Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

BE Chemical Engineering Design Project Production Of Propylene Oxide

BE Chemical Engineering Final Year Group Design Project

  • Loggen Sie sich ein, um Kommentare anzuzeigen.

BE Chemical Engineering Design Project Production Of Propylene Oxide

  1. 1. Production of 100,000 tonnes per annum of 99.8% Propylene Oxide Group 4 Eoin Brady Patrick Conneran Rory Gannon Brian Hale Sorcha Russell
  2. 2. Introduction <ul><li>Product Description </li></ul><ul><li>Selection of Process </li></ul><ul><li>Individual Equipment Design </li></ul><ul><li>Cost Estimates </li></ul><ul><li>EIS </li></ul><ul><li>HAZOP </li></ul><ul><li>Plant Layout </li></ul>
  3. 3. Product Description <ul><li>Propylene Oxide </li></ul><ul><ul><li>Colourless liquid, ether-like odour </li></ul></ul><ul><ul><li>Dangerous product </li></ul></ul><ul><ul><li>3 rd largest derivative of propylene </li></ul></ul><ul><ul><li>Global production ~ 5.78 million tonnes per annum </li></ul></ul><ul><ul><li>Used as chemical intermediate in production of polyurethane polyols </li></ul></ul><ul><ul><li>Used in manufacture of propylene glycol </li></ul></ul><ul><ul><li>Manufactured by Dow, Lyondell and Shell Chemicals </li></ul></ul>
  4. 4. Process Selection CHPO: Chlorohydrin Process PO/TBA: t-Butyl Alcohol Co-Product Process PO/SM: Styrene Monomer Co-Product Process CHP: Cumene Hydrogen Peroxide Process
  5. 5. Process Selection <ul><li>Common Practices </li></ul><ul><li>Environmental Impact </li></ul><ul><li>Economic Viability </li></ul><ul><li>Availability of Information </li></ul>
  6. 6. Description of Process - PFD
  7. 7. Oxidation Reaction <ul><li>Reaction </li></ul><ul><ul><li>Oxidation of Ethylbenzene to Ethylbenzene </li></ul></ul><ul><ul><li>Hydroperoxide </li></ul></ul><ul><li>Conditions </li></ul><ul><ul><li>Liquid Phase </li></ul></ul><ul><ul><li>Pressure: 35 bar </li></ul></ul><ul><ul><li>Temperature: 132-146 0 C </li></ul></ul><ul><li>Equipment </li></ul><ul><ul><li>CSTR </li></ul></ul><ul><li>Difficulties </li></ul>
  8. 8. Chemical and Mechanical Design <ul><li>Sizing </li></ul>
  9. 9. Chemical and Mechanical Design <ul><li>Sizing </li></ul>133.67 Head thickness (mm) 79.07 Shell thickness (mm) 0.54 Baffle Width (m) 4 Number of Baffles 9.81 Height (m) 5.45 Liquid depth (m) 5.45 Diameter (m) 0.18  (hr) 127.06 Volume (m 3 )
  10. 10. P&ID
  11. 11. Epoxidation Reaction <ul><li>Produces product, Propylene Oxide, according to reaction: </li></ul><ul><ul><ul><li>C 6 H 6 CHCH 3 OOH + CH 2 CHCH 3 => C 6 H 6 CHCH 3 OH + CH 2 OCHCH 3 </li></ul></ul></ul><ul><li>Reaction Conditions: </li></ul><ul><ul><ul><li>Takes place under high pressure (40 bar) and high temperature (upto 125 o C) </li></ul></ul></ul><ul><ul><ul><li>Requires a metal catalyst, homogenous or heterogeneous </li></ul></ul></ul><ul><ul><ul><li>Approximately 1.5 hours for >98% hydroperoxide conversion </li></ul></ul></ul><ul><li>Requirements: </li></ul><ul><ul><ul><li>13888.89 kg of Propylene Oxide Produced per hour (for 100,000 tonnes p.a.) </li></ul></ul></ul>
  12. 12. Epoxidation Reactor <ul><li>P&ID for Reactor System: </li></ul>
  13. 13. Epoxidation Reactor <ul><li>Reactor System: </li></ul><ul><ul><ul><li>Highly exothermic reaction, with continuous flow and high conversion – PFR used </li></ul></ul></ul><ul><ul><ul><ul><li>Modelled as non-isothermal, adiabatic </li></ul></ul></ul></ul><ul><ul><ul><ul><li>3 PFRs in series, with split cold feed for inter-reactor cooling </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Packed Bed of catalyst (TS-1 Titanium on Silica gel) </li></ul></ul></ul></ul>
