SlideShare a Scribd company logo
1 of 61
Download to read offline
Conics & Parameters
                 y
1) Circle
                  a



            -a         a   x
                      x2  y2  a2

                 -a
Conics & Parameters
                 y
1) Circle
                  a
                      P  x, y 


            -a            a        x
                         x2  y2  a2

                 -a
Conics & Parameters
                  y
 1) Circle         a
                               P  x, y 
                       a
                       
             -a            x       a        x
                                 x2  y2  a2

                  -a
x
   cos
a
Conics & Parameters
                  y
 1) Circle         a
                               P  x, y 
                       a
                       
             -a            x       a        x
                                 x2  y2  a2

                  -a
x
   cos
a
x  a cos
Conics & Parameters        y
 1) Circle                  a
                                        P  x, y 
                                a       y
                                
               -a                   x        a       x
                                            x2  y2  a2

                           -a
x            y
   cos        sin 
a            a
x  a cos   y  a sin 
Conics & Parameters        y
 1) Circle                  a
                                         P  x, y 
                                a        y
                                
               -a                   x         a       x
                                             x2  y2  a2

                           -a
x            y                          Proof:
   cos        sin 
a            a                          x 2  y 2  a 2 cos 2   a 2 sin 2 
x  a cos   y  a sin                            a 2 cos 2   sin 2  
                                                   a2
2) Ellipse        y

                  b
                       P  x, y 
             -a            a        x
                  -b
2) Ellipse        y

                  b
                        P  x, y 
             -a             a        x
                  -b
                       x2  y2  a2
2) Ellipse        y

                  b
                                P  x, y 
                       
             -a            x        a        x
                  -b
                               x2  y2  a2
2) Ellipse          y

                    b
                                  P  x, y 
                         
               -a            x        a        x
                    -b
                                 x2  y2  a2


  x
     cos
  a
  x  a cos
2) Ellipse          y

                    b
                               P  x, y 
                         y
               -a         x        a        x
                    -b
                              x2  y2  a2


  x
     cos
  a
  x  a cos
2) Ellipse                   y

                             b
                                        P  x, y 
                                  y
               -a                  x        a        x
                             -b
                                       x2  y2  a2


  x            y
     cos        sin 
  a            b
  x  a cos   y  b sin 
2) Ellipse                      y

                                b
                                           P  x, y 
               x2  y 2  b2
                                     y
                  -a                  x        a        x
                                -b
                                          x2  y2  a2

                                          Proof:
  x              y
     cos          sin 
  a              b                        x 2 y 2 a 2 cos 2  b 2 sin 2 
                                            2
                                               2        2
                                                               
  x  a cos      y  b sin              a b          a              b2
                                                   cos 2   sin 2 
                                                  1
Equation of Tangent and Normal
                        y
                         b
                                 P x1 , y1 
              -a                      a     x
                       -b
 x2 y2
  2
     2 1
 a b
Equation of Tangent and Normal
                        y
                         b
                                 P x1 , y1 
                -a                    a     x
                       -b
 x2 y2
   2
      2 1
 a b
 2 x 2 y dy             df df dy 
      2  0           dx  dy  dx 
                                     
   2
 a    b dx
Equation of Tangent and Normal
                        y
                         b
                                 P x1 , y1 
                -a                    a     x
                       -b
 x2 y2
   2
      2 1
 a b
 2 x 2 y dy             df df dy 
      2  0           dx  dy  dx 
                                     
   2
 a    b dx
      2 y dy    2x
        2
            2
      b dx      a
           dy   b2 x
               2
           dx   a y
Equation of Tangent and Normal
                        y
                         b
                                 P x1 , y1 
                -a                    a     x
                       -b
 x2 y2
   2
      2 1
 a b
 2 x 2 y dy             df df dy 
      2  0           dx  dy  dx 
                                     
