SlideShare ist ein Scribd-Unternehmen logo
1 von 34
Downloaden Sie, um offline zu lesen
OXX B66 Rx Sensitivity
Issue Debug
Jay Chang
1
2
B66 channel number
B66_20MHz
RB ch.132072 ch.132322 ch.132572
1@0 -95.2 -94.8 -91.6
HB1 (iLNA)
1@49 -93.3 -92.6 -93.1
1@99 -95.1 -94.7 -90.7
100@0 -98.5 -98 -97.5
1@0 -97.4 -98.2 -96.6
MB4 (mLNA)
1@49 -94.4 -94.8 -94.6
1@99 -97.8 -97.8 -96.9
100@0 -99.4 -99.7 -99.4
2 port for testing (default matching) 阿娟的結果
3
B66_20MHz
RB ch.132072 ch.132322 ch.132572
1@0 -95.2 -94.8 -91.6
HB1 (iLNA)
1@49 -93.3 -92.6 -93.1
1@99 -95.1 -94.7 -90.7
100@0 -98.5 -98 -97.5
1@0 -97.4 -98.2 -96.6
MB4 (mLNA)
1@49 -94.4 -94.8 -94.6
1@99 -97.8 -97.8 -96.9
100@0 -99.4 -99.7 -99.4
2 port for testing (default matching)
4
B66_20MHz
RB ch.132072 ch.132322 ch.132572
1@0 -96.1 -95.7 -92.6
1@49 -94.2 -93.5 -94.1
1@99 -96.1 -95.7 -91.8
100@0 -98.9 -98.2 -98.3
• Default radio default matching only change in B66 Rx
SAW 3.5n(M)_SAW_3.5n(M)
• The corresponding PRx sensitivity as below (use 2 ports
for testing) (default matching)
Rx SAW的問題嗎 ?
5
SAW filter for B66 Rx : frequency response
R1 = R2 = 50 Ohm
L1 = L2 = 3.6 nH
6
SAW filter for B66 Rx Spec.
7
SAW filter for B1/B4 Rx Spec.
R1 = R2 = 50 Ohm
8
SAW filter for B1/B4 Rx: frequency response
R1 = R2 = 50 Ohm
Rx SAW的問題嗎 ?
嘿嘿!! 當然不是.
9
根據阿娟的結果B66 PRx 2根 sensitivity由iLNA改接到mLNA為啥會有如此大的差異呢?
(大家都講 因為mLNA gain比iLNA gain大十幾dB, 53 - 38.7 =14.3, 降講合理嗎? 這樣講有甚麼盲點盲點盲點盲點呢…
我們直接算一下)
根據sensitivity [dBm] = -174 + 10log10(BWin Hz) + loss + RxNF + C/N
where loss = total loss before LNA., RxNF = receiver noise figure (ex: SDR660)
上面公式適用於沒有external LNA (eLNA).
那有eLNA公式變成怎樣呢
loss + RxNF 這兩項就合併成cascade NF了嘛!!
所以只要計算cascade NF就能得知有eLNA的sensitivity了.
B66_20MHz
RB ch.132072 ch.132322 ch.132572
1@0 -95.2 -94.8 -91.6
HB1 (iLNA)
1@49 -93.3 -92.6 -93.1
1@99 -95.1 -94.7 -90.7
100@0 -98.5 -98 -97.5
1@0 -97.4 -98.2 -96.6
MB4 (mLNA)
1@49 -94.4 -94.8 -94.6
1@99 -97.8 -97.8 -96.9
100@0 -99.4 -99.7 -99.4
2 port for testing (default matching) 阿娟的結果
計算一下linkbudget看有沒有調到極值…
10
計算OXX_B66_PRx black diagram cascade NF如下
計算iLNA and mLNA 20MHz 單根 sensitivity
iLNA: -174 + 10log10(20MHz) + 6.3 + (-1) = -95.7
mLNA: -174 + 10log10(20MHz) + 5 + (-1) = -97
(如果要跟阿娟結果雙根比較, 自己再各加個2.5-3 dB進去)
11
所以接到mLNA sensitivity 理論上會變好1.3 dB, 阿娟20M FRB的結果在計算預期內.
此次的驗證假設
Trace loss 估計0.8 dB.
所有元件insertion loss使用datasheet Typical的值 不考慮Worst case.
所有的mismatch loss沒有考慮進去 (都假設stage 1 2 3皆咩到50 Ohm, 再用靠近SDR的兩三顆轉到
SDR LNA NF min處) i.e. 算出來的sensitivity是極值.
所以再回過頭來看”mLNA gain比iLNA gain大十幾dB”, 這樣講顯然有盲點盲點盲點盲點
因為除非你要算cascade NF到stage 5, 不然NF公式是不會出現G4(就是mLNA gain or iLNA gain)的.
真要說應該說”iLNA NF (分子分子分子分子)太大太大太大太大, 使得使得使得使得eLNA gain已經很大了但已經很大了但已經很大了但已經很大了但(分母分母分母分母)稀釋不掉稀釋不掉稀釋不掉稀釋不掉, 造成造成造成造成cascade NF
變大變大變大變大, sensitivity變差變差變差變差”
なるほどですね !! 除了Rx沒調到極值外, 原來sensitivity跟iLNA NF和eLNA gain有著極大關係阿!!
12
OXX
13
20M 單根 B66 PRx
Bypass [eLNA+SAW] + mLNA in SDR660
-174 + 10log10(20MHz) + 4 + 2.3 + (-1) = -95.7
With [eLNA +SAW] + iLNA in SDR660
-174 + 10log10(20MHz) + 6.3 + (-1) = -95.7
With [eLNA +SAW] + mLNA in SDR660
-174 + 10log10(20MHz) + 5 + (-1) = -97
20M 單根 B66 DRx
Bypass [eLNA+SAW] + mLNA in SDR660
-174 + 10log10(20MHz) + 3.5 + 2.3 + (-1) = -96.2
With [eLNA +SAW] + iLNA in SDR660
-174 + 10log10(20MHz) + 5.82 + (-1) = -96.2
With [eLNA +SAW] + mLNA in SDR660
-174 + 10log10(20MHz) + 4.5 + (-1) = -97.5
接著比較各種topology的sensitivity…
14
Bypass eLNA 接mLNA tuning B66 PRx matching 2種不同topology 任君比較
To mLNA
RAC142 RAC138 RAC143 RAL264 RAL125 channel 132072 132322 132572 20M FRB 單根單根單根單根
0.5p 22p 2.4p 0 Ohm 3n 95.1 95.3 95 Q = 1.65
0.5p 22p 5.6n 33p 1.2n 95.2 95.4 94.9 Q = 1.12
有L+C組合
也有L+L組合
順便附上Q值
怎麼選: 選Q越大, Q = f0/Δf, Δf越小, 窄帶濾波好 BUT 注意1RB@0 and 1RB@99會不會被砍掉, 所
以要trade off (RF最愛玩的槌豆腐 XD).
如果不行就選Q次大的.
Sensitivity = -174 + 10log10(20MHz) + 4 + 2.3 + (-1) = -95.7
實際去bypass eLNA, Rx切mLNA調到極值比較一下
15
DRx調到極值比較一下
16
接著我們來算一下大家長 Q社的ref. design B66 PRx and DRx
17
PRx
18
接著我們來算一下大家長 Q社的ref. design B66 PRx and DRx
19
DRx
20
20M 單根 B66 PRx
Bypass [eLNA+SAW] + mLNA in SDR660
-174 + 10log10(20MHz) + 4 + 2.3 + (-1) = -95.7
With [eLNA +SAW] + iLNA in SDR660
-174 + 10log10(20MHz) + 6.3 + (-1) = -95.7
With [eLNA +SAW] + mLNA in SDR660
-174 + 10log10(20MHz) + 5 + (-1) = -97
Q-ref Quadplexer + mLNA in SDR660
-174 + 10log10(20MHz) + 3.63 + 2.3 + (-1) = -96
20M 單根 B66 DRx
Bypass [eLNA+SAW] + mLNA in SDR660
-174 + 10log10(20MHz) + 3.5 + 2.3 + (-1) = -96.2
With [eLNA +SAW] + iLNA in SDR660
-174 + 10log10(20MHz) + 5.82 + (-1) = -96.2
With [eLNA +SAW] + mLNA in SDR660
-174 + 10log10(20MHz) + 4.5 + (-1) = -97.5
Q-ref Quadplexer + QLN + iLNA in SDR660
-174 + 10log10(20MHz) + 4.9 + (-1) = -97.1 接著比較各種topology的sensitivity…
21
なるほどですね !! 除了Rx沒調到極值外, 原來sensitivity跟iLNA NF和eLNA gain有著極大關係阿!!
接著看一下eLNA spec
22
I社 eLNA
23
Q社 eLNA
24
Q社 eLNA
25
OXX B66 Desense Analysis
26
OXX B66 PRx sensitivity analysis
LTE B66 ANT0 Coupler Diplexer ASM Quadplexer e-LNA NF Rx SAW
Trace +
mismatch loss
Loss before LNA Rx NF Rx BW CN Sensitivity
Typ 0 0.2 0.42 0.98 1.7 0.8 0.8 4.9 2.3 10 -1 -100.10
Worst 0.1 0.2 0.6 1.05 2.8 1.2 1 6.95 3 10 -1 -98.05
Rx
SAW
27
Calculate OXX B66 PRx desense Tx leakage in Rx band
sensitivity = equivalent noise floor @ the LNA input due to thermal noise and Tx noise in Rx band +
10 × log(BW) + NF + C/N + IL_FE.
The equivalent noise floor @ the LNA input due to thermal noise and Tx noise in Rx band is the
power sum of the thermal noise floor and Tx noise in Rx band.
Thermal noise floor @ the LNA input is about -174 dBm/Hz.
Tx noise in Rx band @ the LNA input = Σ(WTR RxBN + PA RxB gain, PA RxBN) - DPx TRx isolation at Rx
frequency.
NF is the WTR noise figure.
C/N is the required SNR for demodulation.
IL_FEis the RF front-end IL.
LTE B66 ANT0 Coupler Diplexer ASM Quadplexer e-LNA NF Rx SAW
Trace +
mismatch loss
Loss before LNA Rx NF Rx BW CN Sensitivity
Typ 0 0.2 0.42 0.98 1.7 0.8 0.8 4.9 2.3 10 -1 -100.10
Worst 0.1 0.2 0.6 1.05 2.8 1.2 1 6.95 3 10 -1 -98.05
28
DONE
T W T W T W T W T W T W T W T W T W T W T W T W T W
B1 2110–2170 10 54 54 -150 -150 -136 -136 29 32.5 59 52 54 50 -167.15 -165.20 -120.86 -117.44 4.55 5.80 -170.31 -161.64 -165.44 -160.05 -96.44 -91.05 -1.71 -5.15
B2 1930–1990 10 54 54 -148 -148 -133 -133 30.5 34 66.8 55 65.6 55 -169.09 -166.80 -117.38 -113.95 4.91 7.20 -178.07 -161.75 -168.57 -160.57 -99.57 -91.57 -0.52 -6.23
B3 1805–1880 10 54 54 -148 -148 -135 -135 29.5 33 56 52 56 50 -166.75 -164.40 -118.40 -114.96 4.95 6.60 -169.45 -158.36 -164.88 -157.39 -95.88 -88.39 -1.87 -7.01
