SlideShare ist ein Scribd-Unternehmen logo
1 von 28
Downloaden Sie, um offline zu lesen
⼀一般向けの
Deep Learning
岡野原  ⼤大輔
株式会社Preferred  Infrastructure  
hillbig@preferred.jp
PFI  全体セミナー  
2013/5/30  @  PFI
DeepLearning
l  専⾨門家向けの情報はいろいろな場所で⼿手に⼊入る
l  DeepLearning.net
l  Google+ DeepLearning Group
l  ⼈人⼯工知能学会  連載解説「Deep Learning(深層学習)」
l  各分野の利利⽤用⽅方法、歴史、理理論論、実装について
l  私も第3回実装編を書いています
l  Deep Learningの話は⼀一部の機械学習屋向けの話なのか?
→否
l  今⽇日は⼀一般向けにDeep Learningを説明してみます
2
ブログで書いたらとても注⽬目された
3	
あれから7ヶ月
2012年年に衝撃が⾛走る
l  画像認識識・⾳音声認識識・化合物の活性予測でDNNが最⾼高精度度を達成
l  2位以下をぶっちぎる
l  100mの世界記録におけるボルトのような⽴立立場
l  ⾮非専⾨門家が達成したことにも衝撃
l  「化合物の活性予測は初めてだけど、試したら出ちゃった」
4
あらゆる分野でDeep Learningの話がでてくる
l  学会での嵐嵐
l  主要学会のチュートリアルで紹介
l  ICML(機械学習), ACL(⾃自然⾔言語処理理), CVPR(画像処理理)
l  学会も誕⽣生!ICLR (元々snowbird workshop)
l  ビジネスでの嵐嵐
l  Microsoftが⾳音声認識識をDeepLearningベースに置き換える
l  おそらく、Googleなど他の企業も置き換える
l  中⼼心⼈人物のHinton+ポスドクが⽴立立ち上げた会社をGoogleが即買収
l  Googleのエンジニアの中⼼心⼈人物のJeff Deanも携わる
l  新聞などの記事でも取り上げられる
5
⼀一般物体認識識の例例(LSVRC2012優勝チーム)
6	
⼀一般物体のカテゴリ認識識
間違えた場合も、納得の
できる間違え⽅方
(右下のtape  playerを
携帯電話と間違えている)
http://www.image-net.org/challenges/LSVRC/
2012/ilsvrc2012.pdf
ニューラルネット(NN)の歴史 (1/2)
l  1940年年代頃から何度度もブームが
l  Perceptron, BackPropagation, …
l  しかし90年年代頃からの⻑⾧長い冬の時代
l  2006年年からDeep Neural Netとしての復復活
l  Hinton, BengioらによるPreTraining とAutoEncoderの登場
l  深い階層を持った場合でも勾配が拡散せず学習できる
l  Ngらによる視覚野の働きに似た画像特徴抽出
l  ⼈人の視覚認識識の仕組みを部分的に再現できた
l  しかしまだ⼀一部の研究者のみが注⽬目している状況
7
ニューラルネット(NN)の歴史 (2/2)
l  2010年年以降降の発展
l  多くの分野でのベンチマークテストによる圧勝
l  ⼀一般物体画像認識識、⾳音声認識識、薬物活性予測
l  これまでのstate-of-the-artを⼤大きく凌凌駕すると共に、
⾮非専⾨門家が達成したことに衝撃
l  ⼤大規模NNからの教師無学習(後述)
l  Googleらがは1000万枚の画像を利利⽤用してパラメータ数が数⼗十億
からなる⼤大規模NNを2000台(16000コア)で1週間で学習
l  教師無し学習で知識識のようなものが得られる
8
なぜ深層学習がこれほど成功したか
l  Hinton⽈曰く:「Bengioらが90年年代に培った⼿手法」
                + 「⼤大規模データ」 + 「DropOut」
l  特に⼤大きなブレークスルーがあったわけではない
l  学習⼿手法の改善
l  PreTraning, AutoEncoder, Dropout, Maxout、学習率率率調整
l  実装技術の改善
l  GPGPUや⼤大規模クラスタの利利⽤用
l  ニューラルネットはこれまで注⽬目されていなかっただけ
  + これまでの学習⼿手法の煮詰まり感
l  既存⼿手法(線形分類器、ベイズ、カーネル法)に関して
やれることはほぼやった。特徴抽出は⽐比較的⼿手付かず
9
機械学習のおさらい
l  機械学習=経験(データ)によって賢くなるアルゴリズム
l  データから知識識・ルールを⾃自動獲得する
l  データの適切切な表現⽅方法も獲得する
l  ⼈人⼯工知能の中で、⼈人が知識識やルールを
明⽰示的に与える⽅方法の限界から⽣生まれてきた
10
学習データ
分類モデル
機械学習が急速に広まった理理由
特徴表現と分析処理理の分離離
11	
特徴抽出:問題や分野の特徴を
捉えた抽象化されたデータ
分野に依存しない
様々な⼿手法の適⽤用
11
⽂文書 (0,        1,        0,  2.5,  -‐‑‒1,  …)
(1,  0.5,  0.1,      -‐‑‒2,    3,  …)
(0,        1,        0,  1.5,    2,  …)
特徴ベクトル
グラフィカルモデル
分類/回帰
SVM,  LogReg,  PA,  CW,  ALOW,  
Naïve  Bayes,  CNB,  DT,  RF,  ANN
クラスタリング
K-‐‑‒means,  Spectral  Clustering,
NNF,  MMC,  LSI,  LDA,  GM,  DP
構造分析
HMM,  MRF,  CRF,  …  
画像
センサ情報
⾏行行動履履歴
l  異異なる分野で同じ機械学習⼿手法が適⽤用可能
特徴抽出
l  ⼊入⼒力力データから特徴を抽出し特徴ベクトルで表す
l  テキスト、画像、⾳音声、数値
l  各領領域の専⾨門家による職⼈人芸であった
12	
周囲が黄色 1
中心が茶 1
花びらの割合 0.7
⾼高さ 150
世の中ではビッグデー
タというキーワードが
注⽬目されていますが,
⼀一⼝口にビッグデータと
いっても⽴立立場や観点に
よって定義は様々です.
他の要素は0とする
ビッグデータ 2
世の中 1
キーワード 1
定義 1
IT関連
ひまわり
特徴ベクトル	
分析結果
DeepLearning
深層学習による特徴抽出(=表現学習)
l  機械学習は次の2つのステップからなると説明した
l  STEP1 ⼊入⼒力力データからの特徴抽出
l  STEP2 特徴に対する学習・推論論
l  特徴抽出は今でもドメイン知識識や⼈人⼿手による試⾏行行錯誤が必要
l  ⾃自然⾔言語処理理、画像処理理、⾏行行動履履歴 … 毎に異異なる技
l  Feature Engineeringとも呼ばれる⼀一種のアート
l  どれを使うか、どう組み合わせるのか、値はどうするのか
l  特徴抽出も⾃自動化できないか?
l  特徴抽出は機械学習の実⽤用上なボトルネック
l  ⼈人⼿手は本当に最適か、さらに改善できないか?
⇒  表現学習
13
表現学習
「実世界の観測情報から本質的な情報を抽出し表現する」⽅方法を学習
l 世の中のデータは⼀一⾒見見、複雑で量量が多く処理理が困難なように⾒見見える
l 本質な情報を抽出し表現できればメリットはたくさん!
l  その後の問題が簡単な問題となる
l  可視化しやすい
l  ⼀一般化しやすい
l  原因もわかりやすい
l  データサイズも少ない
14	
手書き文字データ(元々256次元)