   2
 a    b dx
      2 y dy    2x
        2
            2                            at P x1 , y1 
      b dx      a
           dy   b2 x                              dy   b 2 x1
               2                                    2
           dx   a y                               dx   a y1
y
                           b
                               P x1 , y1 
                   -a               a     x
                          -b
tangent:
          b 2 x1
y  y1   2  x  x1 
          a y1
y
                                           b
                                               P x1 , y1 
                           -a                       a     x
                                          -b
tangent:
             b 2 x1
y  y1   2  x  x1 
             a y1
a 2 y1 y  a 2 y12  b 2 x1 x  b 2 x12
b 2 x1 x  a 2 y1 y  b 2 x12  a 2 y12
y
                                           b
                                               P x1 , y1 
                           -a                       a     x
                                          -b
tangent:
             b 2 x1
y  y1   2  x  x1 
             a y1
a 2 y1 y  a 2 y12  b 2 x1 x  b 2 x12
b 2 x1 x  a 2 y1 y  b 2 x12  a 2 y12
      x1 x y1 y x12 y12
        2
           2  2 2
      a    b    a b
y
                                           b
                                               P x1 , y1 
                           -a                       a     x
                                          -b
tangent:
             b 2 x1
y  y1   2  x  x1 
             a y1
a 2 y1 y  a 2 y12  b 2 x1 x  b 2 x12
b 2 x1 x  a 2 y1 y  b 2 x12  a 2 y12
      x1 x     y1 y x12 y12
        2
                2
                     2 2
      a        b     a b
      x1 x     y1 y
        2
                2
                    1
      a        b
y
                                           b
                                                  P x1 , y1 
                           -a                          a     x
                                          -b
tangent:                                       normal:
             b 2 x1                                    a 2 y1
y  y1   2  x  x1                         y  y1  2  x  x1 
             a y1                                      b x1
a 2 y1 y  a 2 y12  b 2 x1 x  b 2 x12
b 2 x1 x  a 2 y1 y  b 2 x12  a 2 y12
      x1 x     y1 y x12 y12
        2
                2
                     2 2
      a        b     a b
      x1 x     y1 y
        2
                2
                    1
      a        b
y
                                           b
                                                     P x1 , y1 
                           -a                             a      x
                                          -b
tangent:                                        normal:
             b 2 x1                                           a 2 y1
y  y1   2  x  x1                            y  y1  2  x  x1 
             a y1                                             b x1
a 2 y1 y  a 2 y12  b 2 x1 x  b 2 x12       b 2 x1 y  b 2 x1 y1  a 2 y1 x  a 2 x1 y1
b 2 x1 x  a 2 y1 y  b 2 x12  a 2 y12        a 2 y1 x  b 2 x1 y  a 2 x1 y1  b 2 x1 y1
      x1 x     y1 y x12 y12
        2
                2
                     2 2
      a        b     a b
      x1 x     y1 y
        2
                2
                    1
      a        b
y
                                           b
                                                     P x1 , y1 
                           -a                             a      x
                                          -b
tangent:                                        normal:
             b 2 x1                                           a 2 y1
y  y1   2  x  x1                            y  y1  2  x  x1 
             a y1                                             b x1
a 2 y1 y  a 2 y12  b 2 x1 x  b 2 x12       b 2 x1 y  b 2 x1 y1  a 2 y1 x  a 2 x1 y1
b 2 x1 x  a 2 y1 y  b 2 x12  a 2 y12        a 2 y1 x  b 2 x1 y  a 2 x1 y1  b 2 x1 y1
      x1 x     y1 y x12 y12                         a2 x b2 y
        2
                2
                     2 2                                    a2  b2
      a        b     a b                             x1   y1
      x1 x     y1 y
        2
                2
                    1
      a        b
Using Parametric Coordinates;
at Pa cos , b sin  
Using Parametric Coordinates;
at Pa cos , b sin   dy    ab 2 cos
                            2
                        dx    a b sin 
                              b cos
                           
                              a sin 
Using Parametric Coordinates;
  at Pa cos , b sin   dy    ab 2 cos
                              2
                          dx    a b sin 
                                b cos
                             
                                a sin 
tangent:
                b cos
y  b sin             x  a cos 
                a sin 
Using Parametric Coordinates;
    at Pa cos , b sin   dy    ab 2 cos
                                2
                            dx    a b sin 
                                  b cos
                               
                                  a sin 
  tangent:
                    b cos
   y  b sin              x  a cos 
                    a sin 
ay sin   ab sin   bx cos  ab cos 2 
                  2


bx cos  ay sin   ab sin 2   ab cos 2 
Using Parametric Coordinates;
    at Pa cos , b sin   dy    ab 2 cos
                                2
                            dx    a b sin 
                                  b cos
                               
