SlideShare a Scribd company logo
1 of 46
Download to read offline
Lecture 10:

EVE 161:

Microbial Phylogenomics
!

Lecture #10:
Era III: Genome Sequencing
!
UC Davis, Winter 2014
Instructor: Jonathan Eisen

Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014

!1
Where we are going and where we have been

• Previous lecture:
! 10: Genome Sequencing
• Current Lecture:
! 11: Genome Sequencing II
• Next Lecture:
! 12: Genome Sequencing III

Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014

!2
Comparative Genomics

Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
Structural Diversity

Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
mosome encodes all the housekeeping functions. Because plasmids typically have only

Structural Diversity

TABLE 7.1. Examples of bacteria with multiple genetic elements
Species

Form

Size (kb)

Shape

Streptomyces coelicolor

Chromosome
Plasmid
Plasmid

8667
356
31

Linear
Linear
Circular

Agrobacterium tumefaciens

Chromosome
Chromosome
Plasmid
Plasmid

2842
2057
543
214

Circular
Linear
Circular
Circular

Borrelia burgdorferi

Chromosome
Plasmid (n = 11)

911
9–54

Linear
Circular/Linear

Brucella melitensis

Chromosome
Chromosome

2117
1178

Circular
Circular

Clostridium acetobutylicum

Chromosome
Plasmid

3941
192

Circular
Circular

Deinococcus radiodurans

Chromosome
Plasmid
Plasmid
Plasmid

2649
412
177
46

Circular
Circular
Circular
Circular

Ralstonia solanacearum

Chromosome
Chromosome?

3716
2095

Circular
Circular

Salmonella typhi

Chromosome
Plasmid
Plasmid

4809
218
107

Circular
Circular
Circular

Sinorhizobium meliloti

Chromosome
Plasmid
Plasmid

3654
1683
1354

Circular
Circular
Circular

Vibrio cholerae

Chromosome
Chromosome

2941
1072

Circular
Circular

Yersinia pestis

Chromosome
Plasmid (n = 3)

4654
10–96

Circular
Circular

Based on Bentley S.D. and Parkhill J. Annu. Rev. Genet. 38: 771–792, as adapted from Ohmachi M. 2002.
Curr. Biol. 12: R427–428.

Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
What is a Plasmid

Chapter 7

•

B A CT ER IA L A N D A R CH A EA L G E N

TABLE 7.2. Plasmid functions
Genetic Function
of Plasmid

Gene Functions

Examples

Resistance

Antibiotic resistance

Rbk plasmid of Escherichia coli and other
bacteria

Fertility

Conjugation and DNA
transfer

F plasmid of E. coli

Killer

Synthesis of toxins that
kill other bacteria

Col plasmids of E. coli, for colicin production

Degradative

Enzymes for
metabolism of
unusual molecules

TOL plasmid of Pseudomonas putida, for
toluene metabolism

Virulence

Pathogenicity

Ti plasmid of Agrobacterium tumefaciens,
conferring the ability to cause crown gall
disease on dicotyledonous plants

Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
Genome Size

Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
Eukaryotic genomes are bulky in part because they contain large numbers of repetitive DNA Size
Genomeelements (Fig. 7.2). Common eukaryotic repetitive DNA elements include sim-

Leishmania Arabidopsis
major
thaliana

Guillardia theta

Human

Fern

Eukaryotes
Schizosac- Moss
charomyces
pombe

Cockroach

Paramecium
tetraurelia

Amoeba
dubia

Escherichia
coli
P. marius

Bacteria

Myxobacteria
Bradyrhizobium
japonicum
Nanoarchaeum
equitans

Archaea
Methanosarcina
acetivorans

1

105

1

106

1

107

1

108

1

109

1

1010

1

1011

1

1012

1

1013

Number of base pairs

FIGURE 7.1. Genome sizes in the three domains of life. A selection of genome sizes and size
ranges from specific groups of organisms is indicated.

Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
Gene Density

Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
Gene Density

Chapter 7

•

BA CT ERIA L A N D AR C H A EA L G EN E T

A Human

0

10

20

30

40

50 kb

20

30

40

50 kb

B Escherichia coli

0

10
KEY
Gene

Human pseudogene

Repetitive DNA element

FIGURE 7.2. Genome density. Comparison of the genome density and content of humans and Es-

cherichia coli. Each segment is 50 kb in length and represents (A) a portion of the human β T-cell
receptor locus and (B) a region of the E. coli K12 genome. Note the much greater proportion of
genes (red boxes) in E. coli compared to humans.

ple sequence repeats (e.g., microsatellites and minisatellites), gene duplications (both tandem arrays and pseudogenes), and transposable by Jonathan Eisen Winter 2014
elements. Although bacterial and arSlides for UC Davis EVE161 Course Taught
Number of genes

Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
DNA or selfish DNA.
Number of Genes Junk DNA appears to provide little benefit or no function to the

organism. (In some cases this designation is a misnomer resulting from a lack of infor30,000

25,000
Bacteria
Eukaryotes
Viruses
Archaea

Genes

20,000

15,000

10,000

5,000

0
105

106

107
108
Genome size

109

1010

FIGURE 7.3. Genome size vs. number of protein-coding genes. The number of genes is highly cor-

related to genome size for bacteria, archaea, and viruses, but less so for eukaryotes. Many archaeal
points (blue triangles) are hidden under bacterial ones (yellow squares).
Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
Gene Arrangement

Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
Operons

O RI GI N AN D D I V E RSI F ICAT ION O F LIF E
lacZ
CAP
site

lacY

lacA

Operator
Promoter

-galactosidase

Lactose permease
transports lactose into
the cell

transacetylase
split lactose to galactose + glucose

CH2OH
OH
H
OH
H
H

CH2OH

CH2OH
H

O
H

+

O
H

H
OH

H

OH

Lactose

H

O OH
H

H

OH

OH
H
OH
H
H

CH2OH

O OH
H

H

OH

Galactose

+

H

H
OH

OH
H

O OH
H

H

OH

Glucose

FIGURE 7.4. Lac operon from Escherichia coli. This operon consists of three genes whose transcrip-

tion is regulated by a single promoter. The genes encode proteins involved in utilizing lactose, including a permease (encoded by lacY), which brings lactose into the cell from the outside, and two
enzymes (encoded by lacZ and lacA), which split lactose into glucose + galactose (see pp. 52–53).

mation. Some stretches of “junk DNA” have been by Jonathan Eisenbe involved in gene regSlides for UC Davis EVE161 Course Taught determined to Winter 2014
Gene Content

Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014

!15
Shared Genes

Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014

!16
E. coli shared Genes
A N D D IV ER SIF ICAT ION OF LIF E
MG1655 (K-12)
nonpathogenic

CFT073
uropathogenic
193

585

1623

2996
514

204

FIGURE 7.7. Number of shared proteins be-

1346
EDL933 (0157:H7)
enterohemorrhagic

tween strains of Escherichia coli. Note the
large number of genes found in one strain
but not the others (seen in the outer portions
of each circle).

substantial variation in gene content among members of the same species have been
reported in other lineages of bacteria and archaea. Thus, the diminishing number of
core orthologous genes is simply an extension of something happening among close
Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
relatives.
Gene Order

Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
Gene Order

Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
Origin of replication

Terminus of replication

Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
Origin of replication

Terminus of replication
Artificially Open Circle

Origin

Terminus

Origin
Again UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
Slides for
Origin of replication

Terminus of replication
Artificially Open Circle

Genome 2

O

T

O
O

Origin

Terminus

T

Genome 1
Origin
Again UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
Slides for

O
Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
E. coli 0157:H7

A N D D I V E RSI FICAT ION O F LIF E

Repeat

Island

Inversion

E. coli K12

FIGURE 7.10. Conserved gene order in

the backbone of Escherichia coli K12 and
0157:H7. The two genomes were aligned
with each other and the matching regions
were plotted. The conserved order of
genes in the backbone of the two E. coli
strains is indicated by the diagonal line.
Three important genomic regions are circled. An island present in one of the two
strains causes a slight shift in the position
of the main diagonal.

they also occur in virtually the same order in both strains (Fig. 7.10). The genes unique
to each strain are clustered into “islands” interspersed among the stretches of common
genes. Similar patterns of DNA “islands” within a conserved genome backbone have
been found among other related bacteria or archaea.
Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
How do these islands originate? These are two possibilities: insertion of DNA into
Chapter 7

•

BACT ERIA L A ND A RCHA EA L G ENET ICS AND

H. pylori 26695 chromosome

1,667,867
1,600,000

1,200,000

FIGURE 7.11. The lack of conservation of
800,000

400,000

0

0

400,000

800,000 1,200,000

H. influenzae Rd chromosome

1,830,137

gene order between Haemophilus influenzae and Helicobacter pylori is illustrated.
Linearized chromosomes of H. influenzae
and H. pylori are plotted on the horizontal
and vertical axes, respectively. Each dot represents a single pair of orthologous proteins.
Genes in similar operons, which do exist,
are too close together to give separated
points on the scale used.

mon is symmetric inversion around the origin of replication (Fig. 7.14). Such inversions
are seen in almost every comparison of moderately closely related strains or species. Although other rearrangements occur, the symmetric inversions serve as a useful tool for
understanding some features of general evolution and we focus on them here.
Symmetric inversions around the origin are due to a combination of mutation bias
and selection bias.Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
To understand how mutation bias could cause this, it is helpful to un-
cently replicated DNA, thereby causing an inversion. As the two replication forks should
str

S10

spc

alpha

L11 (rplK)
L1 (rplA)
L10 (rplJ)
L7/L12 (rplL)
rpoB
rpoC
unknown
S12 (rpsL)
S7 (rpsG)
fusA
tufA
S10 (rpsJ)
L3 (rplC)
L4 (rplD)
L23 (rplW)
L2 (rplB)
S19 (rpsS)
L22 (rplY)
S3 (rpsC)
L16 (rplP)
L29 (rpmC)
S17 (rpsQ)
L14 (rplN)
L24 (rplX)
L5 (rplE)
S14 (rpsN)
S8 (rpsH)
L6 (rplF)
L18 (rplR)
S5 (rpsE)
L30 (rpmD)
L15 (rplO)
secY
adk
map
infA
L36 (rpmJ)
S13 (rpsM)
S11 (rpsK)
S4 (rpsD)
rpoA
L17 (rplQ)

rpoBC

Sinorhizobium meliloti
Bacillus subtilis

?