2次元で表現した場合
情報表現の代表選⼿手
主成分分析 (PCA: Principal Component Analysis)
l  ⾼高次元データの集合を少数の主成分のベクトルで表す
l  各⾏行行がデータに対応する⾏行行列列Xに対する特異異値分解が
X = UΣVT の時、Uが主成分ベクトル, VΣTが主成分値
l  元のデータを⼆二乗誤差最⼩小での近似に対応
l  redsvdを使えばコマンド1発で
巨⼤大な⾏行行列列もPCAできるよ!
15
情報表現
l  データ圧縮
l データをうまく表現することにより、情報を失わず
同じ情報をより短い符号⻑⾧長で表す
l  データ変換
l フーリエ変換・ウェーブレット変換
l Burrows Wheeler変換
l  データ要約
l  クラスタリング
16
深層学習の場合
17	
階層的に情報表現をより
「総合的」かつ「抽象的」
な情報に変換していく
(各出⼒力力は⾮非線形な関数)
深層学習の場合
顔の学習の例例
18	
l  深いレイヤーはパーツを
組み合わせた全体の学習
l  浅いレイヤーは単純な
パーツを学習 浅いレイヤー

小さい部品
より具体的なもの	
深いレイヤー
全体的な特徴
より抽象的なもの
表現学習をとことんやったら?
DistBelief [J. Dean+, NIPS 13]
19	
非同期での大規模学習をサポート
-  オンラインの並列学習  (SGD)
-  バッチ学習の並列学習 (L-BFGS)
-  16000コアでの並列学習が可能
Youtubeから得られた 200 x 200の
画像 1000万枚に対して教師無し学習


(AutoEncoderと似たRICAと呼ばれる

方法でDNNを学習)