                                  a sin 
  tangent:
                    b cos
   y  b sin              x  a cos 
                    a sin 
ay sin   ab sin   bx cos  ab cos 2 
                  2


bx cos  ay sin   ab sin 2   ab cos 2 
  x cos y sin 
                 sin 2   cos 2 
     a      b
Using Parametric Coordinates;
    at Pa cos , b sin   dy    ab 2 cos
                                2
                            dx    a b sin 
                                  b cos
                               
                                  a sin 
  tangent:
                    b cos
   y  b sin              x  a cos 
                    a sin 
ay sin   ab sin   bx cos  ab cos 2 
                  2


bx cos  ay sin   ab sin 2   ab cos 2 
  x cos y sin 
                 sin 2   cos 2 
     a       b
       x cos y sin 
                     1
          a      b
Using Parametric Coordinates;
    at Pa cos , b sin   dy    ab 2 cos
                                2
                            dx    a b sin 
                                  b cos
                               
                                  a sin 
  tangent:                                  normal:
                    b cos                                   a sin 
   y  b sin              x  a cos      y  b sin            x  a cos 
                    a sin                                   b cos
ay sin   ab sin   bx cos  ab cos 2 
                  2


bx cos  ay sin   ab sin 2   ab cos 2 
  x cos y sin 
                 sin 2   cos 2 
     a       b
       x cos y sin 
                     1
          a      b
Using Parametric Coordinates;
    at Pa cos , b sin   dy    ab 2 cos
                                2
                            dx    a b sin 
                                  b cos
                               
                                  a sin 
  tangent:                                  normal:
                    b cos                                 a sin 
   y  b sin              x  a cos    y  b sin            x  a cos 
                    a sin                                 b cos
ay sin   ab sin   bx cos  ab cos  by cos  b sin  cos
                  2                        2             2


bx cos  ay sin   ab sin 2   ab cos 2              ax sin   a 2 sin  cos
  x cos y sin                                ax sin   by cos
                 sin 2   cos 2 
     a       b                                         a 2  b 2 sin  cos
       x cos y sin 
                     1
          a      b
Using Parametric Coordinates;
    at Pa cos , b sin   dy    ab 2 cos
                                2
                            dx    a b sin 
                                  b cos
                               
                                  a sin 
  tangent:                                  normal:
                    b cos                                 a sin 
   y  b sin              x  a cos    y  b sin            x  a cos 
                    a sin                                 b cos
ay sin   ab sin   bx cos  ab cos  by cos  b sin  cos
                  2                        2             2


bx cos  ay sin   ab sin 2   ab cos 2              ax sin   a 2 sin  cos
  x cos y sin                                ax sin   by cos
                 sin 2   cos 2 
     a       b                                         a 2  b 2 sin  cos
       x cos y sin 
                     1                            ax
                                                       
                                                         by
                                                               a 2  b2
          a      b                                 cos sin 
x2 y 2
For ellipse      2
                    2 1
                a b
tangent at  x1 , y1 

           x1 x y1 y
             2
                2 1
           a    b
x2 y 2
For ellipse      2
                    2 1
                a b
tangent at  x1 , y1       normal at  x1 , y1 

           x1 x y1 y
                2 1             a2 x b2 y
             2                              a2  b2
           a    b                  x1   y1
x2 y 2
For ellipse      2
                    2 1
                a b
tangent at  x1 , y1            normal at  x1 , y1 

           x1 x y1 y
                2 1                  a2 x b2 y
             2                                   a2  b2
           a    b                       x1   y1


tangent at a cos , b sin  

       x cos y sin 
                     1
          a      b
x2 y 2
For ellipse      2
                    2 1
                a b
tangent at  x1 , y1            normal at  x1 , y1 

           x1 x y1 y
                2 1                  a2 x b2 y
             2                                   a2  b2
           a    b                       x1   y1


tangent at a cos , b sin      normal at a cos , b sin  

       x cos y sin                   ax   by
                     1                         a 2  b2
          a      b                    cos sin 
x2
e.g. (i) Find the equation of the tangent to the ellipse  y 2  1
                                                        16
                        3
         at the point  2,   
                          2 
x2
e.g. (i) Find the equation of the tangent to the ellipse  y 2  1
                                                        16
                        3
         at the point  2,   
                          2 
  x      dy
     2y  0
  8      dx
         dy  x
             