?
?

?

Borrelia burgdorferi

Small SUr-protein genes

Treponema pallidum
Helicobacter pylori

Large SUr-protein genes

xxx

Nonribosomal genes

Escherichia coli

? Unknown genes

Haemophilus influenzae

Breakpoint

Rickettsia prowazekii

Gene insertion

Mycoplasma sp.
Aquifex aeolicus

Rho-independent terminator

S6

Missing gene

Thermatoga maritima
Deinococcus radiodurans
Mycobacterium tuberculosis
Chlamydia sp.
Synechocystis
S4

Archaea
SUI1-X1 S-4E L32-L19

X2 cdk-L1--ccm-mms

FIGURE 7.12. Conservation of gene order of ribosomal protein operons across bacterial and ar-

chaeal species.

Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
Gene Order Again

Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
V. cholerae vs. E. coli All
5000000

E. coli Coordinates

4000000

3000000

2000000

1000000

0
0

1000000

2000000

V. cholerae Coordinates

Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014

3000000

Eisen et al., 2000
V. cholerae vs. E. coli Best
5000000

E. coli Coordinates

4000000

3000000

2000000

1000000

0
0

1000000

2000000

V. cholerae Coordinates

Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014

3000000

Eisen et al., 2000
V. cholerae vs. E. coli, Rotated
5000000

E. coli ORF Coordinates

4000000

3000000

2000000

1000000

0
0

500000

1000000

1500000

2000000

2500000

V. cholerae ORF Coordinates
Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014

3000000

Eisen et al., 2000
Duplication and Gene Loss Model

Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014

Eisen et al., 2000
V. cholerae vs. E. coli

Orthologs on Both Diagonals
5000000

E. coli ORF Coordinates

4000000

3000000

2000000

1000000

0
0

500000

1000000

1500000

2000000

2500000

V. cholerae ORF Coordinates
Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014

3000000

Eisen et al., 2000
C. trachomatis vs C. pneumoniae

C. pneumoniae AR39

Origin

Terminus

C. trachomatis MoPn
Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
Symmetric Inversion Model
A3

A2
32 1 2
30 31
3
29
4
28
5
27
6
26
7
25
8
24
9
23
10
22
11
21
12
20
13
19
14
18 17 16 15

A1

32 1 2
30 31
3
29
4
28
5
27
6
26
7
25
8
24
9
23
10
22
11
21
12
20
13
19
14
18 17 16 15

Common
Ancestor of
A and B

B1

32 1 2
30 31
3
29
4
28
5
27
6
26
7
25
8
24
9
23
10
22
11
21
12
20
13
14
19
15 16 17 18

A1

A2

Inversion
Around
Terminus (*)

*

*

4
5

*
27

A2

26
25
24
23
22
21
20

Inversion
Around
Origin (*)

A1

B1

B2

*

A3
14

15 16 17 18

A3

A2

Inversion
Around
Terminus (*)

29
28
6
7
8
9
10
11
12
13
19

B3

B2

31 32 1 2
30
3
29
4
28
5
27
6
26
7
25
8
24
9
23
10
22
11
21
12
20
13
19
14
18 17 16 15

1 32 31
3 2
30

*

31 32 1 2
30
3
29
4
28
5
27
6
26
7
8
25
9
24
10
23
11
22
12
21
13
20
14
19
15 16 17 18

*

B2

Inversion
Around
Origin (*)

3
29
28
27
26
8
9
10
11
12
13
14

*

2 1 32 31

30

*
4

B3
15 16 17 18

19

5

6
7
25
24
23
22
21
20

B3

B2
B1
Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014

Eisen et al., 2000
The X-Files
Streps

Pseudomonas

B. subt vs. Staph

13623200

3000

9952000
2500

13622725

9950425

2000

Series1

9948850

Series1

13622250

1500

1000

9947275

13621775
500

9945700

0

0

2125

4250

6375

8500

M. tb vs. M. leprae

13621300

2632200

0

625

1250

1875

Pyrococcus

2632700

2633200

Mycobacterium tuberculosis

3000000

2000000

1000000

0
1000000

2000000

2634200

2634700

2635200

2635700

2636200

Thermoplasmas

4000000

0

2633700

2500

3000000

Mycobacterium leprae

Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014

2636700
Chapter 7

•

BACT E RI AL AND ARCH AEAL G EN ET ICS AND G E NO MI CS

181

A

A2
31 32 1 2
3
30
4
29
5
28
6
27
7
26
8
25
9
24
10
23
11
22
12
21
13
20
14
19
18 17 16 15

A1

31 32 1 2
3
30
4
29
5
28
6
27
7
26
8
25
9
24
10
23
11
22
12
21
13
20
14
19
18 17 16 15

Common
ancestor of
A and B

A3

A1
Inversion
around
terminus (*)

B1

31 32 1 2
3
30
4
29
5
28
6
27
7
26
8
25
9
24
10
23
11
22
12
21
13
20
19
14
15 16 17 18

A2

A2
Inversion
around
origin (*)

B2

A1

3
4
27
26
25
24
23
22
21
20
20
14

B1

Inversion
around
terminus (*)

A3
15 16

17

18

29
28
6
7
8
9
10
11
12
13
19

B3

A2

31 32 1 2
3
30
4
29
5
28
6
27
7
26
8
25
9
24
10
23
11
22
12
21
13
20
14
19
18 17 16 15

2 1 32 31 30

A3

31 32 1 2
3
30
4
29
5
28
6
27
7
26
8
25
9
24
10
23
11
22
12
21
13
20
14
19
18 17 16 15

B2

B2

Inversion
around
origin (*)

3
29
28
27
26
8
9
10
11
12
13
14

2 1 32 31 30

4

B3
15 16

17

18

19

5

6
7
25
24
23
22
21
20

B3

B1

B2
C

Escherichia coli

V. parahaemolyticus chromosome I

B

V. cholerae chromosome I

V. cholerae chromosome I

FIGURE 7.14. X-alignments. (A) Schematic model of symmetric genome inversions. The model

shows an initial speciation event, followed by a series of inversions in the different lineages (A
and B). Inversions occur between the asterisks (*). Numbers on the chromosome refer to hypothetical genes 1–32. At time point 1, the genomes of the two species are still colinear (as indicated in the scatterplot of A1 vs. B1). Between time point 1 and time point 2, each species (A
and B) undergoes a large inversion about the terminus (as indicated in the scatterplots of A1 vs.
A2 and B1 vs. B2). This results in the between-species scatterplot looking as if there have been
two nested inversions (A2 vs. B2). Between time point 2 and time point 3, each species undergoes an additional inversion (as indicated in the scatterplots of B2 vs. B3 and A2 vs. A3). This results in the between-species scatterplots beginning to resemble an X-alignment. (B) X-like alignment in dotplot of the main chromosomes of Vibrio cholerae (x-axis) and Vibrio parahaemolyticus
(y-axis). (C) A weak X-like pattern exists even when comparing more distantly related species, in
this case V. cholerae and E. coli. An X-like pattern indicates that the distance of a gene from the
origin is conserved, but the side of the origin on which it is located is not conserved.

Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
Gene Loss

bolA

tig

clpP

clpX

a

hupB

ybaU

ybaX

ybaW
ybaV

ybaE

BA CT E R I A L A N D A R C H A EA L G EN E T I CS A ND G E

ybaO
cof

•

mdlA

mdlB

amtB
tesB
ginK

RNA-ffs

ybaZ
ybaY

acrB

acrR
acrA

aefA

recR
ybaB
dnaX
apt
ybaN
priC
ybaM

htpG

adk

Chapter 7

Ancestor

Buchnera

10 kb

FIGURE 7.5. Genome reduction in Buchnera endosymbionts of aphids. A fragment of two genomes

is shown. (Top row) The putative ancestor of all aphid endosymbionts in the Buchnera genus. (Bottom row) The genome of the symbionts today. The massive amounts of gene loss are indicated by
the genes colored white in the ancestral genome that are missing from the modern genome below.
Orthologous genes between the two genomes are shown in the same color. Note the conservation
of gene order between the two genomes despite the gene loss. The direction of gene transcription
is indicated by the gene box being shifted above or below the black line.

ple, B. aphidicola APS has undergone a massive reduction in its genome since it shared
a common ancestor with E. coli (Fig. 7.5). This symbiont lives inside aphid cells where
many genes required for the free-living lifestyle of E. coli are not needed.
Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
Gene Duplication

Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
Why Duplications Are Useful to Identify
• Allows division into orthologs and paralogs	

!

• Improves functional predictions	

!

• Helps identify mechanisms of duplication	

!

• Can be used to study mutation processes in different
parts of a genome 	

!