B66 2110–2200 10 54 54 -150 -150 -138 -138 28 31.5 63.5 55 63.5 55 -169.10 -167.05 -121.89 -118.45 4.90 6.95 -180.49 -166.50 -168.80 -163.76 -99.80 -94.76 -0.30 -3.29
B12 729–746 10 54 54 -151 -151 -120 -120 27 30.5 63 60 58 55 -169.23 -167.55 -118.54 -117.23 4.77 6.45 -171.77 -165.78 -167.31 -163.57 -98.31 -94.57 -1.92 -3.98
Noise floor at
antenna
with RXBN
(dBm/Hz)
Sensitivity with
RXBN
(max Tx
power)(dBm)
Desense due
to
RXBN (dB)
RXBN due to Tx
at antenna
(dBm/Hz)
Desense due to Rx band noise of Tx leakage calculation
Band
Rx
frequency
(MHz)
BW (MHz)
SDR IP2
(dBm)
SDR RBN
(dBm/Hz)
PA RBN
(dBm/Hz)
PA Rx band
gain (dB)
DPx Tx-Rx
isolation
at Tx
frequency
(dB)
DPx Tx-Rx
isolation
at Rx
frequency
(dB)
Noise floor
(dBm/Hz) at
antenna
connector
without Tx noise
Total RXBN
at PA output
(dBm/Hz)
Loss from
Rx DPx
to antenna
(dB)
OXX B66 PRx desense analysis Tx leakage in Rx band
Rx
SAW
29
Calculate OXX B66 PRx desense Tx IP2 noise
Sensitivity = equivalent noise floor @ the LNA input due to thermal noise and Tx leakage IP2 noise
(IM2) + 10 × log(BW) + NF + C/N + IL_FE.
The equivalent noise floor @ the LNA input due to thermal noise and IM2 is the power sum of the
thermal noise floor and Tx leakage IP2 noise.
Thermal noise floor @ the LNA input is about -174 dBm/Hz.
IM2 @ the LNA input = 2 × (Tx level @ the DPx Tx input - DPx TRx isolation @ Tx frequency) - WTR Rx
IP2 - the correction factor.
NF is the WTR noise figure.
C/N is the required SNR for demodulation.
IL_FEis the total RF front-end IL.
LTE B66 ANT0 Coupler Diplexer ASM Quadplexer e-LNA NF Rx SAW
Trace +
mismatch loss
Loss before LNA Rx NF Rx BW CN Sensitivity
Typ 0 0.2 0.42 0.98 1.7 0.8 0.8 4.9 2.3 10 -1 -100.10
Worst 0.1 0.2 0.6 1.05 2.8 1.2 1 6.95 3 10 -1 -98.05
30
OXX B66 PRx desense analysis Tx IP2 noise
DONE
T W T W T W T W T W T W T W T W T W T W T W T W T W
B1 2110–2170 10 54 54 -150 -150 -136 -136 29 32.5 59 52 54 50 -167.15 -165.20 -31.58 -22.50 -198.16 -180.00 -193.61 -174.20 -167.14 -164.69 -98.14 -95.69 -0.01 -0.51
B2 1930–1990 10 54 54 -148 -148 -133 -133 30.5 34 66.8 55 65.6 55 -169.09 -166.80 -39.97 -26.10 -214.94 -187.20 -210.03 -180.00 -169.09 -166.60 -100.09 -97.60 0.00 -0.20
B3 1805–1880 10 54 54 -148 -148 -135 -135 29.5 33 56 52 56 50 -166.75 -164.40 -28.63 -22.10 -192.26 -179.20 -187.31 -172.60 -166.71 -163.79 -97.71 -94.79 -0.04 -0.61
B66 2110–2200 10 54 54 -150 -150 -138 -138 28 31.5 63.5 55 63.5 55 -169.10 -167.05 -36.30 -25.55 -207.60 -186.10 -202.70 -179.15 -169.10 -166.79 -100.10 -97.79 0.00 -0.26
B12 729–746 10 54 54 -151 -151 -120 -120 27 30.5 63 60 58 55 -169.23 -167.55 -36.23 -31.75 -207.46 -198.50 -202.69 -192.05 -169.23 -167.53 -100.23 -98.53 0.00 -0.02
Desense due to IP2 noise of Tx leakage calculation
Band
Rx
frequency
(MHz)
BW (MHz)
SDR IP2
(dBm)
SDR RBN
(dBm/Hz)
PA RBN
(dBm/Hz)
PA Rx band
gain (dB)
DPx Tx-Rx
isolation
at Tx
frequency
(dB)
DPx Tx-Rx
isolation
at Rx
frequency
(dB)
Noise floor
(dBm/Hz) at
antenna
connector
without Tx noise
Tx leakage power
at LNA (dBm)
IP2 noise
at LNA in
(dBm/Hz)
IP2 noise
at antenna
(dBm/Hz)
Noise floor at
antenna
with IP2 noise
(dBm/Hz)
Sensitivity with
IP2
(max Tx
power)(dBm)
Desense due
to IP2 (dB)
Rx
SAW
31
DONE
T W T W T W T W T W T W T W T W T W T W T W T W T W
B1 2110–2170 10 54 54 -150 -150 -136 -136 29 32.5 59 52 54 50 -167.15 -165.20 -120.86 -117.44 4.55 5.80 -170.31 -161.64 -165.44 -160.05 -96.44 -91.05 -1.71 -5.15
B2 1930–1990 10 54 54 -148 -148 -133 -133 30.5 34 66.8 55 65.6 55 -169.09 -166.80 -117.38 -113.95 4.91 7.20 -178.07 -161.75 -168.57 -160.57 -99.57 -91.57 -0.52 -6.23
B3 1805–1880 10 54 54 -148 -148 -135 -135 29.5 33 56 52 56 50 -166.75 -164.40 -118.40 -114.96 4.95 6.60 -169.45 -158.36 -164.88 -157.39 -95.88 -88.39 -1.87 -7.01
B66 2110–2200 10 54 54 -150 -150 -138 -138 28 31.5 63.5 55 63.5 55 -169.10 -167.05 -121.89 -118.45 4.90 6.95 -180.49 -166.50 -168.80 -163.76 -99.80 -94.76 -0.30 -3.29
B12 729–746 10 54 54 -151 -151 -120 -120 27 30.5 63 60 58 55 -169.23 -167.55 -118.54 -117.23 4.77 6.45 -171.77 -165.78 -167.31 -163.57 -98.31 -94.57 -1.92 -3.98
Noise floor at
antenna
with RXBN
(dBm/Hz)
Sensitivity with
RXBN
(max Tx
power)(dBm)
Desense due
to
RXBN (dB)
RXBN due to Tx
at antenna
(dBm/Hz)
Desense due to Rx band noise of Tx leakage calculation
Band
Rx
frequency
(MHz)
BW (MHz)
SDR IP2
(dBm)
SDR RBN
(dBm/Hz)
PA RBN
(dBm/Hz)
PA Rx band
gain (dB)
DPx Tx-Rx
isolation
at Tx
frequency
(dB)
DPx Tx-Rx
isolation
at Rx
frequency
(dB)
Noise floor
(dBm/Hz) at
antenna
connector
without Tx noise
Total RXBN
at PA output
(dBm/Hz)
Loss from
Rx DPx
to antenna
(dB)
Conclusion: OXX B66 PRx desense analysis Tx leakage in Rx band
Rx
SAW
32
Conclusion: OXX B66 PRx desense analysis Tx IP2 noise
DONE
T W T W T W T W T W T W T W T W T W T W T W T W T W
B1 2110–2170 10 54 54 -150 -150 -136 -136 29 32.5 59 52 54 50 -167.15 -165.20 -31.58 -22.50 -198.16 -180.00 -193.61 -174.20 -167.14 -164.69 -98.14 -95.69 -0.01 -0.51
B2 1930–1990 10 54 54 -148 -148 -133 -133 30.5 34 66.8 55 65.6 55 -169.09 -166.80 -39.97 -26.10 -214.94 -187.20 -210.03 -180.00 -169.09 -166.60 -100.09 -97.60 0.00 -0.20
B3 1805–1880 10 54 54 -148 -148 -135 -135 29.5 33 56 52 56 50 -166.75 -164.40 -28.63 -22.10 -192.26 -179.20 -187.31 -172.60 -166.71 -163.79 -97.71 -94.79 -0.04 -0.61
B66 2110–2200 10 54 54 -150 -150 -138 -138 28 31.5 63.5 55 63.5 55 -169.10 -167.05 -36.30 -25.55 -207.60 -186.10 -202.70 -179.15 -169.10 -166.79 -100.10 -97.79 0.00 -0.26
B12 729–746 10 54 54 -151 -151 -120 -120 27 30.5 63 60 58 55 -169.23 -167.55 -36.23 -31.75 -207.46 -198.50 -202.69 -192.05 -169.23 -167.53 -100.23 -98.53 0.00 -0.02
Desense due to IP2 noise of Tx leakage calculation
Band
Rx
frequency
(MHz)
BW (MHz)
SDR IP2
(dBm)
SDR RBN
(dBm/Hz)
PA RBN
(dBm/Hz)
PA Rx band
gain (dB)
DPx Tx-Rx
isolation
at Tx
frequency
(dB)
DPx Tx-Rx
isolation
at Rx
frequency
(dB)
Noise floor
(dBm/Hz) at
antenna
connector
without Tx noise
Tx leakage power
at LNA (dBm)
IP2 noise
at LNA in
(dBm/Hz)
IP2 noise
at antenna
(dBm/Hz)
Noise floor at
antenna
with IP2 noise
(dBm/Hz)
Sensitivity with
IP2
(max Tx
power)(dBm)
Desense due
to IP2 (dB)
Rx
SAW
33
B12 Tx 3rd harmonic
ANT-Tx att = 35~43 dB
B12 Tx 3f0 = -30~-24 dBm
att = 35 dB
FE loss = 5 dB
-99.97 dBm/Hz – 43 – 35 + 5 = -173 dBm/Hz
B12
TRx
B66
DRx
-100 dBm/Hz
-121.9 dBm/Hz
OXX B12+B66 CA desense analysis
Rx
SAW
ANT-ANT iso = 10~15 dB
34