  14. 14. Epoxidation Reactor <ul><li>Chemical Engineering Design: </li></ul><ul><ul><ul><li>Kinetic data difficult to find </li></ul></ul></ul><ul><ul><ul><li>Reaction of propylene with other hydroperoxides reported as first order, irreversible </li></ul></ul></ul><ul><ul><ul><li>No side reactions </li></ul></ul></ul><ul><ul><ul><li>Model reaction as first order irreversible; determine k 0 from: </li></ul></ul></ul>
  15. 15. Epoxidation Reactor <ul><li>Properties: </li></ul><ul><ul><ul><li>From various sources: </li></ul></ul></ul><ul><ul><ul><ul><li>E a for a similar reaction </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Concentrations/Temperature from detailed stream descriptions in patent </li></ul></ul></ul></ul>J/kg mol 8.314 R K 398 T Exit K 322 T 0 Mol/m3 0.825865 C a Mol/m 3 66.95381 C a0 J 36400 E a J/mol -72500 dH RX Hr -1 0.6575 k 0
  16. 16. Epoxidation Reactor <ul><li>Temperature Profile : </li></ul><ul><li>Using this, temperature dependant rate constant is : </li></ul>
  17. 17. Epoxidation Reactor <ul><li>Rate Equation : </li></ul><ul><ul><ul><li>Rate for a catalytic PFR must be calculated in terms of amount of catalyst (in grams) </li></ul></ul></ul><ul><li>PFR Design Equation : </li></ul>
  18. 18. Epoxidation Reactor
  19. 19. Epoxidation Reactor: <ul><li>Results: </li></ul><ul><ul><li>Total Volume required for 98% conversion was 6.22m 3 – i.e. 3x 2.07m 3 reactors </li></ul></ul><ul><li>Mechanical Design: </li></ul><ul><ul><li>Length to diameter: 3:1 </li></ul></ul><ul><ul><li>Length = 2.69m, Diameter = 0.89m </li></ul></ul><ul><ul><li>Choice of ends: </li></ul></ul><ul><ul><ul><li>High pressure dictates use of hemispherical ends </li></ul></ul></ul>
  20. 20. Epoxidation Reactor <ul><li>Mechanical Design Continued : </li></ul><ul><ul><li>Design Pressure, Temperature : </li></ul></ul><ul><ul><ul><li>P d =4.4N/mm 2 , T d =125 o C </li></ul></ul></ul><ul><ul><li>Material of Construction : </li></ul></ul><ul><ul><ul><li>2% Ni low alloy carbon steel – high tensile strength and design stress at T d (550 and 240 N/mm 2 respectively) </li></ul></ul></ul><ul><ul><li>Thickness Calculation : </li></ul></ul>
  21. 21. Epoxidation Reactor <ul><li>Thickness calc. continued: </li></ul><ul><ul><ul><li>End thickness: for hemispherical ends, </li></ul></ul></ul><ul><li>t end =0.6*t </li></ul><ul><ul><ul><li>Corrosion allowance of 4mm chosen, as a precautionary measure </li></ul></ul></ul><ul><li>Mechanical Design Results: </li></ul>8.98 plus corrosion allowance (mm) 4.98 Min. Hemispherical End Thickness (mm) 12.29 plus corrosion allowance (mm) 8.29 Minimum Cylinder Thickness (mm)
  22. 22. Epoxidation Reactor <ul><li>Supports: </li></ul><ul><ul><li>Horizontal Vessel: Saddle Supports: </li></ul></ul>20 6 10 0.1 0.28 0.34 0.81 0.15 0.63 0.9 Bolt Diameter t2 t1 G J E C Y V Diameter (mm) Dimensions (m):
  23. 23. Epoxidation Reactor <ul><li>Summary: </li></ul><ul><ul><ul><li>Assumptions: </li></ul></ul></ul><ul><ul><ul><ul><li>1 st order irreversible, no side reactions – i.e. Reaction of EBHP and propylene is similar to Propylene and TBHP </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Adiabatic reactor </li></ul></ul></ul></ul><ul><ul><ul><ul><li>98% conversion at all times </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Heat capacities constant within range </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Ethylbenzene Hydroperoxide has properties similar to Ethylbenzene </li></ul></ul></ul></ul>