• Lineage specific duplications may be indicative of
species’ specific adaptations
Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
C. pneumoniae - All Paralogs
1250000

Subject Orf Position

1000000

750000

500000

250000

0
0

250000

500000

750000

Query Orf Position

1000000

Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014

1250000
C. pneumoniae Lineage-Specific Paralogs
1250000

Subject Orf Position

1000000

750000

500000

250000

0
0

250000

500000

750000

Query Orf Position

1000000

Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014

1250000
Expansion of MCP Family in V. cholerae
NJ

**

**

V.cholerae VC0512
V.cholerae VCA1034
V.cholerae VCA0974
V.cholerae VCA0068
**
V.cholerae VC0825
*
V.cholerae VC0282
V.cholerae VCA0906
V.cholerae VCA0979
V.cholerae VCA1056
V.cholerae VC1643
V.cholerae VC2161
V.cholerae VCA0923
**
V.cholerae VC0514
**
V.cholerae VC1868
V.cholerae VCA0773
V.cholerae VC1313
V.cholerae VC1859
V.cholerae VC1413
V.cholerae VCA0268
V.cholerae VCA0658
**
V.cholerae VC1405
V.cholerae VC1298
*
V.cholerae VC1248
V.cholerae VCA0864
V.cholerae VCA0176
V.cholerae VCA0220
**
V.cholerae VC1289
V.cholerae VCA1069
**
V.cholerae VC2439
V.cholerae VC1967
V.cholerae VCA0031
V.cholerae VC1898
V.cholerae VCA0663
V.cholerae VCA0988
V.cholerae VC0216
V.cholerae VC0449
*
V.cholerae VCA0008
V.cholerae VC1406
V.cholerae VC1535
V.cholerae VC0840
B.subtilis gi2633766
Synechocystis sp. gi1001299
Synechocystis sp. gi1001300
*
Synechocystis sp. gi1652276
*
Synechocystis sp. gi1652103
*
H.pylori gi2313716
** H.pylori99 gi4155097
C.jejuni Cj1190c
**
C.jejuni Cj1110c
A.fulgidus gi2649560
A.fulgidus gi2649548
**
B.subtilis gi2634254
B.subtilis gi2632630
B.subtilis gi2635607
B.subtilis gi2635608
**
B.subtilis gi2635609
**
**
B.subtilis gi2635610
B.subtilis gi2635882
E.coli gi1788195
E.coli gi2367378
**
E.coli gi1788194
*
E.coli gi1787690
V.cholerae VCA1092
V.cholerae VC0098
E.coli gi1789453
H.pylori gi2313186
H.pylori99 gi4154603
**
C.jejuni Cj0144
C.jejuni Cj1564
** C.jejuni Cj0262c
**
C.jejuni Cj1506c
H.pylori gi2313163
*
H.pylori99 gi4154575
** H.pylori gi2313179
**
** H.pylori99 gi4154599
C.jejuni Cj0019c
C.jejuni Cj0951c
C.jejuni Cj0246c
B.subtilis gi2633374
T.maritima TM0014
V.cholerae VC1403
V.cholerae VCA1088
T.pallidum gi3322777
T.pallidum gi3322939
**
T.pallidum gi3322938
**
B.burgdorferi gi2688522
T.pallidum gi3322296
B.burgdorferi gi2688521
*
T.maritima TM0429
** T.maritima TM0918
** T.maritima TM0023
*
T.maritima TM1428
T.maritima TM1143
T.maritima TM1146
P.abyssi PAB1308
P.horikoshii gi3256846
**
P.abyssi PAB1336
**
P.horikoshii gi3256896
** P.abyssi PAB2066
**
P.horikoshii gi3258290
**
*
P.abyssi PAB1026
P.horikoshii gi3256884
**
D.radiodurans DRA00354
D.radiodurans DRA0353
**
D.radiodurans DRA0352
**
V.cholerae VC1394
P.abyssi PAB1189
P.horikoshii gi3258414
**
B.burgdorferi gi2688621
M.tuberculosis gi1666149
V.cholerae VC0622

Heidelberg et al. (2000)

Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
After the Genomes
• Better analysis and annotation
• Comparative genomics
• Functional genomics (Experimental analysis of gene
function on a genome scale)
• Genome-wide gene expression studies
• Proteomics
• Genome wide genetic experiments

Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014

More Related Content

What's hot

Microbial Phylogenomics (EVE161) Class 6: Era II - Culture Independent rRNA
Microbial Phylogenomics (EVE161) Class 6: Era II - Culture Independent rRNAMicrobial Phylogenomics (EVE161) Class 6: Era II - Culture Independent rRNA
Microbial Phylogenomics (EVE161) Class 6: Era II - Culture Independent rRNAJonathan Eisen
 
UC Davis EVE161 Lecture 13 by @phylogenomics
UC Davis EVE161 Lecture 13 by @phylogenomicsUC Davis EVE161 Lecture 13 by @phylogenomics
UC Davis EVE161 Lecture 13 by @phylogenomicsJonathan Eisen
 
UC Davis EVE161 Lecture 10 by @phylogenomics
UC Davis EVE161 Lecture 10 by @phylogenomicsUC Davis EVE161 Lecture 10 by @phylogenomics
UC Davis EVE161 Lecture 10 by @phylogenomicsJonathan Eisen
 
Microbial Phylogenomics (EVE161) Class 4
Microbial Phylogenomics (EVE161) Class 4Microbial Phylogenomics (EVE161) Class 4
Microbial Phylogenomics (EVE161) Class 4Jonathan Eisen
 
Microbial Phylogenomics (EVE161) Class 10-11: Genome Sequencing
Microbial Phylogenomics (EVE161) Class 10-11: Genome SequencingMicrobial Phylogenomics (EVE161) Class 10-11: Genome Sequencing
Microbial Phylogenomics (EVE161) Class 10-11: Genome SequencingJonathan Eisen
 
Microbial Phylogenomics (EVE161) Class 1
Microbial Phylogenomics (EVE161) Class 1Microbial Phylogenomics (EVE161) Class 1
Microbial Phylogenomics (EVE161) Class 1Jonathan Eisen
 
UC Davis EVE161 Lecture 15 by @phylogenomics
UC Davis EVE161 Lecture 15 by @phylogenomicsUC Davis EVE161 Lecture 15 by @phylogenomics
UC Davis EVE161 Lecture 15 by @phylogenomicsJonathan Eisen
 
EVE 161 Winter 2018 Class 15
EVE 161 Winter 2018 Class 15EVE 161 Winter 2018 Class 15
EVE 161 Winter 2018 Class 15Jonathan Eisen
 
BIS2C. Biodiversity and the Tree of Life. 2014. L9. Acquisitions and Mergers
BIS2C. Biodiversity and the Tree of Life. 2014. L9. Acquisitions and MergersBIS2C. Biodiversity and the Tree of Life. 2014. L9. Acquisitions and Mergers
BIS2C. Biodiversity and the Tree of Life. 2014. L9. Acquisitions and MergersJonathan Eisen
 
Microbial Phylogenomics (EVE161) Class 5
Microbial Phylogenomics (EVE161) Class 5Microbial Phylogenomics (EVE161) Class 5
Microbial Phylogenomics (EVE161) Class 5Jonathan Eisen
 
BIS2C. Biodiversity and the Tree of Life. 2014. L12. Symbioses and the Human ...
BIS2C. Biodiversity and the Tree of Life. 2014. L12. Symbioses and the Human ...BIS2C. Biodiversity and the Tree of Life. 2014. L12. Symbioses and the Human ...
BIS2C. Biodiversity and the Tree of Life. 2014. L12. Symbioses and the Human ...Jonathan Eisen
 
Microbial Phylogenomics (EVE161) Class 3: Woese and the Tree of Life
Microbial Phylogenomics (EVE161) Class 3: Woese and the Tree of LifeMicrobial Phylogenomics (EVE161) Class 3: Woese and the Tree of Life
Microbial Phylogenomics (EVE161) Class 3: Woese and the Tree of LifeJonathan Eisen
 
BIS2C. Biodiversity and the Tree of Life. 2014. L10. Studying Microbes
BIS2C. Biodiversity and the Tree of Life. 2014. L10. Studying MicrobesBIS2C. Biodiversity and the Tree of Life. 2014. L10. Studying Microbes
BIS2C. Biodiversity and the Tree of Life. 2014. L10. Studying MicrobesJonathan Eisen
 
BIS2C. Biodiversity and the Tree of Life. 2014. L2. Trees, taxa and groups.
BIS2C. Biodiversity and the Tree of Life. 2014. L2. Trees, taxa and groups. BIS2C. Biodiversity and the Tree of Life. 2014. L2. Trees, taxa and groups.
BIS2C. Biodiversity and the Tree of Life. 2014. L2. Trees, taxa and groups. Jonathan Eisen
 
EveMicrobial Phylogenomics (EVE161) Class 9
EveMicrobial Phylogenomics (EVE161) Class 9EveMicrobial Phylogenomics (EVE161) Class 9
EveMicrobial Phylogenomics (EVE161) Class 9Jonathan Eisen
 
UC Davis EVE161 Lecture 14 by @phylogenomics
UC Davis EVE161 Lecture 14 by @phylogenomicsUC Davis EVE161 Lecture 14 by @phylogenomics
UC Davis EVE161 Lecture 14 by @phylogenomicsJonathan Eisen
 
BiS2C: Lecture 10: Not Trees
BiS2C: Lecture 10: Not TreesBiS2C: Lecture 10: Not Trees
BiS2C: Lecture 10: Not TreesJonathan Eisen
 
