: http://clipground.com

×