次項以降で学習で得られた

最上部のニューロンが反応する画像

を紹介
右:学習で得られたニューロンが最も反応する画像
左:このニューロンに反応したテスト画像
20
右:学習で得られたニューロンが最も反応する画像
左:このニューロンに反応したテスト画像
21
⾃自然⾔言語の場合
[Richard+ ]
l  別PDFを参照
22
深層学習による情報表現の獲得
l  層の数が多いNNによって、観測データから本質的なデータを抽
出した、内部表現/潜在表現/特徴量量を抽出する
l  ⼀一度度抽出さえできれば簡単な線形分類器でも学習可能
l  ⼀一度度抽出したらいろんなタスクに利利⽤用可能
l  特定の課題に特化しているわけではないので
l  元々のデータに潜在的な構造があるため
l  ⾼高次元の観測データが低次元の部分空間や多様体上に集中して分布
→データの分布に沿った座標系を取ることで効率率率的に表現可能
(主成分分析の例例)
23
Disentagling
l  「もつれをほどける」「ほぐれる」という意味
l  元々のデータが⾼高次元中で絡まっている状態を、
うまくほぐして表現することで低次元で簡単な情報にする
l  実際、その後簡単な線形分類器で⾼高精度度を達成する
l  先程のGoogleの例例はImage netでの最⾼高精度度を達成
l  データに対する仮説:観測データを⽣生み出してている
情報源は少数のコンセプト・属性からなる
l  なので、そのような少数のコンセプト・属性を⾒見見つければ良良い
24
⽂文書の2次元へのマッピング
右側のDNNベースの⼿手法はきれいに分かれる
25
DNNの信じる世界 = Principal of Compositionality
l  複雑な現象の意味は、それを構成する部品の意味の組み合わせであ
る
l  ⼈人間(⽣生物)の多くの認識識がこれを満たす
l  テキスト、画像、⾳音声
l  DNNはPrincipal  of  Compositionalityを利利⽤用している
l  情報表現も、単純な部品の組み合わせで複雑な情報も表現できる
l  部品は上位の複数の部品で共有される
l  これらの関係再帰的に効率率率よく学習できる
26
まとめ
27
深層学習 = 表現学習
l  DNNにより、表現学習を⾏行行える
l  ⼈人間の認識識がうまくいく分野はうまく学習しているようにみえる
l  構⽂文解析, Sentiment Analysis
l  ⾳音声認識識
l  画像認識識、映像認識識
l  化合物分類(職⼈人が⾒見見ると⼀一発で分かる)
l  しかし …
l  精度度が欲しいだけの場合は必ずしもDNNじゃなくても良良い
l  3層程度度のfully-connected NN + dropout + maxoutで最⾼高精度度
l  http://rodrigob.github.io/
l  DNNの研究・実⽤用化はまだ道半ば
28

Weitere ähnliche Inhalte

Was ist angesagt?

Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2Preferred Networks
 
CV分野におけるサーベイ方法
CV分野におけるサーベイ方法CV分野におけるサーベイ方法
CV分野におけるサーベイ方法Hirokatsu Kataoka
 
[DL輪読会]ICLR2020の分布外検知速報
[DL輪読会]ICLR2020の分布外検知速報[DL輪読会]ICLR2020の分布外検知速報
[DL輪読会]ICLR2020の分布外検知速報Deep Learning JP
 
三次元表現まとめ(深層学習を中心に)
三次元表現まとめ(深層学習を中心に)三次元表現まとめ(深層学習を中心に)
三次元表現まとめ(深層学習を中心に)Tomohiro Motoda
 
semantic segmentation サーベイ
semantic segmentation サーベイsemantic segmentation サーベイ
semantic segmentation サーベイyohei okawa
 
Transformerを雰囲気で理解する
Transformerを雰囲気で理解するTransformerを雰囲気で理解する
Transformerを雰囲気で理解するAtsukiYamaguchi1
 
SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜
SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜
SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜SSII
 
【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised LearningまとめDeep Learning JP
 
SSII2022 [OS3-02] Federated Learningの基礎と応用
SSII2022 [OS3-02] Federated Learningの基礎と応用SSII2022 [OS3-02] Federated Learningの基礎と応用
SSII2022 [OS3-02] Federated Learningの基礎と応用SSII
 
近年のHierarchical Vision Transformer
近年のHierarchical Vision Transformer近年のHierarchical Vision Transformer
近年のHierarchical Vision TransformerYusuke Uchida
 
Active Learning 入門
Active Learning 入門Active Learning 入門
Active Learning 入門Shuyo Nakatani
 
生成モデルの Deep Learning
生成モデルの Deep Learning生成モデルの Deep Learning
生成モデルの Deep LearningSeiya Tokui
 
モデルアーキテクチャ観点からの高速化2019
モデルアーキテクチャ観点からの高速化2019モデルアーキテクチャ観点からの高速化2019
モデルアーキテクチャ観点からの高速化2019Yusuke Uchida
 
研究室における研究・実装ノウハウの共有
研究室における研究・実装ノウハウの共有研究室における研究・実装ノウハウの共有
研究室における研究・実装ノウハウの共有Naoaki Okazaki
 
最適輸送の計算アルゴリズムの研究動向
最適輸送の計算アルゴリズムの研究動向最適輸送の計算アルゴリズムの研究動向
最適輸送の計算アルゴリズムの研究動向ohken
 
[DL輪読会]NVAE: A Deep Hierarchical Variational Autoencoder
[DL輪読会]NVAE: A Deep Hierarchical Variational Autoencoder[DL輪読会]NVAE: A Deep Hierarchical Variational Autoencoder
[DL輪読会]NVAE: A Deep Hierarchical Variational AutoencoderDeep Learning JP
 
SakataMoriLab GNN勉強会第一回資料
SakataMoriLab GNN勉強会第一回資料SakataMoriLab GNN勉強会第一回資料
SakataMoriLab GNN勉強会第一回資料ttt_miura
 

Was ist angesagt? (20)

Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
 
Data-Centric AIの紹介
Data-Centric AIの紹介Data-Centric AIの紹介
Data-Centric AIの紹介
 
CV分野におけるサーベイ方法
CV分野におけるサーベイ方法CV分野におけるサーベイ方法
CV分野におけるサーベイ方法
 
[DL輪読会]ICLR2020の分布外検知速報
[DL輪読会]ICLR2020の分布外検知速報[DL輪読会]ICLR2020の分布外検知速報
[DL輪読会]ICLR2020の分布外検知速報
 
三次元表現まとめ(深層学習を中心に)
三次元表現まとめ(深層学習を中心に)三次元表現まとめ(深層学習を中心に)
三次元表現まとめ(深層学習を中心に)
 
semantic segmentation サーベイ
semantic segmentation サーベイsemantic segmentation サーベイ
semantic segmentation サーベイ
 
Transformerを雰囲気で理解する
Transformerを雰囲気で理解するTransformerを雰囲気で理解する
Transformerを雰囲気で理解する
 
SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜
SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜
SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜
 
【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ
 
研究効率化Tips Ver.2
研究効率化Tips Ver.2研究効率化Tips Ver.2
研究効率化Tips Ver.2
 
SSII2022 [OS3-02] Federated Learningの基礎と応用
SSII2022 [OS3-02] Federated Learningの基礎と応用SSII2022 [OS3-02] Federated Learningの基礎と応用
SSII2022 [OS3-02] Federated Learningの基礎と応用
 
近年のHierarchical Vision Transformer
近年のHierarchical Vision Transformer近年のHierarchical Vision Transformer
近年のHierarchical Vision Transformer
 
Active Learning 入門
Active Learning 入門Active Learning 入門
Active Learning 入門
 
生成モデルの Deep Learning
生成モデルの Deep Learning生成モデルの Deep Learning
生成モデルの Deep Learning
 
モデルアーキテクチャ観点からの高速化2019
モデルアーキテクチャ観点からの高速化2019モデルアーキテクチャ観点からの高速化2019
モデルアーキテクチャ観点からの高速化2019
 
研究室における研究・実装ノウハウの共有
研究室における研究・実装ノウハウの共有研究室における研究・実装ノウハウの共有
研究室における研究・実装ノウハウの共有
 
最適輸送の計算アルゴリズムの研究動向
最適輸送の計算アルゴリズムの研究動向最適輸送の計算アルゴリズムの研究動向
最適輸送の計算アルゴリズムの研究動向
 
[DL輪読会]NVAE: A Deep Hierarchical Variational Autoencoder
[DL輪読会]NVAE: A Deep Hierarchical Variational Autoencoder[DL輪読会]NVAE: A Deep Hierarchical Variational Autoencoder
[DL輪読会]NVAE: A Deep Hierarchical Variational Autoencoder
 
BlackBox モデルの説明性・解釈性技術の実装
BlackBox モデルの説明性・解釈性技術の実装BlackBox モデルの説明性・解釈性技術の実装
BlackBox モデルの説明性・解釈性技術の実装
 
SakataMoriLab GNN勉強会第一回資料
SakataMoriLab GNN勉強会第一回資料SakataMoriLab GNN勉強会第一回資料
SakataMoriLab GNN勉強会第一回資料
 

Andere mochten auch

今日から使える! みんなのクラスタリング超入門
今日から使える! みんなのクラスタリング超入門今日から使える! みんなのクラスタリング超入門
今日から使える! みんなのクラスタリング超入門toilet_lunch
 
バンディットアルゴリズム入門と実践
バンディットアルゴリズム入門と実践バンディットアルゴリズム入門と実践
バンディットアルゴリズム入門と実践智之 村上
 
SVMについて
SVMについてSVMについて
SVMについてmknh1122
 
機会学習ハッカソン:ランダムフォレスト
機会学習ハッカソン:ランダムフォレスト機会学習ハッカソン:ランダムフォレスト
機会学習ハッカソン:ランダムフォレストTeppei Baba
 
はじめてでもわかるベイズ分類器 -基礎からMahout実装まで-
はじめてでもわかるベイズ分類器 -基礎からMahout実装まで-はじめてでもわかるベイズ分類器 -基礎からMahout実装まで-
はじめてでもわかるベイズ分類器 -基礎からMahout実装まで-Naoki Yanai
 
パターン認識 第10章 決定木
パターン認識 第10章 決定木 パターン認識 第10章 決定木
パターン認識 第10章 決定木 Miyoshi Yuya
 
機械学習チュートリアル@Jubatus Casual Talks
機械学習チュートリアル@Jubatus Casual Talks機械学習チュートリアル@Jubatus Casual Talks
機械学習チュートリアル@Jubatus Casual TalksYuya Unno
 
トピックモデルを用いた 潜在ファッション嗜好の推定
トピックモデルを用いた 潜在ファッション嗜好の推定トピックモデルを用いた 潜在ファッション嗜好の推定
トピックモデルを用いた 潜在ファッション嗜好の推定Takashi Kaneda
 