BIS2C: Lecture 24: Opisthokonts
BIS2C: Lecture 24: OpisthokontsBIS2C: Lecture 24: Opisthokonts
BIS2C: Lecture 24: OpisthokontsJonathan Eisen
 

What's hot (20)

Microbial Phylogenomics (EVE161) Class 6: Era II - Culture Independent rRNA
Microbial Phylogenomics (EVE161) Class 6: Era II - Culture Independent rRNAMicrobial Phylogenomics (EVE161) Class 6: Era II - Culture Independent rRNA
Microbial Phylogenomics (EVE161) Class 6: Era II - Culture Independent rRNA
 
UC Davis EVE161 Lecture 13 by @phylogenomics
UC Davis EVE161 Lecture 13 by @phylogenomicsUC Davis EVE161 Lecture 13 by @phylogenomics
UC Davis EVE161 Lecture 13 by @phylogenomics
 
UC Davis EVE161 Lecture 10 by @phylogenomics
UC Davis EVE161 Lecture 10 by @phylogenomicsUC Davis EVE161 Lecture 10 by @phylogenomics
UC Davis EVE161 Lecture 10 by @phylogenomics
 
EVE 161 Lecture 6
EVE 161 Lecture 6EVE 161 Lecture 6
EVE 161 Lecture 6
 
Microbial Phylogenomics (EVE161) Class 4
Microbial Phylogenomics (EVE161) Class 4Microbial Phylogenomics (EVE161) Class 4
Microbial Phylogenomics (EVE161) Class 4
 
Microbial Phylogenomics (EVE161) Class 10-11: Genome Sequencing
Microbial Phylogenomics (EVE161) Class 10-11: Genome SequencingMicrobial Phylogenomics (EVE161) Class 10-11: Genome Sequencing
Microbial Phylogenomics (EVE161) Class 10-11: Genome Sequencing
 
Microbial Phylogenomics (EVE161) Class 1
Microbial Phylogenomics (EVE161) Class 1Microbial Phylogenomics (EVE161) Class 1
Microbial Phylogenomics (EVE161) Class 1
 
EVE 161 Lecture 5
EVE 161 Lecture 5EVE 161 Lecture 5
EVE 161 Lecture 5
 
UC Davis EVE161 Lecture 15 by @phylogenomics
UC Davis EVE161 Lecture 15 by @phylogenomicsUC Davis EVE161 Lecture 15 by @phylogenomics
UC Davis EVE161 Lecture 15 by @phylogenomics
 
EVE 161 Winter 2018 Class 15
EVE 161 Winter 2018 Class 15EVE 161 Winter 2018 Class 15
EVE 161 Winter 2018 Class 15
 
BIS2C. Biodiversity and the Tree of Life. 2014. L9. Acquisitions and Mergers
BIS2C. Biodiversity and the Tree of Life. 2014. L9. Acquisitions and MergersBIS2C. Biodiversity and the Tree of Life. 2014. L9. Acquisitions and Mergers
BIS2C. Biodiversity and the Tree of Life. 2014. L9. Acquisitions and Mergers
 
Microbial Phylogenomics (EVE161) Class 5
Microbial Phylogenomics (EVE161) Class 5Microbial Phylogenomics (EVE161) Class 5
Microbial Phylogenomics (EVE161) Class 5
 
BIS2C. Biodiversity and the Tree of Life. 2014. L12. Symbioses and the Human ...
BIS2C. Biodiversity and the Tree of Life. 2014. L12. Symbioses and the Human ...BIS2C. Biodiversity and the Tree of Life. 2014. L12. Symbioses and the Human ...
BIS2C. Biodiversity and the Tree of Life. 2014. L12. Symbioses and the Human ...
 
Microbial Phylogenomics (EVE161) Class 3: Woese and the Tree of Life
Microbial Phylogenomics (EVE161) Class 3: Woese and the Tree of LifeMicrobial Phylogenomics (EVE161) Class 3: Woese and the Tree of Life
Microbial Phylogenomics (EVE161) Class 3: Woese and the Tree of Life
 
BIS2C. Biodiversity and the Tree of Life. 2014. L10. Studying Microbes
BIS2C. Biodiversity and the Tree of Life. 2014. L10. Studying MicrobesBIS2C. Biodiversity and the Tree of Life. 2014. L10. Studying Microbes
BIS2C. Biodiversity and the Tree of Life. 2014. L10. Studying Microbes
 
BIS2C. Biodiversity and the Tree of Life. 2014. L2. Trees, taxa and groups.
BIS2C. Biodiversity and the Tree of Life. 2014. L2. Trees, taxa and groups. BIS2C. Biodiversity and the Tree of Life. 2014. L2. Trees, taxa and groups.
BIS2C. Biodiversity and the Tree of Life. 2014. L2. Trees, taxa and groups.
 
EveMicrobial Phylogenomics (EVE161) Class 9
EveMicrobial Phylogenomics (EVE161) Class 9EveMicrobial Phylogenomics (EVE161) Class 9
EveMicrobial Phylogenomics (EVE161) Class 9
 
UC Davis EVE161 Lecture 14 by @phylogenomics
UC Davis EVE161 Lecture 14 by @phylogenomicsUC Davis EVE161 Lecture 14 by @phylogenomics
UC Davis EVE161 Lecture 14 by @phylogenomics
 
BiS2C: Lecture 10: Not Trees
BiS2C: Lecture 10: Not TreesBiS2C: Lecture 10: Not Trees
BiS2C: Lecture 10: Not Trees
 
BIS2C: Lecture 24: Opisthokonts
BIS2C: Lecture 24: OpisthokontsBIS2C: Lecture 24: Opisthokonts
BIS2C: Lecture 24: Opisthokonts
 

Similar to UC Davis EVE161 Lecture 11 by @phylogenomics

Microbial Phylogenomics (EVE161) Class 13 - Comparative Genomics
Microbial Phylogenomics (EVE161) Class 13 - Comparative GenomicsMicrobial Phylogenomics (EVE161) Class 13 - Comparative Genomics
Microbial Phylogenomics (EVE161) Class 13 - Comparative GenomicsJonathan Eisen
 
LizAllen_FinalPoster
LizAllen_FinalPosterLizAllen_FinalPoster
LizAllen_FinalPosterLiz Allen
 
2016 Beneficial Microbes Poster-TMiyashiro-correct_size (1)
2016 Beneficial Microbes Poster-TMiyashiro-correct_size (1)2016 Beneficial Microbes Poster-TMiyashiro-correct_size (1)
2016 Beneficial Microbes Poster-TMiyashiro-correct_size (1)Zack Houston
 
Molecularbiology 090516221322-phpapp01
Molecularbiology 090516221322-phpapp01Molecularbiology 090516221322-phpapp01
Molecularbiology 090516221322-phpapp01Slindile Nyathi
 
Dr. Declan Schroeder - Molecular Diagnostics: Present and Future
Dr. Declan Schroeder - Molecular Diagnostics: Present and FutureDr. Declan Schroeder - Molecular Diagnostics: Present and Future
Dr. Declan Schroeder - Molecular Diagnostics: Present and FutureJohn Blue
 
Bio sol cbse_2011-12
Bio sol cbse_2011-12Bio sol cbse_2011-12
Bio sol cbse_2011-12studymate
 
Characterization_of_embryoid_bodies_formed_with_different_protocols 2011
Characterization_of_embryoid_bodies_formed_with_different_protocols 2011Characterization_of_embryoid_bodies_formed_with_different_protocols 2011
Characterization_of_embryoid_bodies_formed_with_different_protocols 2011Cheng Han-Ni
 
QUESTION 1Which ecological niche described below possesses the gre.pdf
QUESTION 1Which ecological niche described below possesses the gre.pdfQUESTION 1Which ecological niche described below possesses the gre.pdf
QUESTION 1Which ecological niche described below possesses the gre.pdfeyevisioncare1
 
Class 12 Cbse Biology Sample Paper 2012-13
Class 12 Cbse Biology Sample Paper 2012-13Class 12 Cbse Biology Sample Paper 2012-13
Class 12 Cbse Biology Sample Paper 2012-13Sunaina Rawat
 
Life sciences p1 feb march 2013 version 1 eng
Life sciences p1 feb march 2013 version 1 engLife sciences p1 feb march 2013 version 1 eng
Life sciences p1 feb march 2013 version 1 engElizabeth Sweatman
 
Characterization of embryoid bodies formed with different protocols 使用不同培養方式形...
Characterization of embryoid bodies formed with different protocols 使用不同培養方式形...Characterization of embryoid bodies formed with different protocols 使用不同培養方式形...
Characterization of embryoid bodies formed with different protocols 使用不同培養方式形...Honey Cheng
 
presentation on E.coli
presentation on E.colipresentation on E.coli
presentation on E.coliVandana singh
 
Cbse Class 12 Biology Sample Paper 2012-13 Model 1
Cbse Class 12 Biology Sample Paper 2012-13 Model 1Cbse Class 12 Biology Sample Paper 2012-13 Model 1
Cbse Class 12 Biology Sample Paper 2012-13 Model 1Sunaina Rawat
 
C.ELEGANS-as-a-model-organism.ppt
C.ELEGANS-as-a-model-organism.pptC.ELEGANS-as-a-model-organism.ppt
C.ELEGANS-as-a-model-organism.pptAlixsha
 
Life sciences p1 nov 2011 eng version 1
Life sciences p1 nov 2011 eng version 1Life sciences p1 nov 2011 eng version 1
Life sciences p1 nov 2011 eng version 1Elizabeth Sweatman
 