Weitere ähnliche Inhalte

Was ist angesagt?

SAW-less Direct Conversion Receiver Consideration
SAW-less Direct Conversion Receiver ConsiderationSAW-less Direct Conversion Receiver Consideration
SAW-less Direct Conversion Receiver Considerationcriterion123
 
One LTE B7 Desense Case Study
One LTE B7 Desense Case StudyOne LTE B7 Desense Case Study
One LTE B7 Desense Case Studycriterion123
 
ABCs of Carrier Aggregation
ABCs of Carrier Aggregation ABCs of Carrier Aggregation
ABCs of Carrier Aggregation criterion123
 
IIP2 requirements in 4G LTE Handset Receivers
IIP2 requirements in 4G LTE Handset ReceiversIIP2 requirements in 4G LTE Handset Receivers
IIP2 requirements in 4G LTE Handset Receiverscriterion123
 
Analysis of GSM ORFS Issue
Analysis of GSM ORFS IssueAnalysis of GSM ORFS Issue
Analysis of GSM ORFS Issuecriterion123
 
One Case Study For GSM Unstable Output Power Issue
One Case Study For GSM Unstable Output  Power IssueOne Case Study For GSM Unstable Output  Power Issue
One Case Study For GSM Unstable Output Power Issuecriterion123
 
RF Issue Due To PA Timing
RF Issue Due To PA TimingRF Issue Due To PA Timing
RF Issue Due To PA Timingcriterion123
 
802.11ac WIFI Fundamentals
802.11ac WIFI Fundamentals802.11ac WIFI Fundamentals
802.11ac WIFI Fundamentalscriterion123
 
GNSS De-sense By IMT and PCS DA Output
GNSS De-sense By IMT and PCS DA OutputGNSS De-sense By IMT and PCS DA Output
GNSS De-sense By IMT and PCS DA Outputcriterion123
 
Why Ferrite Beads Aggravates ACLR
Why Ferrite Beads Aggravates ACLRWhy Ferrite Beads Aggravates ACLR
Why Ferrite Beads Aggravates ACLRcriterion123
 
CDMA Zero-IF Receiver Consideration
CDMA  Zero-IF Receiver ConsiderationCDMA  Zero-IF Receiver Consideration
CDMA Zero-IF Receiver Considerationcriterion123
 
EVM Degradation in LTE systems by RF Filtering
EVM Degradation in LTE systems by RF Filtering EVM Degradation in LTE systems by RF Filtering
EVM Degradation in LTE systems by RF Filtering criterion123
 
How to solve ACLR issue
How to solve ACLR issueHow to solve ACLR issue
How to solve ACLR issuecriterion123
 
LTE carrier aggregation technology development and deployment worldwide
LTE carrier aggregation technology development and deployment worldwideLTE carrier aggregation technology development and deployment worldwide
LTE carrier aggregation technology development and deployment worldwidecriterion123
 
Some issue due to incorrect PA and transceiver configuration
Some issue due to incorrect PA and transceiver configurationSome issue due to incorrect PA and transceiver configuration
Some issue due to incorrect PA and transceiver configurationcriterion123
 
System(board level) noise figure analysis and optimization
System(board level) noise figure analysis and optimizationSystem(board level) noise figure analysis and optimization
System(board level) noise figure analysis and optimizationcriterion123
 