ロジスティック回帰の考え方・使い方 - TokyoR #33
ロジスティック回帰の考え方・使い方 - TokyoR #33ロジスティック回帰の考え方・使い方 - TokyoR #33
ロジスティック回帰の考え方・使い方 - TokyoR #33horihorio
 
Simple perceptron by TJO
Simple perceptron by TJOSimple perceptron by TJO
Simple perceptron by TJOTakashi J OZAKI
 
Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築
Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築
Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築Tatsuya Tojima
 
「はじめてでもわかる RandomForest 入門-集団学習による分類・予測 -」 -第7回データマイニング+WEB勉強会@東京
「はじめてでもわかる RandomForest 入門-集団学習による分類・予測 -」 -第7回データマイニング+WEB勉強会@東京「はじめてでもわかる RandomForest 入門-集団学習による分類・予測 -」 -第7回データマイニング+WEB勉強会@東京
「はじめてでもわかる RandomForest 入門-集団学習による分類・予測 -」 -第7回データマイニング+WEB勉強会@東京Koichi Hamada
 
Pythonとdeep learningで手書き文字認識
Pythonとdeep learningで手書き文字認識Pythonとdeep learningで手書き文字認識
Pythonとdeep learningで手書き文字認識Ken Morishita
 
scikit-learnを用いた機械学習チュートリアル
scikit-learnを用いた機械学習チュートリアルscikit-learnを用いた機械学習チュートリアル
scikit-learnを用いた機械学習チュートリアル敦志 金谷
 
全脳関西編(松尾)
全脳関西編(松尾)全脳関西編(松尾)
全脳関西編(松尾)Yutaka Matsuo
 
多層NNの教師なし学習 コンピュータビジョン勉強会@関東 2014/5/26
多層NNの教師なし学習 コンピュータビジョン勉強会@関東 2014/5/26多層NNの教師なし学習 コンピュータビジョン勉強会@関東 2014/5/26
多層NNの教師なし学習 コンピュータビジョン勉強会@関東 2014/5/26Takashi Abe
 
機械学習プロフェッショナルシリーズ輪読会 #2 Chapter 5 「自己符号化器」 資料
機械学習プロフェッショナルシリーズ輪読会 #2 Chapter 5 「自己符号化器」 資料機械学習プロフェッショナルシリーズ輪読会 #2 Chapter 5 「自己符号化器」 資料
機械学習プロフェッショナルシリーズ輪読会 #2 Chapter 5 「自己符号化器」 資料at grandpa
 
機械学習によるデータ分析まわりのお話
機械学習によるデータ分析まわりのお話機械学習によるデータ分析まわりのお話
機械学習によるデータ分析まわりのお話Ryota Kamoshida
 
Deep learningの軽い紹介
Deep learningの軽い紹介Deep learningの軽い紹介
Deep learningの軽い紹介Yoshihisa Maruya
 

Andere mochten auch (20)

決定木学習
決定木学習決定木学習
決定木学習
 
今日から使える! みんなのクラスタリング超入門
今日から使える! みんなのクラスタリング超入門今日から使える! みんなのクラスタリング超入門
今日から使える! みんなのクラスタリング超入門
 
バンディットアルゴリズム入門と実践
バンディットアルゴリズム入門と実践バンディットアルゴリズム入門と実践
バンディットアルゴリズム入門と実践
 
SVMについて
SVMについてSVMについて
SVMについて
 
機会学習ハッカソン:ランダムフォレスト
機会学習ハッカソン:ランダムフォレスト機会学習ハッカソン:ランダムフォレスト
機会学習ハッカソン:ランダムフォレスト
 
はじめてでもわかるベイズ分類器 -基礎からMahout実装まで-
はじめてでもわかるベイズ分類器 -基礎からMahout実装まで-はじめてでもわかるベイズ分類器 -基礎からMahout実装まで-
はじめてでもわかるベイズ分類器 -基礎からMahout実装まで-
 
パターン認識 第10章 決定木
パターン認識 第10章 決定木 パターン認識 第10章 決定木
パターン認識 第10章 決定木
 
機械学習チュートリアル@Jubatus Casual Talks
機械学習チュートリアル@Jubatus Casual Talks機械学習チュートリアル@Jubatus Casual Talks
機械学習チュートリアル@Jubatus Casual Talks
 
トピックモデルを用いた 潜在ファッション嗜好の推定
トピックモデルを用いた 潜在ファッション嗜好の推定トピックモデルを用いた 潜在ファッション嗜好の推定
トピックモデルを用いた 潜在ファッション嗜好の推定
 
ロジスティック回帰の考え方・使い方 - TokyoR #33
ロジスティック回帰の考え方・使い方 - TokyoR #33ロジスティック回帰の考え方・使い方 - TokyoR #33
ロジスティック回帰の考え方・使い方 - TokyoR #33
 
Simple perceptron by TJO
Simple perceptron by TJOSimple perceptron by TJO
Simple perceptron by TJO
 
Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築
Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築
Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築
 
「はじめてでもわかる RandomForest 入門-集団学習による分類・予測 -」 -第7回データマイニング+WEB勉強会@東京
「はじめてでもわかる RandomForest 入門-集団学習による分類・予測 -」 -第7回データマイニング+WEB勉強会@東京「はじめてでもわかる RandomForest 入門-集団学習による分類・予測 -」 -第7回データマイニング+WEB勉強会@東京
「はじめてでもわかる RandomForest 入門-集団学習による分類・予測 -」 -第7回データマイニング+WEB勉強会@東京
 