Similar to UC Davis EVE161 Lecture 11 by @phylogenomics (20)

Microbial Phylogenomics (EVE161) Class 13 - Comparative Genomics
Microbial Phylogenomics (EVE161) Class 13 - Comparative GenomicsMicrobial Phylogenomics (EVE161) Class 13 - Comparative Genomics
Microbial Phylogenomics (EVE161) Class 13 - Comparative Genomics
 
Water dna
Water dnaWater dna
Water dna
 
John frelinger DWV
John frelinger DWVJohn frelinger DWV
John frelinger DWV
 
Fine structureof gene,allelic complementation,and split gene
Fine structureof gene,allelic complementation,and split gene Fine structureof gene,allelic complementation,and split gene
Fine structureof gene,allelic complementation,and split gene
 
LizAllen_FinalPoster
LizAllen_FinalPosterLizAllen_FinalPoster
LizAllen_FinalPoster
 
2016 Beneficial Microbes Poster-TMiyashiro-correct_size (1)
2016 Beneficial Microbes Poster-TMiyashiro-correct_size (1)2016 Beneficial Microbes Poster-TMiyashiro-correct_size (1)
2016 Beneficial Microbes Poster-TMiyashiro-correct_size (1)
 
Molecularbiology 090516221322-phpapp01
Molecularbiology 090516221322-phpapp01Molecularbiology 090516221322-phpapp01
Molecularbiology 090516221322-phpapp01
 
Dr. Declan Schroeder - Molecular Diagnostics: Present and Future
Dr. Declan Schroeder - Molecular Diagnostics: Present and FutureDr. Declan Schroeder - Molecular Diagnostics: Present and Future
Dr. Declan Schroeder - Molecular Diagnostics: Present and Future
 
Bio sol cbse_2011-12
Bio sol cbse_2011-12Bio sol cbse_2011-12
Bio sol cbse_2011-12
 
Characterization_of_embryoid_bodies_formed_with_different_protocols 2011
Characterization_of_embryoid_bodies_formed_with_different_protocols 2011Characterization_of_embryoid_bodies_formed_with_different_protocols 2011
Characterization_of_embryoid_bodies_formed_with_different_protocols 2011
 
QUESTION 1Which ecological niche described below possesses the gre.pdf
QUESTION 1Which ecological niche described below possesses the gre.pdfQUESTION 1Which ecological niche described below possesses the gre.pdf
QUESTION 1Which ecological niche described below possesses the gre.pdf
 
Biology-PQ.pdf
Biology-PQ.pdfBiology-PQ.pdf
Biology-PQ.pdf
 
ISMB2010_Poster
ISMB2010_PosterISMB2010_Poster
ISMB2010_Poster
 
Class 12 Cbse Biology Sample Paper 2012-13
Class 12 Cbse Biology Sample Paper 2012-13Class 12 Cbse Biology Sample Paper 2012-13
Class 12 Cbse Biology Sample Paper 2012-13
 
Life sciences p1 feb march 2013 version 1 eng
Life sciences p1 feb march 2013 version 1 engLife sciences p1 feb march 2013 version 1 eng
Life sciences p1 feb march 2013 version 1 eng
 
Characterization of embryoid bodies formed with different protocols 使用不同培養方式形...
Characterization of embryoid bodies formed with different protocols 使用不同培養方式形...Characterization of embryoid bodies formed with different protocols 使用不同培養方式形...
Characterization of embryoid bodies formed with different protocols 使用不同培養方式形...
 
presentation on E.coli
presentation on E.colipresentation on E.coli
presentation on E.coli
 
Cbse Class 12 Biology Sample Paper 2012-13 Model 1
Cbse Class 12 Biology Sample Paper 2012-13 Model 1Cbse Class 12 Biology Sample Paper 2012-13 Model 1
Cbse Class 12 Biology Sample Paper 2012-13 Model 1
 
C.ELEGANS-as-a-model-organism.ppt
C.ELEGANS-as-a-model-organism.pptC.ELEGANS-as-a-model-organism.ppt
C.ELEGANS-as-a-model-organism.ppt
 
Life sciences p1 nov 2011 eng version 1
Life sciences p1 nov 2011 eng version 1Life sciences p1 nov 2011 eng version 1
Life sciences p1 nov 2011 eng version 1
 

More from Jonathan Eisen

Eisen.CentralValley2024.pdf
Eisen.CentralValley2024.pdfEisen.CentralValley2024.pdf
Eisen.CentralValley2024.pdfJonathan Eisen
 
Phylogenomics and the Diversity and Diversification of Microbes
Phylogenomics and the Diversity and Diversification of MicrobesPhylogenomics and the Diversity and Diversification of Microbes
Phylogenomics and the Diversity and Diversification of MicrobesJonathan Eisen
 
Talk by Jonathan Eisen for LAMG2022 meeting
Talk by Jonathan Eisen for LAMG2022 meetingTalk by Jonathan Eisen for LAMG2022 meeting
Talk by Jonathan Eisen for LAMG2022 meetingJonathan Eisen
 
Thoughts on UC Davis' COVID Current Actions
Thoughts on UC Davis' COVID Current ActionsThoughts on UC Davis' COVID Current Actions
Thoughts on UC Davis' COVID Current ActionsJonathan Eisen
 
Phylogenetic and Phylogenomic Approaches to the Study of Microbes and Microbi...
Phylogenetic and Phylogenomic Approaches to the Study of Microbes and Microbi...Phylogenetic and Phylogenomic Approaches to the Study of Microbes and Microbi...
Phylogenetic and Phylogenomic Approaches to the Study of Microbes and Microbi...Jonathan Eisen
 
A Field Guide to Sars-CoV-2
A Field Guide to Sars-CoV-2A Field Guide to Sars-CoV-2
A Field Guide to Sars-CoV-2Jonathan Eisen
 
EVE198 Summer Session Class 4
EVE198 Summer Session Class 4EVE198 Summer Session Class 4
EVE198 Summer Session Class 4Jonathan Eisen
 
EVE198 Summer Session 2 Class 1
EVE198 Summer Session 2 Class 1 EVE198 Summer Session 2 Class 1
EVE198 Summer Session 2 Class 1 Jonathan Eisen
 
EVE198 Summer Session 2 Class 2 Vaccines
EVE198 Summer Session 2 Class 2 Vaccines EVE198 Summer Session 2 Class 2 Vaccines
EVE198 Summer Session 2 Class 2 Vaccines Jonathan Eisen
 
EVE198 Spring2021 Class1 Introduction
EVE198 Spring2021 Class1 IntroductionEVE198 Spring2021 Class1 Introduction
EVE198 Spring2021 Class1 IntroductionJonathan Eisen
 
EVE198 Spring2021 Class2
EVE198 Spring2021 Class2EVE198 Spring2021 Class2
EVE198 Spring2021 Class2Jonathan Eisen
 
EVE198 Spring2021 Class5 Vaccines
EVE198 Spring2021 Class5 VaccinesEVE198 Spring2021 Class5 Vaccines
EVE198 Spring2021 Class5 VaccinesJonathan Eisen
 
EVE198 Winter2020 Class 8 - COVID RNA Detection
EVE198 Winter2020 Class 8 - COVID RNA DetectionEVE198 Winter2020 Class 8 - COVID RNA Detection
EVE198 Winter2020 Class 8 - COVID RNA DetectionJonathan Eisen
 
EVE198 Winter2020 Class 1 Introduction
EVE198 Winter2020 Class 1 IntroductionEVE198 Winter2020 Class 1 Introduction
EVE198 Winter2020 Class 1 IntroductionJonathan Eisen
 
EVE198 Winter2020 Class 3 - COVID Testing
EVE198 Winter2020 Class 3 - COVID TestingEVE198 Winter2020 Class 3 - COVID Testing
EVE198 Winter2020 Class 3 - COVID TestingJonathan Eisen
 
EVE198 Winter2020 Class 5 - COVID Vaccines
EVE198 Winter2020 Class 5 - COVID VaccinesEVE198 Winter2020 Class 5 - COVID Vaccines
EVE198 Winter2020 Class 5 - COVID VaccinesJonathan Eisen
 
EVE198 Winter2020 Class 9 - COVID Transmission
EVE198 Winter2020 Class 9 - COVID TransmissionEVE198 Winter2020 Class 9 - COVID Transmission
EVE198 Winter2020 Class 9 - COVID TransmissionJonathan Eisen
 
EVE198 Fall2020 "Covid Mass Testing" Class 8 Vaccines
EVE198 Fall2020 "Covid Mass Testing" Class 8 VaccinesEVE198 Fall2020 "Covid Mass Testing" Class 8 Vaccines
EVE198 Fall2020 "Covid Mass Testing" Class 8 VaccinesJonathan Eisen
 
EVE198 Fall2020 "Covid Mass Testing" Class 2: Viruses, COIVD and Testing
EVE198 Fall2020 "Covid Mass Testing" Class 2: Viruses, COIVD and TestingEVE198 Fall2020 "Covid Mass Testing" Class 2: Viruses, COIVD and Testing
EVE198 Fall2020 "Covid Mass Testing" Class 2: Viruses, COIVD and TestingJonathan Eisen
 
EVE198 Fall2020 "Covid Mass Testing" Class 1 Introduction
EVE198 Fall2020 "Covid Mass Testing" Class 1 IntroductionEVE198 Fall2020 "Covid Mass Testing" Class 1 Introduction
EVE198 Fall2020 "Covid Mass Testing" Class 1 IntroductionJonathan Eisen
 

More from Jonathan Eisen (20)

Eisen.CentralValley2024.pdf
Eisen.CentralValley2024.pdfEisen.CentralValley2024.pdf
Eisen.CentralValley2024.pdf
 
Phylogenomics and the Diversity and Diversification of Microbes
Phylogenomics and the Diversity and Diversification of MicrobesPhylogenomics and the Diversity and Diversification of Microbes
Phylogenomics and the Diversity and Diversification of Microbes
 
Talk by Jonathan Eisen for LAMG2022 meeting
Talk by Jonathan Eisen for LAMG2022 meetingTalk by Jonathan Eisen for LAMG2022 meeting
Talk by Jonathan Eisen for LAMG2022 meeting
 
Thoughts on UC Davis' COVID Current Actions
Thoughts on UC Davis' COVID Current ActionsThoughts on UC Davis' COVID Current Actions
Thoughts on UC Davis' COVID Current Actions
 
Phylogenetic and Phylogenomic Approaches to the Study of Microbes and Microbi...
Phylogenetic and Phylogenomic Approaches to the Study of Microbes and Microbi...Phylogenetic and Phylogenomic Approaches to the Study of Microbes and Microbi...
Phylogenetic and Phylogenomic Approaches to the Study of Microbes and Microbi...
 