The ABCs of ADCs Understanding How ADC Errors Affect System Performance
The ABCs of ADCs Understanding How ADC Errors Affect System PerformanceThe ABCs of ADCs Understanding How ADC Errors Affect System Performance
The ABCs of ADCs Understanding How ADC Errors Affect System Performancecriterion123
 
Performance Requirement and Lessons Learnt of LTE Terminal_Transmitter Part
Performance Requirement and Lessons Learnt of LTE Terminal_Transmitter PartPerformance Requirement and Lessons Learnt of LTE Terminal_Transmitter Part
Performance Requirement and Lessons Learnt of LTE Terminal_Transmitter Partcriterion123
 

Was ist angesagt? (20)

SAW-less Direct Conversion Receiver Consideration
SAW-less Direct Conversion Receiver ConsiderationSAW-less Direct Conversion Receiver Consideration
SAW-less Direct Conversion Receiver Consideration
 
One LTE B7 Desense Case Study
One LTE B7 Desense Case StudyOne LTE B7 Desense Case Study
One LTE B7 Desense Case Study
 
ABCs of Carrier Aggregation
ABCs of Carrier Aggregation ABCs of Carrier Aggregation
ABCs of Carrier Aggregation
 
IIP2 requirements in 4G LTE Handset Receivers
IIP2 requirements in 4G LTE Handset ReceiversIIP2 requirements in 4G LTE Handset Receivers
IIP2 requirements in 4G LTE Handset Receivers
 
Analysis of GSM ORFS Issue
Analysis of GSM ORFS IssueAnalysis of GSM ORFS Issue
Analysis of GSM ORFS Issue
 
One Case Study For GSM Unstable Output Power Issue
One Case Study For GSM Unstable Output  Power IssueOne Case Study For GSM Unstable Output  Power Issue
One Case Study For GSM Unstable Output Power Issue
 
RF Issue Due To PA Timing
RF Issue Due To PA TimingRF Issue Due To PA Timing
RF Issue Due To PA Timing
 
802.11ac WIFI Fundamentals
802.11ac WIFI Fundamentals802.11ac WIFI Fundamentals
802.11ac WIFI Fundamentals
 
GNSS De-sense By IMT and PCS DA Output
GNSS De-sense By IMT and PCS DA OutputGNSS De-sense By IMT and PCS DA Output
GNSS De-sense By IMT and PCS DA Output
 
Why Ferrite Beads Aggravates ACLR
Why Ferrite Beads Aggravates ACLRWhy Ferrite Beads Aggravates ACLR
Why Ferrite Beads Aggravates ACLR
 
CDMA Zero-IF Receiver Consideration
CDMA  Zero-IF Receiver ConsiderationCDMA  Zero-IF Receiver Consideration
CDMA Zero-IF Receiver Consideration
 
Receiver design
Receiver designReceiver design
Receiver design
 
EVM Degradation in LTE systems by RF Filtering
EVM Degradation in LTE systems by RF Filtering EVM Degradation in LTE systems by RF Filtering
EVM Degradation in LTE systems by RF Filtering
 
How to solve ACLR issue
How to solve ACLR issueHow to solve ACLR issue
How to solve ACLR issue
 
LTE carrier aggregation technology development and deployment worldwide
LTE carrier aggregation technology development and deployment worldwideLTE carrier aggregation technology development and deployment worldwide
LTE carrier aggregation technology development and deployment worldwide
 
Some issue due to incorrect PA and transceiver configuration
Some issue due to incorrect PA and transceiver configurationSome issue due to incorrect PA and transceiver configuration
Some issue due to incorrect PA and transceiver configuration
 
System(board level) noise figure analysis and optimization
System(board level) noise figure analysis and optimizationSystem(board level) noise figure analysis and optimization
System(board level) noise figure analysis and optimization
 
The ABCs of ADCs Understanding How ADC Errors Affect System Performance
The ABCs of ADCs Understanding How ADC Errors Affect System PerformanceThe ABCs of ADCs Understanding How ADC Errors Affect System Performance
The ABCs of ADCs Understanding How ADC Errors Affect System Performance
 
DDR Desense Issue
DDR Desense IssueDDR Desense Issue
DDR Desense Issue
 
Performance Requirement and Lessons Learnt of LTE Terminal_Transmitter Part
Performance Requirement and Lessons Learnt of LTE Terminal_Transmitter PartPerformance Requirement and Lessons Learnt of LTE Terminal_Transmitter Part
Performance Requirement and Lessons Learnt of LTE Terminal_Transmitter Part
 

Ähnlich wie OXX B66 Rx sensitivity and desense analysis issue debug

eecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdfeecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdfNahshonMObiri
 
IMS-2010 Presentation
IMS-2010 PresentationIMS-2010 Presentation
IMS-2010 PresentationSushil Kumar
 
Multiband Transceivers - [Chapter 7] Spec. Table
Multiband Transceivers - [Chapter 7]  Spec. TableMultiband Transceivers - [Chapter 7]  Spec. Table
Multiband Transceivers - [Chapter 7] Spec. TableSimen Li
 
DDS - How It Works
DDS - How It WorksDDS - How It Works
DDS - How It WorksRan Cohen
 
Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...Gallian394
 
Original NPN Transistor KTC3875S-Y-RTK 150mA 60V SOT-23 ALO ALY SMD Code New
Original NPN Transistor KTC3875S-Y-RTK 150mA 60V SOT-23 ALO ALY SMD Code NewOriginal NPN Transistor KTC3875S-Y-RTK 150mA 60V SOT-23 ALO ALY SMD Code New
Original NPN Transistor KTC3875S-Y-RTK 150mA 60V SOT-23 ALO ALY SMD Code Newauthelectroniccom
 
10Gb/s Tunable SFP+ Transceiver Hot Pluggable, Duplex LC, +3.3V, 100GHz, Mono...
10Gb/s Tunable SFP+ Transceiver Hot Pluggable, Duplex LC, +3.3V, 100GHz, Mono...10Gb/s Tunable SFP+ Transceiver Hot Pluggable, Duplex LC, +3.3V, 100GHz, Mono...
10Gb/s Tunable SFP+ Transceiver Hot Pluggable, Duplex LC, +3.3V, 100GHz, Mono...Allen He
 
Active Filter Design Using PSpice
Active Filter Design Using PSpiceActive Filter Design Using PSpice
Active Filter Design Using PSpiceTsuyoshi Horigome
 
Electrónica: U2510B IC de amplificador de audio y receptor AM / FM para todas...
Electrónica: U2510B IC de amplificador de audio y receptor AM / FM para todas...Electrónica: U2510B IC de amplificador de audio y receptor AM / FM para todas...
Electrónica: U2510B IC de amplificador de audio y receptor AM / FM para todas...SANTIAGO PABLO ALBERTO
 
Original P-Channel Mosfet IRF9520NPBF 9520N TO-220F New IR
Original P-Channel Mosfet IRF9520NPBF 9520N TO-220F New IROriginal P-Channel Mosfet IRF9520NPBF 9520N TO-220F New IR
Original P-Channel Mosfet IRF9520NPBF 9520N TO-220F New IRAUTHELECTRONIC
 
GPS sensitivity questions and its HW RF consideration
GPS sensitivity questions and its HW RF considerationGPS sensitivity questions and its HW RF consideration
GPS sensitivity questions and its HW RF considerationPei-Che Chang
 

Ähnlich wie OXX B66 Rx sensitivity and desense analysis issue debug (20)

eecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdfeecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdf
 
AD8351.pdf
AD8351.pdfAD8351.pdf
AD8351.pdf
 
IMS-2010 Presentation
IMS-2010 PresentationIMS-2010 Presentation
IMS-2010 Presentation
 
Multiband Transceivers - [Chapter 7] Spec. Table
Multiband Transceivers - [Chapter 7]  Spec. TableMultiband Transceivers - [Chapter 7]  Spec. Table
Multiband Transceivers - [Chapter 7] Spec. Table
 
Max2837 hackrf
Max2837 hackrfMax2837 hackrf
Max2837 hackrf
 
DDS - How It Works
DDS - How It WorksDDS - How It Works
DDS - How It Works
 
Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...
 