  24. 24. Flash Drum <ul><li>Inlet stream </li></ul><ul><ul><li>Propylene </li></ul></ul><ul><ul><li>Propylene Oxide </li></ul></ul><ul><ul><li>Acetophenone </li></ul></ul><ul><ul><li>Ethyl Benzene </li></ul></ul><ul><ul><li>1-phenyl ethanol </li></ul></ul><ul><ul><li>etc </li></ul></ul>
  25. 25. Flash Drum <ul><li>Properties of propylene </li></ul><ul><ul><li>Boiling point 225.46K </li></ul></ul><ul><ul><li>etc </li></ul></ul>
  26. 26. Flash Drum Inlet Propylene Propylene Oxide Ethyl Benzene Acetophenone 1-phenol ethanol Vapour Phase Liquid Phase
  27. 27. Flash Drum <ul><li>Pro II </li></ul><ul><ul><li>Isothermal Flash </li></ul></ul><ul><ul><li>Thermodynamic model – UNIFAC </li></ul></ul><ul><ul><li>Inlet </li></ul></ul><ul><ul><ul><li>At 6894kPa and 621K </li></ul></ul></ul><ul><ul><li>Operating conditions </li></ul></ul><ul><ul><ul><li>Constant pressure </li></ul></ul></ul><ul><ul><ul><li>Pressure drop 5794 kPa </li></ul></ul></ul>
  28. 28. Flash Drum <ul><li>Control </li></ul><ul><li>Level control </li></ul><ul><li>Pressure control </li></ul><ul><ul><li>Pressure relief valve </li></ul></ul>
  29. 29. Distillation Column 1 <ul><li>Shortcut Calculations </li></ul><ul><ul><li>Bubble and dew point of mixture </li></ul></ul><ul><ul><li>Hengstebeck’s shortcut Method for multicomponent distillation </li></ul></ul><ul><li>PRO II Simulation </li></ul><ul><ul><li>Choice of thermodynamic model: UNIQUAC </li></ul></ul><ul><ul><li>Optimum number of trays and feed plate location: </li></ul></ul><ul><ul><ul><li>7 ideal stages with feed onto fourth plate </li></ul></ul></ul>
  30. 30. Plate Design <ul><li>Sieve Plate chosen </li></ul><ul><ul><li>Calculated diameter at points above and below feed for 85% flooding. </li></ul></ul><ul><ul><li>Diameter of 2.4 m above feed and 2.7 m below feed. </li></ul></ul><ul><ul><li>Chose diameter of 2.6 m. </li></ul></ul><ul><ul><li>Checked weeping, system operating above the weep point. </li></ul></ul><ul><li>Flow arrangement in column </li></ul><ul><ul><li>Single pass above and double pass below feed </li></ul></ul><ul><li>Plate Pressure Drop calculated </li></ul><ul><ul><li>Average drop of 1.22 kPa per plate </li></ul></ul><ul><li>Downcomer design (plate spacing) </li></ul><ul><ul><li>Liquid back-up above the column is 0.2 m, plate spacing of 0.5 m taken. </li></ul></ul><ul><ul><li>Liquid back-up below is 0.3 to 0.4 m, plate spacing of 0.8 m taken. </li></ul></ul>
  31. 31. Plate Efficiency <ul><li>Used the AIChE method </li></ul><ul><ul><li>Assumptions: </li></ul></ul><ul><ul><ul><li>Binary mixture of ethylbenzene and propylene oxide. </li></ul></ul></ul><ul><ul><ul><li>Used for sieve trays. </li></ul></ul></ul><ul><ul><li>Murphree tray efficiencies calculated and corrected for fractional entrainment. </li></ul></ul><ul><ul><li>Overall efficiency of 64% </li></ul></ul>
  32. 32. Reboiler & Condenser <ul><li>Reboiler </li></ul><ul><ul><li>Horizontal with bottoms product on shell side. </li></ul></ul><ul><ul><li>Heating fluid: Dowtherm T thermal fluid. </li></ul></ul><ul><ul><li>Exchanger dimensions: </li></ul></ul><ul><ul><ul><li>Tube length: 4.88 m </li></ul></ul></ul><ul><ul><ul><li>No. of tubes: 350 </li></ul></ul></ul><ul><ul><li>Critical heat flux was not exceeded </li></ul></ul><ul><li>Condenser </li></ul><ul><ul><li>Vertical with condensing vapour on shell side. </li></ul></ul><ul><ul><li>Cooling fluid: Refrigerated brine. </li></ul></ul><ul><ul><li>Exchanger dimensions: </li></ul></ul><ul><ul><ul><li>Tube length: 4.88 m </li></ul></ul></ul><ul><ul><ul><li>No. of tubes: 300 </li></ul></ul></ul>