Pythonとdeep learningで手書き文字認識
Pythonとdeep learningで手書き文字認識Pythonとdeep learningで手書き文字認識
Pythonとdeep learningで手書き文字認識
 
scikit-learnを用いた機械学習チュートリアル
scikit-learnを用いた機械学習チュートリアルscikit-learnを用いた機械学習チュートリアル
scikit-learnを用いた機械学習チュートリアル
 
全脳関西編(松尾)
全脳関西編(松尾)全脳関西編(松尾)
全脳関西編(松尾)
 
多層NNの教師なし学習 コンピュータビジョン勉強会@関東 2014/5/26
多層NNの教師なし学習 コンピュータビジョン勉強会@関東 2014/5/26多層NNの教師なし学習 コンピュータビジョン勉強会@関東 2014/5/26
多層NNの教師なし学習 コンピュータビジョン勉強会@関東 2014/5/26
 
機械学習プロフェッショナルシリーズ輪読会 #2 Chapter 5 「自己符号化器」 資料
機械学習プロフェッショナルシリーズ輪読会 #2 Chapter 5 「自己符号化器」 資料機械学習プロフェッショナルシリーズ輪読会 #2 Chapter 5 「自己符号化器」 資料
機械学習プロフェッショナルシリーズ輪読会 #2 Chapter 5 「自己符号化器」 資料
 
機械学習によるデータ分析まわりのお話
機械学習によるデータ分析まわりのお話機械学習によるデータ分析まわりのお話
機械学習によるデータ分析まわりのお話
 
Deep learningの軽い紹介
Deep learningの軽い紹介Deep learningの軽い紹介
Deep learningの軽い紹介
 

Ähnlich wie 一般向けのDeep Learning

気の合う人達と社外で社内勉強会
気の合う人達と社外で社内勉強会気の合う人達と社外で社内勉強会
気の合う人達と社外で社内勉強会Yu Shibatsuji
 
Deep learningの入り口
Deep learningの入り口Deep learningの入り口
Deep learningの入り口ikasumi
 
ICML2013読み会 開会宣言
ICML2013読み会 開会宣言ICML2013読み会 開会宣言
ICML2013読み会 開会宣言Shohei Hido
 
研究・企業・生き方について 情報科学若手の会2011
研究・企業・生き方について 情報科学若手の会2011研究・企業・生き方について 情報科学若手の会2011
研究・企業・生き方について 情報科学若手の会2011Preferred Networks
 
Chaienr meetup#2 UEI Deep Station ; A GUI for Deep learning
Chaienr meetup#2 UEI Deep Station ; A GUI for Deep learningChaienr meetup#2 UEI Deep Station ; A GUI for Deep learning
Chaienr meetup#2 UEI Deep Station ; A GUI for Deep learningRyo Shimizu
 
Hello deeplearning!
Hello deeplearning!Hello deeplearning!
Hello deeplearning!T2C_
 
Learn Languages 2022まとめ
Learn Languages 2022まとめLearn Languages 2022まとめ
Learn Languages 2022まとめ法林浩之
 
ディープラーニングの最新動向
ディープラーニングの最新動向ディープラーニングの最新動向
ディープラーニングの最新動向Preferred Networks
 
Machine Learning, Deep Learning how to use in civic tehnology
Machine Learning, Deep Learning how to use in civic tehnologyMachine Learning, Deep Learning how to use in civic tehnology
Machine Learning, Deep Learning how to use in civic tehnologyKaz Furukawa
 
AI(ディープラーニング)超入門
AI(ディープラーニング)超入門AI(ディープラーニング)超入門
AI(ディープラーニング)超入門大輔 浅井
 
[DL輪読会]Collaborative Deep Metric Learning for Video Understanding(KDD2018)
[DL輪読会]Collaborative Deep Metric Learning for Video Understanding(KDD2018)[DL輪読会]Collaborative Deep Metric Learning for Video Understanding(KDD2018)
[DL輪読会]Collaborative Deep Metric Learning for Video Understanding(KDD2018)Deep Learning JP
 
集合知プログラミング勉強会キックオフMTG LT用資料
集合知プログラミング勉強会キックオフMTG LT用資料集合知プログラミング勉強会キックオフMTG LT用資料
集合知プログラミング勉強会キックオフMTG LT用資料tetsuro ito
 
子供の言語獲得と機械の言語獲得
子供の言語獲得と機械の言語獲得子供の言語獲得と機械の言語獲得
子供の言語獲得と機械の言語獲得Yuya Unno
 
DeNAにおける機械学習・深層学習活用
DeNAにおける機械学習・深層学習活用DeNAにおける機械学習・深層学習活用
DeNAにおける機械学習・深層学習活用Kazuki Fujikawa
 