Original NPN Transistor KTC3875S-Y-RTK 150mA 60V SOT-23 ALO ALY SMD Code New
Original NPN Transistor KTC3875S-Y-RTK 150mA 60V SOT-23 ALO ALY SMD Code NewOriginal NPN Transistor KTC3875S-Y-RTK 150mA 60V SOT-23 ALO ALY SMD Code New
Original NPN Transistor KTC3875S-Y-RTK 150mA 60V SOT-23 ALO ALY SMD Code New
 
000930
000930000930
000930
 
10Gb/s Tunable SFP+ Transceiver Hot Pluggable, Duplex LC, +3.3V, 100GHz, Mono...
10Gb/s Tunable SFP+ Transceiver Hot Pluggable, Duplex LC, +3.3V, 100GHz, Mono...10Gb/s Tunable SFP+ Transceiver Hot Pluggable, Duplex LC, +3.3V, 100GHz, Mono...
10Gb/s Tunable SFP+ Transceiver Hot Pluggable, Duplex LC, +3.3V, 100GHz, Mono...
 
Rf2008 test 1
Rf2008 test 1Rf2008 test 1
Rf2008 test 1
 
Active Filter Design Using PSpice
Active Filter Design Using PSpiceActive Filter Design Using PSpice
Active Filter Design Using PSpice
 
Ad7716
Ad7716Ad7716
Ad7716
 
2 n3904
2 n39042 n3904
2 n3904
 
Electrónica: U2510B IC de amplificador de audio y receptor AM / FM para todas...
Electrónica: U2510B IC de amplificador de audio y receptor AM / FM para todas...Electrónica: U2510B IC de amplificador de audio y receptor AM / FM para todas...
Electrónica: U2510B IC de amplificador de audio y receptor AM / FM para todas...
 
5485
54855485
5485
 
Original P-Channel Mosfet IRF9520NPBF 9520N TO-220F New IR
Original P-Channel Mosfet IRF9520NPBF 9520N TO-220F New IROriginal P-Channel Mosfet IRF9520NPBF 9520N TO-220F New IR
Original P-Channel Mosfet IRF9520NPBF 9520N TO-220F New IR
 
GPS sensitivity questions and its HW RF consideration
GPS sensitivity questions and its HW RF considerationGPS sensitivity questions and its HW RF consideration
GPS sensitivity questions and its HW RF consideration
 
Ad620
Ad620Ad620
Ad620
 
000665
000665000665
000665
 

Mehr von Pei-Che Chang

Phase Locked Loops (PLL) 1
Phase Locked Loops (PLL) 1Phase Locked Loops (PLL) 1
Phase Locked Loops (PLL) 1Pei-Che Chang
 
NTHU Comm Presentation
NTHU Comm PresentationNTHU Comm Presentation
NTHU Comm PresentationPei-Che Chang
 
Introduction to Compressive Sensing in Wireless Communication
Introduction to Compressive Sensing in Wireless CommunicationIntroduction to Compressive Sensing in Wireless Communication
Introduction to Compressive Sensing in Wireless CommunicationPei-Che Chang
 
Distributed Architecture of Subspace Clustering and Related
Distributed Architecture of Subspace Clustering and RelatedDistributed Architecture of Subspace Clustering and Related
Distributed Architecture of Subspace Clustering and RelatedPei-Che Chang
 
Brief Introduction About Topological Interference Management (TIM)
Brief Introduction About Topological Interference Management (TIM)Brief Introduction About Topological Interference Management (TIM)
Brief Introduction About Topological Interference Management (TIM)Pei-Che Chang
 
Introduction to OFDM
Introduction to OFDMIntroduction to OFDM
Introduction to OFDMPei-Che Chang
 
The Wireless Channel Propagation
The Wireless Channel PropagationThe Wireless Channel Propagation
The Wireless Channel PropagationPei-Che Chang
 
MIMO Channel Capacity
MIMO Channel CapacityMIMO Channel Capacity
MIMO Channel CapacityPei-Che Chang
 
Digital Passband Communication
Digital Passband CommunicationDigital Passband Communication
Digital Passband CommunicationPei-Che Chang
 
Digital Baseband Communication
Digital Baseband CommunicationDigital Baseband Communication
Digital Baseband CommunicationPei-Che Chang
 
The relationship between bandwidth and rise time
The relationship between bandwidth and rise timeThe relationship between bandwidth and rise time
The relationship between bandwidth and rise timePei-Che Chang
 
Millimeter wave 5G antennas for smartphones
Millimeter wave 5G antennas for smartphonesMillimeter wave 5G antennas for smartphones
Millimeter wave 5G antennas for smartphonesPei-Che Chang
 
Introduction of GPS BPSK-R and BOC
Introduction of GPS BPSK-R and BOCIntroduction of GPS BPSK-R and BOC
Introduction of GPS BPSK-R and BOCPei-Che Chang
 

Mehr von Pei-Che Chang (20)

PLL Note
PLL NotePLL Note
PLL Note
 
Phase Locked Loops (PLL) 1
Phase Locked Loops (PLL) 1Phase Locked Loops (PLL) 1
Phase Locked Loops (PLL) 1
 
NTHU Comm Presentation
NTHU Comm PresentationNTHU Comm Presentation
NTHU Comm Presentation
 
Introduction to Compressive Sensing in Wireless Communication
Introduction to Compressive Sensing in Wireless CommunicationIntroduction to Compressive Sensing in Wireless Communication
Introduction to Compressive Sensing in Wireless Communication
 
Distributed Architecture of Subspace Clustering and Related
Distributed Architecture of Subspace Clustering and RelatedDistributed Architecture of Subspace Clustering and Related
Distributed Architecture of Subspace Clustering and Related
 
PMF BPMF and BPTF
PMF BPMF and BPTFPMF BPMF and BPTF
PMF BPMF and BPTF
 
Distributed ADMM
Distributed ADMMDistributed ADMM
Distributed ADMM
 
Brief Introduction About Topological Interference Management (TIM)
Brief Introduction About Topological Interference Management (TIM)Brief Introduction About Topological Interference Management (TIM)
Brief Introduction About Topological Interference Management (TIM)
 
Patch antenna
Patch antennaPatch antenna
Patch antenna
 
Antenna basic
Antenna basicAntenna basic
Antenna basic
 
PAPR Reduction
PAPR ReductionPAPR Reduction
PAPR Reduction
 
Channel Estimation
Channel EstimationChannel Estimation
Channel Estimation
 
Introduction to OFDM
Introduction to OFDMIntroduction to OFDM
Introduction to OFDM
 
The Wireless Channel Propagation
The Wireless Channel PropagationThe Wireless Channel Propagation
The Wireless Channel Propagation
 
MIMO Channel Capacity
MIMO Channel CapacityMIMO Channel Capacity
MIMO Channel Capacity
 
Digital Passband Communication
Digital Passband CommunicationDigital Passband Communication
Digital Passband Communication
 
Digital Baseband Communication
Digital Baseband CommunicationDigital Baseband Communication
Digital Baseband Communication
 
The relationship between bandwidth and rise time
The relationship between bandwidth and rise timeThe relationship between bandwidth and rise time
The relationship between bandwidth and rise time
 
Millimeter wave 5G antennas for smartphones
Millimeter wave 5G antennas for smartphonesMillimeter wave 5G antennas for smartphones
Millimeter wave 5G antennas for smartphones
 
Introduction of GPS BPSK-R and BOC
Introduction of GPS BPSK-R and BOCIntroduction of GPS BPSK-R and BOC
Introduction of GPS BPSK-R and BOC
 

Kürzlich hochgeladen

Cost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based questionCost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based questionSneha Padhiar
 
Uk-NO1 Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Exp...
Uk-NO1 Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Exp...Uk-NO1 Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Exp...
Uk-NO1 Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Exp...Amil baba
 
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENTFUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENTSneha Padhiar
 
Turn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptxTurn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptxStephen Sitton
 
Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________Romil Mishra
 
TEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACHTEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACHSneha Padhiar
 
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.elesangwon
 
Uk-NO1 kala jadu karne wale ka contact number kala jadu karne wale baba kala ...
Uk-NO1 kala jadu karne wale ka contact number kala jadu karne wale baba kala ...Uk-NO1 kala jadu karne wale ka contact number kala jadu karne wale baba kala ...
Uk-NO1 kala jadu karne wale ka contact number kala jadu karne wale baba kala ...Amil baba
 
Immutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdfImmutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdfDrew Moseley
 
Detection&Tracking - Thermal imaging object detection and tracking
Detection&Tracking - Thermal imaging object detection and trackingDetection&Tracking - Thermal imaging object detection and tracking
Detection&Tracking - Thermal imaging object detection and trackinghadarpinhas1
 
"Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ..."Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ...Erbil Polytechnic University
 
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...Sumanth A
 
ADM100 Running Book for sap basis domain study
ADM100 Running Book for sap basis domain studyADM100 Running Book for sap basis domain study
ADM100 Running Book for sap basis domain studydhruvamdhruvil123
 
Katarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School CourseKatarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School Coursebim.edu.pl
 
The Satellite applications in telecommunication
The Satellite applications in telecommunicationThe Satellite applications in telecommunication
The Satellite applications in telecommunicationnovrain7111
 
Artificial Intelligence in Power System overview
Artificial Intelligence in Power System overviewArtificial Intelligence in Power System overview
Artificial Intelligence in Power System overviewsandhya757531
 
Substation Automation SCADA and Gateway Solutions by BRH
Substation Automation SCADA and Gateway Solutions by BRHSubstation Automation SCADA and Gateway Solutions by BRH
Substation Automation SCADA and Gateway Solutions by BRHbirinder2
 
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptx
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptxTriangulation survey (Basic Mine Surveying)_MI10412MI.pptx
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptxRomil Mishra
 
Python Programming for basic beginners.pptx
Python Programming for basic beginners.pptxPython Programming for basic beginners.pptx
Python Programming for basic beginners.pptxmohitesoham12
 

Kürzlich hochgeladen (20)

Cost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based questionCost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based question
 
Uk-NO1 Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Exp...
Uk-NO1 Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Exp...Uk-NO1 Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Exp...
Uk-NO1 Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Exp...
 
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENTFUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
 
Turn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptxTurn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptx
 
Versatile Engineering Construction Firms
Versatile Engineering Construction FirmsVersatile Engineering Construction Firms
Versatile Engineering Construction Firms
 
Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________
 
TEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACHTEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACH
 
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
 
Uk-NO1 kala jadu karne wale ka contact number kala jadu karne wale baba kala ...
Uk-NO1 kala jadu karne wale ka contact number kala jadu karne wale baba kala ...Uk-NO1 kala jadu karne wale ka contact number kala jadu karne wale baba kala ...
Uk-NO1 kala jadu karne wale ka contact number kala jadu karne wale baba kala ...
 
Immutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdfImmutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdf
 
Detection&Tracking - Thermal imaging object detection and tracking
Detection&Tracking - Thermal imaging object detection and trackingDetection&Tracking - Thermal imaging object detection and tracking
Detection&Tracking - Thermal imaging object detection and tracking
 
"Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ..."Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ...
 
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
 
ADM100 Running Book for sap basis domain study
ADM100 Running Book for sap basis domain studyADM100 Running Book for sap basis domain study
ADM100 Running Book for sap basis domain study
 
Katarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School CourseKatarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School Course
 
The Satellite applications in telecommunication
The Satellite applications in telecommunicationThe Satellite applications in telecommunication
The Satellite applications in telecommunication
 
Artificial Intelligence in Power System overview
Artificial Intelligence in Power System overviewArtificial Intelligence in Power System overview
Artificial Intelligence in Power System overview
 
Substation Automation SCADA and Gateway Solutions by BRH
Substation Automation SCADA and Gateway Solutions by BRHSubstation Automation SCADA and Gateway Solutions by BRH
Substation Automation SCADA and Gateway Solutions by BRH
 
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptx
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptxTriangulation survey (Basic Mine Surveying)_MI10412MI.pptx
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptx
 
Python Programming for basic beginners.pptx
Python Programming for basic beginners.pptxPython Programming for basic beginners.pptx
Python Programming for basic beginners.pptx
 