  33. 33. Mechanical Engineering Design <ul><li>Material selection </li></ul><ul><ul><li>Type 316 stainless steel </li></ul></ul><ul><li>Vessel Dimensions </li></ul><ul><ul><li>Column Diameter: 2.6m </li></ul></ul><ul><ul><li>Column height: 16 m </li></ul></ul><ul><li>Vessel Thickness </li></ul><ul><ul><li>Column and head thickness of 10 mm, including corrosion allowance of 2 mm.. </li></ul></ul><ul><ul><li>Torispherical heads chosen. </li></ul></ul><ul><li>Vessel Supports </li></ul><ul><ul><li>Skirt Support chosen </li></ul></ul><ul><li>Analysis of stresses in column and support was performed, all were well below the design stress. </li></ul>
  34. 35. Distilation of Ethylbenzene <ul><li>Problem statement: </li></ul><ul><li>Feed: </li></ul><ul><li>mole composition; 61.1%Ethylbenzene, 32.7% </li></ul><ul><li>1-phenyl ethanol, 4.7% acetophenone, 1.5% heavies </li></ul><ul><li>Temperature = 425K (bubble point) </li></ul><ul><li>Pressure = 1.325bar abs </li></ul><ul><li>Desired output? </li></ul><ul><li>Top product stream; 98.05% ethylbezene recovered at 99.08% purity </li></ul>
  35. 36. Chemical Design of Column <ul><li>PRO/II - UNIFAC </li></ul><ul><li>No. of theoretical stages = 33 </li></ul><ul><li>Determining Efficiency AICHEME – v – Chan and Fair </li></ul><ul><li>Overall Efficiency - 76.1% with sieve trays </li></ul><ul><li>Actual no. of stages = 44 (42 trays+condenser+reboiler) </li></ul>
  36. 37. Mechanical Design <ul><li>Column </li></ul><ul><ul><li>Trays </li></ul></ul><ul><ul><ul><li>Stainless steel 316 </li></ul></ul></ul><ul><ul><ul><li>Total diameter = 3.09m, total area = 7.527m2. </li></ul></ul></ul><ul><ul><ul><li>Downcomer area = 0.903m2. (12% of total) </li></ul></ul></ul><ul><ul><ul><li>Punched sieve holes - 3mm diameter </li></ul></ul></ul><ul><ul><ul><li>Square pitch - 7.5mm </li></ul></ul></ul><ul><ul><ul><li>Weir height = 50mm </li></ul></ul></ul><ul><ul><ul><li>Plate spacing = 0.55m </li></ul></ul></ul><ul><ul><li>Vessel </li></ul></ul><ul><ul><ul><li>Stainless steel 316 </li></ul></ul></ul><ul><ul><ul><li>Height = 23.5m </li></ul></ul></ul><ul><ul><ul><li>Bottom thickness = 51mm (including corrosion resistance) </li></ul></ul></ul><ul><ul><li>Support - skirt </li></ul></ul><ul><ul><ul><li>Carbon steel </li></ul></ul></ul>
  37. 38. Mechanical Design continued <ul><li>Reboiler </li></ul><ul><ul><li>Kettle at 469.5K (196.35 ºC ) </li></ul></ul><ul><ul><li>Duty = 5.42 x 106 W (incl. 5% for heat losses) </li></ul></ul><ul><ul><li>Overall heat transfer coefficient - Mostinski equation </li></ul></ul><ul><ul><li>U-tubes - Heat transfer area required = 58.17m2 </li></ul></ul><ul><ul><li>Thermal fluid; Dowtherm T </li></ul></ul><ul><ul><li>Mean temperature difference of 98K (satisfies Zuber max. heat flux condition) </li></ul></ul><ul><ul><li>Tubes; </li></ul></ul><ul><ul><ul><li>length = 6m </li></ul></ul></ul><ul><ul><ul><li>inner diameter = 25mm </li></ul></ul></ul><ul><ul><ul><li>outer diameter = 30mm </li></ul></ul></ul><ul><ul><ul><li>Square pitch of 45mm </li></ul></ul></ul><ul><ul><ul><li>No. of tubes = 103min </li></ul></ul></ul>