NIPS2015概要資料
NIPS2015概要資料NIPS2015概要資料
NIPS2015概要資料Shohei Hido
 
気の合う人達と社外で社内勉強会
気の合う人達と社外で社内勉強会気の合う人達と社外で社内勉強会
気の合う人達と社外で社内勉強会Yu Shibatsuji
 
Deep Q-learning from Demonstrations
Deep Q-learning from DemonstrationsDeep Q-learning from Demonstrations
Deep Q-learning from DemonstrationsKenshi Abe
 

Ähnlich wie 一般向けのDeep Learning (19)

気の合う人達と社外で社内勉強会
気の合う人達と社外で社内勉強会気の合う人達と社外で社内勉強会
気の合う人達と社外で社内勉強会
 
Deep learningの入り口
Deep learningの入り口Deep learningの入り口
Deep learningの入り口
 
Gakusei lt
Gakusei ltGakusei lt
Gakusei lt
 
ICML2013読み会 開会宣言
ICML2013読み会 開会宣言ICML2013読み会 開会宣言
ICML2013読み会 開会宣言
 
研究・企業・生き方について 情報科学若手の会2011
研究・企業・生き方について 情報科学若手の会2011研究・企業・生き方について 情報科学若手の会2011
研究・企業・生き方について 情報科学若手の会2011
 
Chaienr meetup#2 UEI Deep Station ; A GUI for Deep learning
Chaienr meetup#2 UEI Deep Station ; A GUI for Deep learningChaienr meetup#2 UEI Deep Station ; A GUI for Deep learning
Chaienr meetup#2 UEI Deep Station ; A GUI for Deep learning
 
Hello deeplearning!
Hello deeplearning!Hello deeplearning!
Hello deeplearning!
 
Learn Languages 2022まとめ
Learn Languages 2022まとめLearn Languages 2022まとめ
Learn Languages 2022まとめ
 
ディープラーニングの最新動向
ディープラーニングの最新動向ディープラーニングの最新動向
ディープラーニングの最新動向
 
Machine Learning, Deep Learning how to use in civic tehnology
Machine Learning, Deep Learning how to use in civic tehnologyMachine Learning, Deep Learning how to use in civic tehnology
Machine Learning, Deep Learning how to use in civic tehnology
 
AI(ディープラーニング)超入門
AI(ディープラーニング)超入門AI(ディープラーニング)超入門
AI(ディープラーニング)超入門
 
[DL輪読会]Collaborative Deep Metric Learning for Video Understanding(KDD2018)
[DL輪読会]Collaborative Deep Metric Learning for Video Understanding(KDD2018)[DL輪読会]Collaborative Deep Metric Learning for Video Understanding(KDD2018)
[DL輪読会]Collaborative Deep Metric Learning for Video Understanding(KDD2018)
 
集合知プログラミング勉強会キックオフMTG LT用資料
集合知プログラミング勉強会キックオフMTG LT用資料集合知プログラミング勉強会キックオフMTG LT用資料
集合知プログラミング勉強会キックオフMTG LT用資料
 
子供の言語獲得と機械の言語獲得
子供の言語獲得と機械の言語獲得子供の言語獲得と機械の言語獲得
子供の言語獲得と機械の言語獲得
 
20150930
2015093020150930
20150930
 
DeNAにおける機械学習・深層学習活用
DeNAにおける機械学習・深層学習活用DeNAにおける機械学習・深層学習活用
DeNAにおける機械学習・深層学習活用
 
NIPS2015概要資料
NIPS2015概要資料NIPS2015概要資料
NIPS2015概要資料
 
気の合う人達と社外で社内勉強会
気の合う人達と社外で社内勉強会気の合う人達と社外で社内勉強会
気の合う人達と社外で社内勉強会
 
Deep Q-learning from Demonstrations
Deep Q-learning from DemonstrationsDeep Q-learning from Demonstrations
Deep Q-learning from Demonstrations
 

Mehr von Preferred Networks

PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57Preferred Networks
 
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3Preferred Networks
 
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...Preferred Networks
 
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...Preferred Networks
 
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55Preferred Networks
 
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2Preferred Networks
 
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2Preferred Networks
 
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演Preferred Networks
 
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)Preferred Networks
 
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)Preferred Networks
 
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)Preferred Networks
 
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語るKubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語るPreferred Networks
 
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張Preferred Networks
 
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会Preferred Networks
 
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2Preferred Networks
 
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...Preferred Networks
 
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...Preferred Networks
 
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...Preferred Networks
 
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50Preferred Networks
 
Topology Managerについて / Kubernetes Meetup Tokyo 50
Topology Managerについて / Kubernetes Meetup Tokyo 50Topology Managerについて / Kubernetes Meetup Tokyo 50
Topology Managerについて / Kubernetes Meetup Tokyo 50Preferred Networks
 

Mehr von Preferred Networks (20)

PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
 
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
 
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
 
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
 
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
 
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
 
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
 
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
 
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
 
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
 
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
 
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語るKubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
 
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
 
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
 
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
 
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
 
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
 
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
 
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
 
Topology Managerについて / Kubernetes Meetup Tokyo 50
Topology Managerについて / Kubernetes Meetup Tokyo 50Topology Managerについて / Kubernetes Meetup Tokyo 50
Topology Managerについて / Kubernetes Meetup Tokyo 50
 