OXX B66 Rx sensitivity and desense analysis issue debug

  • 1. OXX B66 Rx Sensitivity Issue Debug Jay Chang 1
  • 2. 2 B66 channel number B66_20MHz RB ch.132072 ch.132322 ch.132572 1@0 -95.2 -94.8 -91.6 HB1 (iLNA) 1@49 -93.3 -92.6 -93.1 1@99 -95.1 -94.7 -90.7 100@0 -98.5 -98 -97.5 1@0 -97.4 -98.2 -96.6 MB4 (mLNA) 1@49 -94.4 -94.8 -94.6 1@99 -97.8 -97.8 -96.9 100@0 -99.4 -99.7 -99.4 2 port for testing (default matching) 阿娟的結果
  • 3. 3 B66_20MHz RB ch.132072 ch.132322 ch.132572 1@0 -95.2 -94.8 -91.6 HB1 (iLNA) 1@49 -93.3 -92.6 -93.1 1@99 -95.1 -94.7 -90.7 100@0 -98.5 -98 -97.5 1@0 -97.4 -98.2 -96.6 MB4 (mLNA) 1@49 -94.4 -94.8 -94.6 1@99 -97.8 -97.8 -96.9 100@0 -99.4 -99.7 -99.4 2 port for testing (default matching)
  • 4. 4 B66_20MHz RB ch.132072 ch.132322 ch.132572 1@0 -96.1 -95.7 -92.6 1@49 -94.2 -93.5 -94.1 1@99 -96.1 -95.7 -91.8 100@0 -98.9 -98.2 -98.3 • Default radio default matching only change in B66 Rx SAW 3.5n(M)_SAW_3.5n(M) • The corresponding PRx sensitivity as below (use 2 ports for testing) (default matching) Rx SAW的問題嗎 ?
  • 5. 5 SAW filter for B66 Rx : frequency response R1 = R2 = 50 Ohm L1 = L2 = 3.6 nH
  • 6. 6 SAW filter for B66 Rx Spec.
  • 7. 7 SAW filter for B1/B4 Rx Spec. R1 = R2 = 50 Ohm
  • 8. 8 SAW filter for B1/B4 Rx: frequency response R1 = R2 = 50 Ohm Rx SAW的問題嗎 ? 嘿嘿!! 當然不是.
  • 9. 9 根據阿娟的結果B66 PRx 2根 sensitivity由iLNA改接到mLNA為啥會有如此大的差異呢? (大家都講 因為mLNA gain比iLNA gain大十幾dB, 53 - 38.7 =14.3, 降講合理嗎? 這樣講有甚麼盲點盲點盲點盲點呢… 我們直接算一下) 根據sensitivity [dBm] = -174 + 10log10(BWin Hz) + loss + RxNF + C/N where loss = total loss before LNA., RxNF = receiver noise figure (ex: SDR660) 上面公式適用於沒有external LNA (eLNA). 那有eLNA公式變成怎樣呢 loss + RxNF 這兩項就合併成cascade NF了嘛!! 所以只要計算cascade NF就能得知有eLNA的sensitivity了. B66_20MHz RB ch.132072 ch.132322 ch.132572 1@0 -95.2 -94.8 -91.6 HB1 (iLNA) 1@49 -93.3 -92.6 -93.1 1@99 -95.1 -94.7 -90.7 100@0 -98.5 -98 -97.5 1@0 -97.4 -98.2 -96.6 MB4 (mLNA) 1@49 -94.4 -94.8 -94.6 1@99 -97.8 -97.8 -96.9 100@0 -99.4 -99.7 -99.4 2 port for testing (default matching) 阿娟的結果 計算一下linkbudget看有沒有調到極值…
  • 10. 10 計算OXX_B66_PRx black diagram cascade NF如下 計算iLNA and mLNA 20MHz 單根 sensitivity iLNA: -174 + 10log10(20MHz) + 6.3 + (-1) = -95.7 mLNA: -174 + 10log10(20MHz) + 5 + (-1) = -97 (如果要跟阿娟結果雙根比較, 自己再各加個2.5-3 dB進去)
  • 11. 11 所以接到mLNA sensitivity 理論上會變好1.3 dB, 阿娟20M FRB的結果在計算預期內. 此次的驗證假設 Trace loss 估計0.8 dB. 所有元件insertion loss使用datasheet Typical的值 不考慮Worst case. 所有的mismatch loss沒有考慮進去 (都假設stage 1 2 3皆咩到50 Ohm, 再用靠近SDR的兩三顆轉到 SDR LNA NF min處) i.e. 算出來的sensitivity是極值. 所以再回過頭來看”mLNA gain比iLNA gain大十幾dB”, 這樣講顯然有盲點盲點盲點盲點 因為除非你要算cascade NF到stage 5, 不然NF公式是不會出現G4(就是mLNA gain or iLNA gain)的. 真要說應該說”iLNA NF (分子分子分子分子)太大太大太大太大, 使得使得使得使得eLNA gain已經很大了但已經很大了但已經很大了但已經很大了但(分母分母分母分母)稀釋不掉稀釋不掉稀釋不掉稀釋不掉, 造成造成造成造成cascade NF 變大變大變大變大, sensitivity變差變差變差變差” なるほどですね !! 除了Rx沒調到極值外, 原來sensitivity跟iLNA NF和eLNA gain有著極大關係阿!!
  • 13. 13 20M 單根 B66 PRx Bypass [eLNA+SAW] + mLNA in SDR660 -174 + 10log10(20MHz) + 4 + 2.3 + (-1) = -95.7 With [eLNA +SAW] + iLNA in SDR660 -174 + 10log10(20MHz) + 6.3 + (-1) = -95.7 With [eLNA +SAW] + mLNA in SDR660 -174 + 10log10(20MHz) + 5 + (-1) = -97 20M 單根 B66 DRx Bypass [eLNA+SAW] + mLNA in SDR660 -174 + 10log10(20MHz) + 3.5 + 2.3 + (-1) = -96.2 With [eLNA +SAW] + iLNA in SDR660 -174 + 10log10(20MHz) + 5.82 + (-1) = -96.2 With [eLNA +SAW] + mLNA in SDR660 -174 + 10log10(20MHz) + 4.5 + (-1) = -97.5 接著比較各種topology的sensitivity…
  • 14. 14 Bypass eLNA 接mLNA tuning B66 PRx matching 2種不同topology 任君比較 To mLNA RAC142 RAC138 RAC143 RAL264 RAL125 channel 132072 132322 132572 20M FRB 單根單根單根單根 0.5p 22p 2.4p 0 Ohm 3n 95.1 95.3 95 Q = 1.65 0.5p 22p 5.6n 33p 1.2n 95.2 95.4 94.9 Q = 1.12 有L+C組合 也有L+L組合 順便附上Q值 怎麼選: 選Q越大, Q = f0/Δf, Δf越小, 窄帶濾波好 BUT 注意1RB@0 and 1RB@99會不會被砍掉, 所 以要trade off (RF最愛玩的槌豆腐 XD). 如果不行就選Q次大的. Sensitivity = -174 + 10log10(20MHz) + 4 + 2.3 + (-1) = -95.7 實際去bypass eLNA, Rx切mLNA調到極值比較一下
  • 20. 20 20M 單根 B66 PRx Bypass [eLNA+SAW] + mLNA in SDR660 -174 + 10log10(20MHz) + 4 + 2.3 + (-1) = -95.7 With [eLNA +SAW] + iLNA in SDR660 -174 + 10log10(20MHz) + 6.3 + (-1) = -95.7 With [eLNA +SAW] + mLNA in SDR660 -174 + 10log10(20MHz) + 5 + (-1) = -97 Q-ref Quadplexer + mLNA in SDR660 -174 + 10log10(20MHz) + 3.63 + 2.3 + (-1) = -96 20M 單根 B66 DRx Bypass [eLNA+SAW] + mLNA in SDR660 -174 + 10log10(20MHz) + 3.5 + 2.3 + (-1) = -96.2 With [eLNA +SAW] + iLNA in SDR660 -174 + 10log10(20MHz) + 5.82 + (-1) = -96.2 With [eLNA +SAW] + mLNA in SDR660 -174 + 10log10(20MHz) + 4.5 + (-1) = -97.5 Q-ref Quadplexer + QLN + iLNA in SDR660 -174 + 10log10(20MHz) + 4.9 + (-1) = -97.1 接著比較各種topology的sensitivity…
  • 21. 21 なるほどですね !! 除了Rx沒調到極值外, 原來sensitivity跟iLNA NF和eLNA gain有著極大關係阿!! 接著看一下eLNA spec
  • 25. 25 OXX B66 Desense Analysis
  • 26. 26 OXX B66 PRx sensitivity analysis LTE B66 ANT0 Coupler Diplexer ASM Quadplexer e-LNA NF Rx SAW Trace + mismatch loss Loss before LNA Rx NF Rx BW CN Sensitivity Typ 0 0.2 0.42 0.98 1.7 0.8 0.8 4.9 2.3 10 -1 -100.10 Worst 0.1 0.2 0.6 1.05 2.8 1.2 1 6.95 3 10 -1 -98.05 Rx SAW
  • 27. 27 Calculate OXX B66 PRx desense Tx leakage in Rx band sensitivity = equivalent noise floor @ the LNA input due to thermal noise and Tx noise in Rx band + 10 × log(BW) + NF + C/N + IL_FE. The equivalent noise floor @ the LNA input due to thermal noise and Tx noise in Rx band is the power sum of the thermal noise floor and Tx noise in Rx band. Thermal noise floor @ the LNA input is about -174 dBm/Hz. Tx noise in Rx band @ the LNA input = Σ(WTR RxBN + PA RxB gain, PA RxBN) - DPx TRx isolation at Rx frequency. NF is the WTR noise figure. C/N is the required SNR for demodulation. IL_FEis the RF front-end IL. LTE B66 ANT0 Coupler Diplexer ASM Quadplexer e-LNA NF Rx SAW Trace + mismatch loss Loss before LNA Rx NF Rx BW CN Sensitivity Typ 0 0.2 0.42 0.98 1.7 0.8 0.8 4.9 2.3 10 -1 -100.10 Worst 0.1 0.2 0.6 1.05 2.8 1.2 1 6.95 3 10 -1 -98.05