  38. 39. Mechanical Design Continued <ul><li>Condensers </li></ul><ul><ul><li>Heat transfer required = 8.07 x 106 W </li></ul></ul><ul><ul><li>Condensing at 136.35 ºC (409.5K) </li></ul></ul><ul><ul><li>Cooling water; assuming supply temp. at 20 ºC (298K) </li></ul></ul><ul><ul><li>Design Mean temperature difference = 96.5K </li></ul></ul><ul><ul><li>Area for heat transfer required = 119.34 m2. </li></ul></ul><ul><ul><li>2 bubble point condensers </li></ul></ul><ul><ul><ul><li>Tubes; </li></ul></ul></ul><ul><ul><ul><ul><li>length = 2.5m </li></ul></ul></ul></ul><ul><ul><ul><ul><li>inner diameter = 25mm </li></ul></ul></ul></ul><ul><ul><ul><ul><li>outer diameter = 30mm </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Outer area per tube = 0.3141m2 (incl. safety factor 0.75) </li></ul></ul></ul></ul><ul><ul><ul><li>338 tubes per condenser </li></ul></ul></ul>
  39. 40. P & ID
  40. 41. Cost assessment <ul><li>Fixed capital investment = €69,466,000 </li></ul><ul><li>Annual costs </li></ul><ul><ul><li>Operating Labour = €2,039,600 </li></ul></ul><ul><ul><li>Raw Materials = €304,560,000 </li></ul></ul><ul><ul><li>Utilities and Maintenance = €10,679,000 </li></ul></ul><ul><li>Annual revenue = €518,140,800 </li></ul><ul><li>Assumptions; </li></ul><ul><ul><li>Two years for construction of plant </li></ul></ul><ul><ul><li>10 year plant operating life </li></ul></ul><ul><ul><li>Taxation rate is defaulted to 12.5%, </li></ul></ul><ul><ul><li>The discounted cash flow rate is set at 8% </li></ul></ul>
  41. 42. Cumulative Cash Flow
  42. 43. Environmental Impact Statement <ul><li>Performed in conjunction with EIA </li></ul><ul><li>Legislative Basis: </li></ul><ul><ul><li>S.I. 349 of 1989 (European Communities (Environmental Impact Assessment) Regulation) </li></ul></ul><ul><ul><li>Planning and Development Regulations, 2001. </li></ul></ul><ul><li>Paragraph 6 of Part 1 of Schedule 5 states that an EIS is required in respect of: </li></ul><ul><ul><ul><li>‘ Integrated chemical installations, i.e. those installations for the manufacture on an industrial scale of substances using chemical conversion processes’ </li></ul></ul></ul>
  43. 44. Environmental Impact Assessment <ul><li>Procedure: </li></ul><ul><ul><ul><li>Examine existing environment </li></ul></ul></ul><ul><ul><ul><li>Determine potential impacts </li></ul></ul></ul><ul><ul><ul><li>Identify opportunities to mitigate negative impacts </li></ul></ul></ul><ul><ul><ul><li>Predict most likely impacts </li></ul></ul></ul><ul><ul><ul><li>Investigate the ‘Do-nothing Scenario’ </li></ul></ul></ul><ul><li>Alternatives: </li></ul><ul><ul><ul><li>Location – </li></ul></ul></ul><ul><ul><ul><ul><ul><li>Lack of available green field sites </li></ul></ul></ul></ul></ul><ul><ul><ul><li>Design – </li></ul></ul></ul><ul><ul><ul><ul><ul><li>Buildings designed to conform with other buildings in area, i.e. not to dominate or alter existing skyline </li></ul></ul></ul></ul></ul><ul><ul><ul><li>Layout – </li></ul></ul></ul><ul><ul><ul><ul><ul><li>Designed to cause least disturbance and maximum safety while allowing effective operation </li></ul></ul></ul></ul></ul>
  44. 45. Environmental Impact Statement <ul><li>Construction Phase: </li></ul><ul><ul><li>Earthworks: </li></ul></ul><ul><ul><ul><ul><li>Normal soil stripping, dust reduction by damping/grass cover </li></ul></ul></ul></ul><ul><ul><li>Health and Safety: </li></ul></ul><ul><ul><ul><ul><li>Contractors must comply with Safety, Health and Welfare at Work Act, 2005, Noise Regulations 1990 </li></ul></ul></ul></ul><ul><ul><ul><ul><ul><li>Erect fences where appropriate </li></ul></ul></ul></ul></ul><ul><ul><ul><ul><li>Waste Management Plan: </li></ul></ul></ul></ul><ul><ul><ul><ul><ul><li>Construction and municipal waste from site </li></ul></ul></ul></ul></ul><ul><ul><li>Construction Management Plan: </li></ul></ul><ul><ul><ul><ul><li>Details of all mitigation measures – traffic, waste, noise, health/safety etc. set out and agreed to by contractors </li></ul></ul></ul></ul>