A Field Guide to Sars-CoV-2
A Field Guide to Sars-CoV-2A Field Guide to Sars-CoV-2
A Field Guide to Sars-CoV-2
 
EVE198 Summer Session Class 4
EVE198 Summer Session Class 4EVE198 Summer Session Class 4
EVE198 Summer Session Class 4
 
EVE198 Summer Session 2 Class 1
EVE198 Summer Session 2 Class 1 EVE198 Summer Session 2 Class 1
EVE198 Summer Session 2 Class 1
 
EVE198 Summer Session 2 Class 2 Vaccines
EVE198 Summer Session 2 Class 2 Vaccines EVE198 Summer Session 2 Class 2 Vaccines
EVE198 Summer Session 2 Class 2 Vaccines
 
EVE198 Spring2021 Class1 Introduction
EVE198 Spring2021 Class1 IntroductionEVE198 Spring2021 Class1 Introduction
EVE198 Spring2021 Class1 Introduction
 
EVE198 Spring2021 Class2
EVE198 Spring2021 Class2EVE198 Spring2021 Class2
EVE198 Spring2021 Class2
 
EVE198 Spring2021 Class5 Vaccines
EVE198 Spring2021 Class5 VaccinesEVE198 Spring2021 Class5 Vaccines
EVE198 Spring2021 Class5 Vaccines
 
EVE198 Winter2020 Class 8 - COVID RNA Detection
EVE198 Winter2020 Class 8 - COVID RNA DetectionEVE198 Winter2020 Class 8 - COVID RNA Detection
EVE198 Winter2020 Class 8 - COVID RNA Detection
 
EVE198 Winter2020 Class 1 Introduction
EVE198 Winter2020 Class 1 IntroductionEVE198 Winter2020 Class 1 Introduction
EVE198 Winter2020 Class 1 Introduction
 
EVE198 Winter2020 Class 3 - COVID Testing
EVE198 Winter2020 Class 3 - COVID TestingEVE198 Winter2020 Class 3 - COVID Testing
EVE198 Winter2020 Class 3 - COVID Testing
 
EVE198 Winter2020 Class 5 - COVID Vaccines
EVE198 Winter2020 Class 5 - COVID VaccinesEVE198 Winter2020 Class 5 - COVID Vaccines
EVE198 Winter2020 Class 5 - COVID Vaccines
 
EVE198 Winter2020 Class 9 - COVID Transmission
EVE198 Winter2020 Class 9 - COVID TransmissionEVE198 Winter2020 Class 9 - COVID Transmission
EVE198 Winter2020 Class 9 - COVID Transmission
 
EVE198 Fall2020 "Covid Mass Testing" Class 8 Vaccines
EVE198 Fall2020 "Covid Mass Testing" Class 8 VaccinesEVE198 Fall2020 "Covid Mass Testing" Class 8 Vaccines
EVE198 Fall2020 "Covid Mass Testing" Class 8 Vaccines
 
EVE198 Fall2020 "Covid Mass Testing" Class 2: Viruses, COIVD and Testing
EVE198 Fall2020 "Covid Mass Testing" Class 2: Viruses, COIVD and TestingEVE198 Fall2020 "Covid Mass Testing" Class 2: Viruses, COIVD and Testing
EVE198 Fall2020 "Covid Mass Testing" Class 2: Viruses, COIVD and Testing
 
EVE198 Fall2020 "Covid Mass Testing" Class 1 Introduction
EVE198 Fall2020 "Covid Mass Testing" Class 1 IntroductionEVE198 Fall2020 "Covid Mass Testing" Class 1 Introduction
EVE198 Fall2020 "Covid Mass Testing" Class 1 Introduction
 

Recently uploaded

EMBODO Lesson Plan Grade 9 Law of Sines.docx
EMBODO Lesson Plan Grade 9 Law of Sines.docxEMBODO Lesson Plan Grade 9 Law of Sines.docx
EMBODO Lesson Plan Grade 9 Law of Sines.docxElton John Embodo
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
Integumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptIntegumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptshraddhaparab530
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfPatidar M
 
Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4JOYLYNSAMANIEGO
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
Activity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translationActivity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translationRosabel UA
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operationalssuser3e220a
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
Millenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptxMillenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptxJanEmmanBrigoli
 
Presentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptxPresentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptxRosabel UA
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptxiammrhaywood
 

Recently uploaded (20)

EMBODO Lesson Plan Grade 9 Law of Sines.docx
EMBODO Lesson Plan Grade 9 Law of Sines.docxEMBODO Lesson Plan Grade 9 Law of Sines.docx
EMBODO Lesson Plan Grade 9 Law of Sines.docx
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
Integumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptIntegumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.ppt
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdf
 
Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
Activity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translationActivity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translation
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operational
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
Millenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptxMillenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptx
 
Presentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptxPresentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptx
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
 