Kürzlich hochgeladen

Postman LT Fukuoka_Quick Prototype_By Daniel
Postman LT Fukuoka_Quick Prototype_By DanielPostman LT Fukuoka_Quick Prototype_By Daniel
Postman LT Fukuoka_Quick Prototype_By Danieldanielhu54
 
IoT in the era of generative AI, Thanks IoT ALGYAN.pptx
IoT in the era of generative AI, Thanks IoT ALGYAN.pptxIoT in the era of generative AI, Thanks IoT ALGYAN.pptx
IoT in the era of generative AI, Thanks IoT ALGYAN.pptxAtomu Hidaka
 
新人研修のまとめ 2024/04/12の勉強会で発表されたものです。
新人研修のまとめ       2024/04/12の勉強会で発表されたものです。新人研修のまとめ       2024/04/12の勉強会で発表されたものです。
新人研修のまとめ 2024/04/12の勉強会で発表されたものです。iPride Co., Ltd.
 
[DevOpsDays Tokyo 2024] 〜デジタルとアナログのはざまに〜 スマートビルディング爆速開発を支える 自動化テスト戦略
[DevOpsDays Tokyo 2024] 〜デジタルとアナログのはざまに〜 スマートビルディング爆速開発を支える 自動化テスト戦略[DevOpsDays Tokyo 2024] 〜デジタルとアナログのはざまに〜 スマートビルディング爆速開発を支える 自動化テスト戦略
[DevOpsDays Tokyo 2024] 〜デジタルとアナログのはざまに〜 スマートビルディング爆速開発を支える 自動化テスト戦略Ryo Sasaki
 
20240412_HCCJP での Windows Server 2025 Active Directory
20240412_HCCJP での Windows Server 2025 Active Directory20240412_HCCJP での Windows Server 2025 Active Directory
20240412_HCCJP での Windows Server 2025 Active Directoryosamut
 
Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。
Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。
Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。iPride Co., Ltd.
 
スマートフォンを用いた新生児あやし動作の教示システム
スマートフォンを用いた新生児あやし動作の教示システムスマートフォンを用いた新生児あやし動作の教示システム
スマートフォンを用いた新生児あやし動作の教示システムsugiuralab
 
PHP-Conference-Odawara-2024-04-000000000
PHP-Conference-Odawara-2024-04-000000000PHP-Conference-Odawara-2024-04-000000000
PHP-Conference-Odawara-2024-04-000000000Shota Ito
 
UPWARD_share_company_information_20240415.pdf
UPWARD_share_company_information_20240415.pdfUPWARD_share_company_information_20240415.pdf
UPWARD_share_company_information_20240415.pdffurutsuka
 

Kürzlich hochgeladen (9)

Postman LT Fukuoka_Quick Prototype_By Daniel
Postman LT Fukuoka_Quick Prototype_By DanielPostman LT Fukuoka_Quick Prototype_By Daniel
Postman LT Fukuoka_Quick Prototype_By Daniel
 
IoT in the era of generative AI, Thanks IoT ALGYAN.pptx
IoT in the era of generative AI, Thanks IoT ALGYAN.pptxIoT in the era of generative AI, Thanks IoT ALGYAN.pptx
IoT in the era of generative AI, Thanks IoT ALGYAN.pptx
 
新人研修のまとめ 2024/04/12の勉強会で発表されたものです。
新人研修のまとめ       2024/04/12の勉強会で発表されたものです。新人研修のまとめ       2024/04/12の勉強会で発表されたものです。
新人研修のまとめ 2024/04/12の勉強会で発表されたものです。
 
[DevOpsDays Tokyo 2024] 〜デジタルとアナログのはざまに〜 スマートビルディング爆速開発を支える 自動化テスト戦略
[DevOpsDays Tokyo 2024] 〜デジタルとアナログのはざまに〜 スマートビルディング爆速開発を支える 自動化テスト戦略[DevOpsDays Tokyo 2024] 〜デジタルとアナログのはざまに〜 スマートビルディング爆速開発を支える 自動化テスト戦略
[DevOpsDays Tokyo 2024] 〜デジタルとアナログのはざまに〜 スマートビルディング爆速開発を支える 自動化テスト戦略
 
20240412_HCCJP での Windows Server 2025 Active Directory
20240412_HCCJP での Windows Server 2025 Active Directory20240412_HCCJP での Windows Server 2025 Active Directory
20240412_HCCJP での Windows Server 2025 Active Directory
 
Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。
Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。
Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。
 
スマートフォンを用いた新生児あやし動作の教示システム
スマートフォンを用いた新生児あやし動作の教示システムスマートフォンを用いた新生児あやし動作の教示システム
スマートフォンを用いた新生児あやし動作の教示システム
 
PHP-Conference-Odawara-2024-04-000000000
PHP-Conference-Odawara-2024-04-000000000PHP-Conference-Odawara-2024-04-000000000
PHP-Conference-Odawara-2024-04-000000000
 
UPWARD_share_company_information_20240415.pdf
UPWARD_share_company_information_20240415.pdfUPWARD_share_company_information_20240415.pdf
UPWARD_share_company_information_20240415.pdf
 

一般向けのDeep Learning