  45. 46. Environmental Impact Statement <ul><li>Major Impacts Predicted: </li></ul><ul><ul><li>Human/Socio Economic: </li></ul></ul><ul><ul><ul><ul><li>Long term positive impact predicted, owing to: </li></ul></ul></ul></ul><ul><ul><ul><ul><ul><li>Employment opportunities </li></ul></ul></ul></ul></ul><ul><ul><ul><ul><ul><li>Potential to attract further industry </li></ul></ul></ul></ul></ul><ul><ul><ul><ul><ul><li>Economic benefit to locality caused by recreation/commercial activity </li></ul></ul></ul></ul></ul><ul><ul><li>Ecological: </li></ul></ul><ul><ul><ul><ul><li>No site survey </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Assumed no rare/protected species on site </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Building causes 100% destruction of environment at site – permanent minor negative impact </li></ul></ul></ul></ul>
  46. 47. Environmental Impact Statement <ul><li>Pollution: </li></ul><ul><ul><li>Air/Water: </li></ul></ul><ul><ul><ul><li>Use of VOC’s onsite, eg. Ethylbenzene, and other dangerous substances, may cause significant negative impact to air from spillages or normal operation </li></ul></ul></ul><ul><ul><ul><li>Increased traffic will cause air pollution </li></ul></ul></ul><ul><ul><ul><li>Best practice, effective storage, collection pools etc., used to mitigate </li></ul></ul></ul><ul><ul><ul><ul><li>Highly reactive compounds unlikely to build up in atmosphere </li></ul></ul></ul></ul><ul><ul><ul><li>Minor negative impact predicted – receiving environment includes existing industrial concern </li></ul></ul></ul><ul><ul><li>Noise: </li></ul></ul><ul><ul><ul><li>Conoco Phillips plant adjacent – moderate noise pollution </li></ul></ul></ul><ul><ul><ul><li>Construction phase will cause significant noise pollution </li></ul></ul></ul><ul><ul><ul><li>Operation will cause moderate-low negative impact, considering existing noise levels. Traffic noise will be a major component </li></ul></ul></ul>
  47. 48. Environmental Impact Statement <ul><li>Summary: </li></ul><ul><ul><li>Overall impact of proposed development is predicted to be a long term positive one </li></ul></ul><ul><ul><li>Environmental monitoring (water sources, and air) will help mitigate negative impacts </li></ul></ul><ul><ul><li>Wastewater treatment/scrubbers on site to limit pollution </li></ul></ul>
  48. 49. HAZOP <ul><li>HAZOP group meeting </li></ul><ul><li>Identified 17 nodes </li></ul><ul><li>Decided on 27 actions </li></ul>
  49. 50. HAZOP <ul><li>Actions </li></ul><ul><li>etc </li></ul>
  50. 51. Node 1 Node 16
  51. 53. Site Location: Whitegate Co. Cork ConocoPhillips Cork City and Cork Port N Site Location
  52. 54. Site Layout
  53. 55. Questions? <ul><li>Final Year Chemical Engineering Design Project </li></ul><ul><li>Group 4 </li></ul><ul><li>“ Design a plant to produce 100,000 tonnes per annum of 98.9% Propylene Oxide” </li></ul><ul><li>Brian Hale </li></ul><ul><li>Sorcha Russell </li></ul><ul><li>Rory Gannon </li></ul><ul><li>Eoin Brady </li></ul><ul><li>Patrick Conneran </li></ul>

×