UC Davis EVE161 Lecture 11 by @phylogenomics

  • 1. Lecture 10: EVE 161:
 Microbial Phylogenomics ! Lecture #10: Era III: Genome Sequencing ! UC Davis, Winter 2014 Instructor: Jonathan Eisen Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014 !1
  • 2. Where we are going and where we have been • Previous lecture: ! 10: Genome Sequencing • Current Lecture: ! 11: Genome Sequencing II • Next Lecture: ! 12: Genome Sequencing III Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014 !2
  • 3. Comparative Genomics Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
  • 4. Structural Diversity Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
  • 5. mosome encodes all the housekeeping functions. Because plasmids typically have only Structural Diversity TABLE 7.1. Examples of bacteria with multiple genetic elements Species Form Size (kb) Shape Streptomyces coelicolor Chromosome Plasmid Plasmid 8667 356 31 Linear Linear Circular Agrobacterium tumefaciens Chromosome Chromosome Plasmid Plasmid 2842 2057 543 214 Circular Linear Circular Circular Borrelia burgdorferi Chromosome Plasmid (n = 11) 911 9–54 Linear Circular/Linear Brucella melitensis Chromosome Chromosome 2117 1178 Circular Circular Clostridium acetobutylicum Chromosome Plasmid 3941 192 Circular Circular Deinococcus radiodurans Chromosome Plasmid Plasmid Plasmid 2649 412 177 46 Circular Circular Circular Circular Ralstonia solanacearum Chromosome Chromosome? 3716 2095 Circular Circular Salmonella typhi Chromosome Plasmid Plasmid 4809 218 107 Circular Circular Circular Sinorhizobium meliloti Chromosome Plasmid Plasmid 3654 1683 1354 Circular Circular Circular Vibrio cholerae Chromosome Chromosome 2941 1072 Circular Circular Yersinia pestis Chromosome Plasmid (n = 3) 4654 10–96 Circular Circular Based on Bentley S.D. and Parkhill J. Annu. Rev. Genet. 38: 771–792, as adapted from Ohmachi M. 2002. Curr. Biol. 12: R427–428. Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
  • 6. What is a Plasmid Chapter 7 • B A CT ER IA L A N D A R CH A EA L G E N TABLE 7.2. Plasmid functions Genetic Function of Plasmid Gene Functions Examples Resistance Antibiotic resistance Rbk plasmid of Escherichia coli and other bacteria Fertility Conjugation and DNA transfer F plasmid of E. coli Killer Synthesis of toxins that kill other bacteria Col plasmids of E. coli, for colicin production Degradative Enzymes for metabolism of unusual molecules TOL plasmid of Pseudomonas putida, for toluene metabolism Virulence Pathogenicity Ti plasmid of Agrobacterium tumefaciens, conferring the ability to cause crown gall disease on dicotyledonous plants Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
  • 7. Genome Size Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
  • 8. Eukaryotic genomes are bulky in part because they contain large numbers of repetitive DNA Size Genomeelements (Fig. 7.2). Common eukaryotic repetitive DNA elements include sim- Leishmania Arabidopsis major thaliana Guillardia theta Human Fern Eukaryotes Schizosac- Moss charomyces pombe Cockroach Paramecium tetraurelia Amoeba dubia Escherichia coli P. marius Bacteria Myxobacteria Bradyrhizobium japonicum Nanoarchaeum equitans Archaea Methanosarcina acetivorans 1 105 1 106 1 107 1 108 1 109 1 1010 1 1011 1 1012 1 1013 Number of base pairs FIGURE 7.1. Genome sizes in the three domains of life. A selection of genome sizes and size ranges from specific groups of organisms is indicated. Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
  • 9. Gene Density Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
  • 10. Gene Density Chapter 7 • BA CT ERIA L A N D AR C H A EA L G EN E T A Human 0 10 20 30 40 50 kb 20 30 40 50 kb B Escherichia coli 0 10 KEY Gene Human pseudogene Repetitive DNA element FIGURE 7.2. Genome density. Comparison of the genome density and content of humans and Es- cherichia coli. Each segment is 50 kb in length and represents (A) a portion of the human β T-cell receptor locus and (B) a region of the E. coli K12 genome. Note the much greater proportion of genes (red boxes) in E. coli compared to humans. ple sequence repeats (e.g., microsatellites and minisatellites), gene duplications (both tandem arrays and pseudogenes), and transposable by Jonathan Eisen Winter 2014 elements. Although bacterial and arSlides for UC Davis EVE161 Course Taught
  • 11. Number of genes Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
  • 12. DNA or selfish DNA. Number of Genes Junk DNA appears to provide little benefit or no function to the organism. (In some cases this designation is a misnomer resulting from a lack of infor30,000 25,000 Bacteria Eukaryotes Viruses Archaea Genes 20,000 15,000 10,000 5,000 0 105 106 107 108 Genome size 109 1010 FIGURE 7.3. Genome size vs. number of protein-coding genes. The number of genes is highly cor- related to genome size for bacteria, archaea, and viruses, but less so for eukaryotes. Many archaeal points (blue triangles) are hidden under bacterial ones (yellow squares). Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
  • 13. Gene Arrangement Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
  • 14. Operons O RI GI N AN D D I V E RSI F ICAT ION O F LIF E lacZ CAP site lacY lacA Operator Promoter -galactosidase Lactose permease transports lactose into the cell transacetylase split lactose to galactose + glucose CH2OH OH H OH H H CH2OH CH2OH H O H + O H H OH H OH Lactose H O OH H H OH OH H OH H H CH2OH O OH H H OH Galactose + H H OH OH H O OH H H OH Glucose FIGURE 7.4. Lac operon from Escherichia coli. This operon consists of three genes whose transcrip- tion is regulated by a single promoter. The genes encode proteins involved in utilizing lactose, including a permease (encoded by lacY), which brings lactose into the cell from the outside, and two enzymes (encoded by lacZ and lacA), which split lactose into glucose + galactose (see pp. 52–53). mation. Some stretches of “junk DNA” have been by Jonathan Eisenbe involved in gene regSlides for UC Davis EVE161 Course Taught determined to Winter 2014
  • 15. Gene Content Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014 !15
  • 16. Shared Genes Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014 !16
  • 17. E. coli shared Genes A N D D IV ER SIF ICAT ION OF LIF E MG1655 (K-12) nonpathogenic CFT073 uropathogenic 193 585 1623 2996 514 204 FIGURE 7.7. Number of shared proteins be- 1346 EDL933 (0157:H7) enterohemorrhagic tween strains of Escherichia coli. Note the large number of genes found in one strain but not the others (seen in the outer portions of each circle). substantial variation in gene content among members of the same species have been reported in other lineages of bacteria and archaea. Thus, the diminishing number of core orthologous genes is simply an extension of something happening among close Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014 relatives.
  • 18. Gene Order Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
  • 19. Gene Order Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
  • 20. Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
  • 21. Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
  • 22. Origin of replication Terminus of replication Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
  • 23. Origin of replication Terminus of replication Artificially Open Circle Origin Terminus Origin Again UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014 Slides for
  • 24. Origin of replication Terminus of replication Artificially Open Circle Genome 2 O T O O Origin Terminus T Genome 1 Origin Again UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014 Slides for O
  • 25. Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
  • 26. E. coli 0157:H7 A N D D I V E RSI FICAT ION O F LIF E Repeat Island Inversion E. coli K12 FIGURE 7.10. Conserved gene order in the backbone of Escherichia coli K12 and 0157:H7. The two genomes were aligned with each other and the matching regions were plotted. The conserved order of genes in the backbone of the two E. coli strains is indicated by the diagonal line. Three important genomic regions are circled. An island present in one of the two strains causes a slight shift in the position of the main diagonal. they also occur in virtually the same order in both strains (Fig. 7.10). The genes unique to each strain are clustered into “islands” interspersed among the stretches of common genes. Similar patterns of DNA “islands” within a conserved genome backbone have been found among other related bacteria or archaea. Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014 How do these islands originate? These are two possibilities: insertion of DNA into
  • 27. Chapter 7 • BACT ERIA L A ND A RCHA EA L G ENET ICS AND H. pylori 26695 chromosome 1,667,867 1,600,000 1,200,000 FIGURE 7.11. The lack of conservation of 800,000 400,000 0 0 400,000 800,000 1,200,000 H. influenzae Rd chromosome 1,830,137 gene order between Haemophilus influenzae and Helicobacter pylori is illustrated. Linearized chromosomes of H. influenzae and H. pylori are plotted on the horizontal and vertical axes, respectively. Each dot represents a single pair of orthologous proteins. Genes in similar operons, which do exist, are too close together to give separated points on the scale used. mon is symmetric inversion around the origin of replication (Fig. 7.14). Such inversions are seen in almost every comparison of moderately closely related strains or species. Although other rearrangements occur, the symmetric inversions serve as a useful tool for understanding some features of general evolution and we focus on them here. Symmetric inversions around the origin are due to a combination of mutation bias and selection bias.Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014 To understand how mutation bias could cause this, it is helpful to un-
  • 28. cently replicated DNA, thereby causing an inversion. As the two replication forks should str S10 spc alpha L11 (rplK) L1 (rplA) L10 (rplJ) L7/L12 (rplL) rpoB rpoC unknown S12 (rpsL) S7 (rpsG) fusA tufA S10 (rpsJ) L3 (rplC) L4 (rplD) L23 (rplW) L2 (rplB) S19 (rpsS) L22 (rplY) S3 (rpsC) L16 (rplP) L29 (rpmC) S17 (rpsQ) L14 (rplN) L24 (rplX) L5 (rplE) S14 (rpsN) S8 (rpsH) L6 (rplF) L18 (rplR) S5 (rpsE) L30 (rpmD) L15 (rplO) secY adk map infA L36 (rpmJ) S13 (rpsM) S11 (rpsK) S4 (rpsD) rpoA L17 (rplQ) rpoBC Sinorhizobium meliloti Bacillus subtilis ? ? ? ? Borrelia burgdorferi Small SUr-protein genes Treponema pallidum Helicobacter pylori Large SUr-protein genes xxx Nonribosomal genes Escherichia coli ? Unknown genes Haemophilus influenzae Breakpoint Rickettsia prowazekii Gene insertion Mycoplasma sp. Aquifex aeolicus Rho-independent terminator S6 Missing gene Thermatoga maritima Deinococcus radiodurans Mycobacterium tuberculosis Chlamydia sp. Synechocystis S4 Archaea SUI1-X1 S-4E L32-L19 X2 cdk-L1--ccm-mms FIGURE 7.12. Conservation of gene order of ribosomal protein operons across bacterial and ar- chaeal species. Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