  • 28. 28 DONE T W T W T W T W T W T W T W T W T W T W T W T W T W B1 2110–2170 10 54 54 -150 -150 -136 -136 29 32.5 59 52 54 50 -167.15 -165.20 -120.86 -117.44 4.55 5.80 -170.31 -161.64 -165.44 -160.05 -96.44 -91.05 -1.71 -5.15 B2 1930–1990 10 54 54 -148 -148 -133 -133 30.5 34 66.8 55 65.6 55 -169.09 -166.80 -117.38 -113.95 4.91 7.20 -178.07 -161.75 -168.57 -160.57 -99.57 -91.57 -0.52 -6.23 B3 1805–1880 10 54 54 -148 -148 -135 -135 29.5 33 56 52 56 50 -166.75 -164.40 -118.40 -114.96 4.95 6.60 -169.45 -158.36 -164.88 -157.39 -95.88 -88.39 -1.87 -7.01 B66 2110–2200 10 54 54 -150 -150 -138 -138 28 31.5 63.5 55 63.5 55 -169.10 -167.05 -121.89 -118.45 4.90 6.95 -180.49 -166.50 -168.80 -163.76 -99.80 -94.76 -0.30 -3.29 B12 729–746 10 54 54 -151 -151 -120 -120 27 30.5 63 60 58 55 -169.23 -167.55 -118.54 -117.23 4.77 6.45 -171.77 -165.78 -167.31 -163.57 -98.31 -94.57 -1.92 -3.98 Noise floor at antenna with RXBN (dBm/Hz) Sensitivity with RXBN (max Tx power)(dBm) Desense due to RXBN (dB) RXBN due to Tx at antenna (dBm/Hz) Desense due to Rx band noise of Tx leakage calculation Band Rx frequency (MHz) BW (MHz) SDR IP2 (dBm) SDR RBN (dBm/Hz) PA RBN (dBm/Hz) PA Rx band gain (dB) DPx Tx-Rx isolation at Tx frequency (dB) DPx Tx-Rx isolation at Rx frequency (dB) Noise floor (dBm/Hz) at antenna connector without Tx noise Total RXBN at PA output (dBm/Hz) Loss from Rx DPx to antenna (dB) OXX B66 PRx desense analysis Tx leakage in Rx band Rx SAW
  • 29. 29 Calculate OXX B66 PRx desense Tx IP2 noise Sensitivity = equivalent noise floor @ the LNA input due to thermal noise and Tx leakage IP2 noise (IM2) + 10 × log(BW) + NF + C/N + IL_FE. The equivalent noise floor @ the LNA input due to thermal noise and IM2 is the power sum of the thermal noise floor and Tx leakage IP2 noise. Thermal noise floor @ the LNA input is about -174 dBm/Hz. IM2 @ the LNA input = 2 × (Tx level @ the DPx Tx input - DPx TRx isolation @ Tx frequency) - WTR Rx IP2 - the correction factor. NF is the WTR noise figure. C/N is the required SNR for demodulation. IL_FEis the total RF front-end IL. LTE B66 ANT0 Coupler Diplexer ASM Quadplexer e-LNA NF Rx SAW Trace + mismatch loss Loss before LNA Rx NF Rx BW CN Sensitivity Typ 0 0.2 0.42 0.98 1.7 0.8 0.8 4.9 2.3 10 -1 -100.10 Worst 0.1 0.2 0.6 1.05 2.8 1.2 1 6.95 3 10 -1 -98.05
  • 30. 30 OXX B66 PRx desense analysis Tx IP2 noise DONE T W T W T W T W T W T W T W T W T W T W T W T W T W B1 2110–2170 10 54 54 -150 -150 -136 -136 29 32.5 59 52 54 50 -167.15 -165.20 -31.58 -22.50 -198.16 -180.00 -193.61 -174.20 -167.14 -164.69 -98.14 -95.69 -0.01 -0.51 B2 1930–1990 10 54 54 -148 -148 -133 -133 30.5 34 66.8 55 65.6 55 -169.09 -166.80 -39.97 -26.10 -214.94 -187.20 -210.03 -180.00 -169.09 -166.60 -100.09 -97.60 0.00 -0.20 B3 1805–1880 10 54 54 -148 -148 -135 -135 29.5 33 56 52 56 50 -166.75 -164.40 -28.63 -22.10 -192.26 -179.20 -187.31 -172.60 -166.71 -163.79 -97.71 -94.79 -0.04 -0.61 B66 2110–2200 10 54 54 -150 -150 -138 -138 28 31.5 63.5 55 63.5 55 -169.10 -167.05 -36.30 -25.55 -207.60 -186.10 -202.70 -179.15 -169.10 -166.79 -100.10 -97.79 0.00 -0.26 B12 729–746 10 54 54 -151 -151 -120 -120 27 30.5 63 60 58 55 -169.23 -167.55 -36.23 -31.75 -207.46 -198.50 -202.69 -192.05 -169.23 -167.53 -100.23 -98.53 0.00 -0.02 Desense due to IP2 noise of Tx leakage calculation Band Rx frequency (MHz) BW (MHz) SDR IP2 (dBm) SDR RBN (dBm/Hz) PA RBN (dBm/Hz) PA Rx band gain (dB) DPx Tx-Rx isolation at Tx frequency (dB) DPx Tx-Rx isolation at Rx frequency (dB) Noise floor (dBm/Hz) at antenna connector without Tx noise Tx leakage power at LNA (dBm) IP2 noise at LNA in (dBm/Hz) IP2 noise at antenna (dBm/Hz) Noise floor at antenna with IP2 noise (dBm/Hz) Sensitivity with IP2 (max Tx power)(dBm) Desense due to IP2 (dB) Rx SAW
  • 31. 31 DONE T W T W T W T W T W T W T W T W T W T W T W T W T W B1 2110–2170 10 54 54 -150 -150 -136 -136 29 32.5 59 52 54 50 -167.15 -165.20 -120.86 -117.44 4.55 5.80 -170.31 -161.64 -165.44 -160.05 -96.44 -91.05 -1.71 -5.15 B2 1930–1990 10 54 54 -148 -148 -133 -133 30.5 34 66.8 55 65.6 55 -169.09 -166.80 -117.38 -113.95 4.91 7.20 -178.07 -161.75 -168.57 -160.57 -99.57 -91.57 -0.52 -6.23 B3 1805–1880 10 54 54 -148 -148 -135 -135 29.5 33 56 52 56 50 -166.75 -164.40 -118.40 -114.96 4.95 6.60 -169.45 -158.36 -164.88 -157.39 -95.88 -88.39 -1.87 -7.01 B66 2110–2200 10 54 54 -150 -150 -138 -138 28 31.5 63.5 55 63.5 55 -169.10 -167.05 -121.89 -118.45 4.90 6.95 -180.49 -166.50 -168.80 -163.76 -99.80 -94.76 -0.30 -3.29 B12 729–746 10 54 54 -151 -151 -120 -120 27 30.5 63 60 58 55 -169.23 -167.55 -118.54 -117.23 4.77 6.45 -171.77 -165.78 -167.31 -163.57 -98.31 -94.57 -1.92 -3.98 Noise floor at antenna with RXBN (dBm/Hz) Sensitivity with RXBN (max Tx power)(dBm) Desense due to RXBN (dB) RXBN due to Tx at antenna (dBm/Hz) Desense due to Rx band noise of Tx leakage calculation Band Rx frequency (MHz) BW (MHz) SDR IP2 (dBm) SDR RBN (dBm/Hz) PA RBN (dBm/Hz) PA Rx band gain (dB) DPx Tx-Rx isolation at Tx frequency (dB) DPx Tx-Rx isolation at Rx frequency (dB) Noise floor (dBm/Hz) at antenna connector without Tx noise Total RXBN at PA output (dBm/Hz) Loss from Rx DPx to antenna (dB) Conclusion: OXX B66 PRx desense analysis Tx leakage in Rx band Rx SAW
  • 32. 32 Conclusion: OXX B66 PRx desense analysis Tx IP2 noise DONE T W T W T W T W T W T W T W T W T W T W T W T W T W B1 2110–2170 10 54 54 -150 -150 -136 -136 29 32.5 59 52 54 50 -167.15 -165.20 -31.58 -22.50 -198.16 -180.00 -193.61 -174.20 -167.14 -164.69 -98.14 -95.69 -0.01 -0.51 B2 1930–1990 10 54 54 -148 -148 -133 -133 30.5 34 66.8 55 65.6 55 -169.09 -166.80 -39.97 -26.10 -214.94 -187.20 -210.03 -180.00 -169.09 -166.60 -100.09 -97.60 0.00 -0.20 B3 1805–1880 10 54 54 -148 -148 -135 -135 29.5 33 56 52 56 50 -166.75 -164.40 -28.63 -22.10 -192.26 -179.20 -187.31 -172.60 -166.71 -163.79 -97.71 -94.79 -0.04 -0.61 B66 2110–2200 10 54 54 -150 -150 -138 -138 28 31.5 63.5 55 63.5 55 -169.10 -167.05 -36.30 -25.55 -207.60 -186.10 -202.70 -179.15 -169.10 -166.79 -100.10 -97.79 0.00 -0.26 B12 729–746 10 54 54 -151 -151 -120 -120 27 30.5 63 60 58 55 -169.23 -167.55 -36.23 -31.75 -207.46 -198.50 -202.69 -192.05 -169.23 -167.53 -100.23 -98.53 0.00 -0.02 Desense due to IP2 noise of Tx leakage calculation Band Rx frequency (MHz) BW (MHz) SDR IP2 (dBm) SDR RBN (dBm/Hz) PA RBN (dBm/Hz) PA Rx band gain (dB) DPx Tx-Rx isolation at Tx frequency (dB) DPx Tx-Rx isolation at Rx frequency (dB) Noise floor (dBm/Hz) at antenna connector without Tx noise Tx leakage power at LNA (dBm) IP2 noise at LNA in (dBm/Hz) IP2 noise at antenna (dBm/Hz) Noise floor at antenna with IP2 noise (dBm/Hz) Sensitivity with IP2 (max Tx power)(dBm) Desense due to IP2 (dB) Rx SAW
  • 33. 33 B12 Tx 3rd harmonic ANT-Tx att = 35~43 dB B12 Tx 3f0 = -30~-24 dBm att = 35 dB FE loss = 5 dB -99.97 dBm/Hz – 43 – 35 + 5 = -173 dBm/Hz B12 TRx B66 DRx -100 dBm/Hz -121.9 dBm/Hz OXX B12+B66 CA desense analysis Rx SAW ANT-ANT iso = 10~15 dB
  • 34. 34