  • 29. Gene Order Again Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
  • 30. V. cholerae vs. E. coli All 5000000 E. coli Coordinates 4000000 3000000 2000000 1000000 0 0 1000000 2000000 V. cholerae Coordinates Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014 3000000 Eisen et al., 2000
  • 31. V. cholerae vs. E. coli Best 5000000 E. coli Coordinates 4000000 3000000 2000000 1000000 0 0 1000000 2000000 V. cholerae Coordinates Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014 3000000 Eisen et al., 2000
  • 32. V. cholerae vs. E. coli, Rotated 5000000 E. coli ORF Coordinates 4000000 3000000 2000000 1000000 0 0 500000 1000000 1500000 2000000 2500000 V. cholerae ORF Coordinates Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014 3000000 Eisen et al., 2000
  • 33. Duplication and Gene Loss Model Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014 Eisen et al., 2000
  • 34. V. cholerae vs. E. coli
 Orthologs on Both Diagonals 5000000 E. coli ORF Coordinates 4000000 3000000 2000000 1000000 0 0 500000 1000000 1500000 2000000 2500000 V. cholerae ORF Coordinates Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014 3000000 Eisen et al., 2000
  • 35. C. trachomatis vs C. pneumoniae C. pneumoniae AR39 Origin Terminus C. trachomatis MoPn Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
  • 36. Symmetric Inversion Model A3 A2 32 1 2 30 31 3 29 4 28 5 27 6 26 7 25 8 24 9 23 10 22 11 21 12 20 13 19 14 18 17 16 15 A1 32 1 2 30 31 3 29 4 28 5 27 6 26 7 25 8 24 9 23 10 22 11 21 12 20 13 19 14 18 17 16 15 Common Ancestor of A and B B1 32 1 2 30 31 3 29 4 28 5 27 6 26 7 25 8 24 9 23 10 22 11 21 12 20 13 14 19 15 16 17 18 A1 A2 Inversion Around Terminus (*) * * 4 5 * 27 A2 26 25 24 23 22 21 20 Inversion Around Origin (*) A1 B1 B2 * A3 14 15 16 17 18 A3 A2 Inversion Around Terminus (*) 29 28 6 7 8 9 10 11 12 13 19 B3 B2 31 32 1 2 30 3 29 4 28 5 27 6 26 7 25 8 24 9 23 10 22 11 21 12 20 13 19 14 18 17 16 15 1 32 31 3 2 30 * 31 32 1 2 30 3 29 4 28 5 27 6 26 7 8 25 9 24 10 23 11 22 12 21 13 20 14 19 15 16 17 18 * B2 Inversion Around Origin (*) 3 29 28 27 26 8 9 10 11 12 13 14 * 2 1 32 31 30 * 4 B3 15 16 17 18 19 5 6 7 25 24 23 22 21 20 B3 B2 B1 Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014 Eisen et al., 2000
  • 37. The X-Files Streps Pseudomonas B. subt vs. Staph 13623200 3000 9952000 2500 13622725 9950425 2000 Series1 9948850 Series1 13622250 1500 1000 9947275 13621775 500 9945700 0 0 2125 4250 6375 8500 M. tb vs. M. leprae 13621300 2632200 0 625 1250 1875 Pyrococcus 2632700 2633200 Mycobacterium tuberculosis 3000000 2000000 1000000 0 1000000 2000000 2634200 2634700 2635200 2635700 2636200 Thermoplasmas 4000000 0 2633700 2500 3000000 Mycobacterium leprae Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014 2636700
  • 38. Chapter 7 • BACT E RI AL AND ARCH AEAL G EN ET ICS AND G E NO MI CS 181 A A2 31 32 1 2 3 30 4 29 5 28 6 27 7 26 8 25 9 24 10 23 11 22 12 21 13 20 14 19 18 17 16 15 A1 31 32 1 2 3 30 4 29 5 28 6 27 7 26 8 25 9 24 10 23 11 22 12 21 13 20 14 19 18 17 16 15 Common ancestor of A and B A3 A1 Inversion around terminus (*) B1 31 32 1 2 3 30 4 29 5 28 6 27 7 26 8 25 9 24 10 23 11 22 12 21 13 20 19 14 15 16 17 18 A2 A2 Inversion around origin (*) B2 A1 3 4 27 26 25 24 23 22 21 20 20 14 B1 Inversion around terminus (*) A3 15 16 17 18 29 28 6 7 8 9 10 11 12 13 19 B3 A2 31 32 1 2 3 30 4 29 5 28 6 27 7 26 8 25 9 24 10 23 11 22 12 21 13 20 14 19 18 17 16 15 2 1 32 31 30 A3 31 32 1 2 3 30 4 29 5 28 6 27 7 26 8 25 9 24 10 23 11 22 12 21 13 20 14 19 18 17 16 15 B2 B2 Inversion around origin (*) 3 29 28 27 26 8 9 10 11 12 13 14 2 1 32 31 30 4 B3 15 16 17 18 19 5 6 7 25 24 23 22 21 20 B3 B1 B2 C Escherichia coli V. parahaemolyticus chromosome I B V. cholerae chromosome I V. cholerae chromosome I FIGURE 7.14. X-alignments. (A) Schematic model of symmetric genome inversions. The model shows an initial speciation event, followed by a series of inversions in the different lineages (A and B). Inversions occur between the asterisks (*). Numbers on the chromosome refer to hypothetical genes 1–32. At time point 1, the genomes of the two species are still colinear (as indicated in the scatterplot of A1 vs. B1). Between time point 1 and time point 2, each species (A and B) undergoes a large inversion about the terminus (as indicated in the scatterplots of A1 vs. A2 and B1 vs. B2). This results in the between-species scatterplot looking as if there have been two nested inversions (A2 vs. B2). Between time point 2 and time point 3, each species undergoes an additional inversion (as indicated in the scatterplots of B2 vs. B3 and A2 vs. A3). This results in the between-species scatterplots beginning to resemble an X-alignment. (B) X-like alignment in dotplot of the main chromosomes of Vibrio cholerae (x-axis) and Vibrio parahaemolyticus (y-axis). (C) A weak X-like pattern exists even when comparing more distantly related species, in this case V. cholerae and E. coli. An X-like pattern indicates that the distance of a gene from the origin is conserved, but the side of the origin on which it is located is not conserved. Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
  • 39. Gene Loss bolA tig clpP clpX a hupB ybaU ybaX ybaW ybaV ybaE BA CT E R I A L A N D A R C H A EA L G EN E T I CS A ND G E ybaO cof • mdlA mdlB amtB tesB ginK RNA-ffs ybaZ ybaY acrB acrR acrA aefA recR ybaB dnaX apt ybaN priC ybaM htpG adk Chapter 7 Ancestor Buchnera 10 kb FIGURE 7.5. Genome reduction in Buchnera endosymbionts of aphids. A fragment of two genomes is shown. (Top row) The putative ancestor of all aphid endosymbionts in the Buchnera genus. (Bottom row) The genome of the symbionts today. The massive amounts of gene loss are indicated by the genes colored white in the ancestral genome that are missing from the modern genome below. Orthologous genes between the two genomes are shown in the same color. Note the conservation of gene order between the two genomes despite the gene loss. The direction of gene transcription is indicated by the gene box being shifted above or below the black line. ple, B. aphidicola APS has undergone a massive reduction in its genome since it shared a common ancestor with E. coli (Fig. 7.5). This symbiont lives inside aphid cells where many genes required for the free-living lifestyle of E. coli are not needed. Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
  • 40. Gene Duplication Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
  • 41. Why Duplications Are Useful to Identify • Allows division into orthologs and paralogs ! • Improves functional predictions ! • Helps identify mechanisms of duplication ! • Can be used to study mutation processes in different parts of a genome ! • Lineage specific duplications may be indicative of species’ specific adaptations Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
  • 42. Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
  • 43. C. pneumoniae - All Paralogs 1250000 Subject Orf Position 1000000 750000 500000 250000 0 0 250000 500000 750000 Query Orf Position 1000000 Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014 1250000
  • 44. C. pneumoniae Lineage-Specific Paralogs 1250000 Subject Orf Position 1000000 750000 500000 250000 0 0 250000 500000 750000 Query Orf Position 1000000 Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014 1250000
  • 45. Expansion of MCP Family in V. cholerae NJ ** ** V.cholerae VC0512 V.cholerae VCA1034 V.cholerae VCA0974 V.cholerae VCA0068 ** V.cholerae VC0825 * V.cholerae VC0282 V.cholerae VCA0906 V.cholerae VCA0979 V.cholerae VCA1056 V.cholerae VC1643 V.cholerae VC2161 V.cholerae VCA0923 ** V.cholerae VC0514 ** V.cholerae VC1868 V.cholerae VCA0773 V.cholerae VC1313 V.cholerae VC1859 V.cholerae VC1413 V.cholerae VCA0268 V.cholerae VCA0658 ** V.cholerae VC1405 V.cholerae VC1298 * V.cholerae VC1248 V.cholerae VCA0864 V.cholerae VCA0176 V.cholerae VCA0220 ** V.cholerae VC1289 V.cholerae VCA1069 ** V.cholerae VC2439 V.cholerae VC1967 V.cholerae VCA0031 V.cholerae VC1898 V.cholerae VCA0663 V.cholerae VCA0988 V.cholerae VC0216 V.cholerae VC0449 * V.cholerae VCA0008 V.cholerae VC1406 V.cholerae VC1535 V.cholerae VC0840 B.subtilis gi2633766 Synechocystis sp. gi1001299 Synechocystis sp. gi1001300 * Synechocystis sp. gi1652276 * Synechocystis sp. gi1652103 * H.pylori gi2313716 ** H.pylori99 gi4155097 C.jejuni Cj1190c ** C.jejuni Cj1110c A.fulgidus gi2649560 A.fulgidus gi2649548 ** B.subtilis gi2634254 B.subtilis gi2632630 B.subtilis gi2635607 B.subtilis gi2635608 ** B.subtilis gi2635609 ** ** B.subtilis gi2635610 B.subtilis gi2635882 E.coli gi1788195 E.coli gi2367378 ** E.coli gi1788194 * E.coli gi1787690 V.cholerae VCA1092 V.cholerae VC0098 E.coli gi1789453 H.pylori gi2313186 H.pylori99 gi4154603 ** C.jejuni Cj0144 C.jejuni Cj1564 ** C.jejuni Cj0262c ** C.jejuni Cj1506c H.pylori gi2313163 * H.pylori99 gi4154575 ** H.pylori gi2313179 ** ** H.pylori99 gi4154599 C.jejuni Cj0019c C.jejuni Cj0951c C.jejuni Cj0246c B.subtilis gi2633374 T.maritima TM0014 V.cholerae VC1403 V.cholerae VCA1088 T.pallidum gi3322777 T.pallidum gi3322939 ** T.pallidum gi3322938 ** B.burgdorferi gi2688522 T.pallidum gi3322296 B.burgdorferi gi2688521 * T.maritima TM0429 ** T.maritima TM0918 ** T.maritima TM0023 * T.maritima TM1428 T.maritima TM1143 T.maritima TM1146 P.abyssi PAB1308 P.horikoshii gi3256846 ** P.abyssi PAB1336 ** P.horikoshii gi3256896 ** P.abyssi PAB2066 ** P.horikoshii gi3258290 ** * P.abyssi PAB1026 P.horikoshii gi3256884 ** D.radiodurans DRA00354 D.radiodurans DRA0353 ** D.radiodurans DRA0352 ** V.cholerae VC1394 P.abyssi PAB1189 P.horikoshii gi3258414 ** B.burgdorferi gi2688621 M.tuberculosis gi1666149 V.cholerae VC0622 Heidelberg et al. (2000) Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014
  • 46. After the Genomes • Better analysis and annotation • Comparative genomics • Functional genomics (Experimental analysis of gene function on a genome scale) • Genome-wide gene expression studies • Proteomics • Genome wide genetic experiments Slides for UC Davis EVE161 Course Taught by Jonathan Eisen Winter 2014