         dx 16 y
x2
e.g. (i) Find the equation of the tangent to the ellipse  y 2  1
                                                        16
                        3
         at the point  2,   
                          2 
  x      dy
     2y  0                        3  dy          2
                               at  2,   , 
  8      dx                           2  dx         3
                                                  16      
         dy  x                                       2 
             
         dx 16 y                            dy      1
                                               
                                            dx 4 3
x2
e.g. (i) Find the equation of the tangent to the ellipse  y 2  1
                                                        16
                        3
         at the point  2,   
                          2 
  x      dy
     2y  0                        3  dy          2
                               at  2,   , 
  8      dx                           2  dx         3
                                                  16      
         dy  x                                       2 
             
         dx 16 y                            dy      1
                                               
                                            dx 4 3
                         3   1
                     y        x  2
                        2 4 3
x2
e.g. (i) Find the equation of the tangent to the ellipse  y 2  1
                                                        16
                        3
         at the point  2,   
                          2 
  x      dy
     2y  0                        3  dy          2
                               at  2,   , 
  8      dx                           2  dx         3
                                                  16      
         dy  x                                       2 
             
         dx 16 y                            dy      1
                                               
                                            dx 4 3
                         3   1
                     y        x  2
                        2 4 3
                     4 3y  6  x  2
                  x  4 3y  8  0
(ii) Find the equation of the normal to the ellipse x  2cos , y  sin 
                       
    at the point  
                       6
(ii) Find the equation of the normal to the ellipse x  2cos , y  sin 
                       
    at the point  
                        6
       y  sin f  x 
      dy
          f  x  cos f  x 
      dx
(ii) Find the equation of the normal to the ellipse x  2cos , y  sin 
                       
    at the point  
                        6
       y  sin f  x              y  cos f  x 
      dy                          dy
          f  x  cos f  x         f  x  sin f  x 
      dx                          dx
(ii) Find the equation of the normal to the ellipse x  2cos , y  sin 
                       
    at the point  
                        6
       y  sin f  x              y  cos f  x 
      dy                          dy
          f  x  cos f  x         f  x  sin f  x 
      dx                          dx
      x  2 cos
    dx
         2 sin 
    d
(ii) Find the equation of the normal to the ellipse x  2cos , y  sin 
                       
    at the point  
                        6
       y  sin f  x                y  cos f  x 
      dy                            dy
          f  x  cos f  x           f  x  sin f  x 
      dx                            dx
     x  2 cos         y  sin 
    dx                 dy
        2 sin           cos
    d                 d
(ii) Find the equation of the normal to the ellipse x  2cos , y  sin 
                       
    at the point  
                        6
       y  sin f  x                y  cos f  x 
      dy                            dy
          f  x  cos f  x           f  x  sin f  x 
      dx                            dx
     x  2 cos         y  sin       dy dy d
                                              
    dx                 dy              dx d dx
        2 sin           cos
    d                 d                   cos
                                         
                                            2 sin 
(ii) Find the equation of the normal to the ellipse x  2cos , y  sin 
                       
    at the point  
                        6
       y  sin f  x                y  cos f  x 
      dy                            dy
          f  x  cos f  x           f  x  sin f  x 
      dx                            dx
     x  2 cos         y  sin       dy dy d
                                              
    dx                 dy              dx d dx
        2 sin           cos
    d                 d                   cos
                                         
                                            2 sin 
                3
          dy 2
   at   , 
         6 dx  1
                3
             
                2
(ii) Find the equation of the normal to the ellipse x  2cos , y  sin 
                       
    at the point  
                        6
       y  sin f  x                y  cos f  x 
      dy                            dy
          f  x  cos f  x           f  x  sin f  x 
      dx                            dx
     x  2 cos         y  sin       dy dy d
                                              
    dx                 dy              dx d dx
        2 sin           cos
    d                 d                   cos
                                         
                                            2 sin 
                3
          dy 2                             1 2
                                          y    x  3 
   at   , 
         6 dx  1                           2  3
                3
             
                2
(ii) Find the equation of the normal to the ellipse x  2cos , y  sin 
                       
    at the point  
                        6
       y  sin f  x                y  cos f  x 
      dy                            dy
          f  x  cos f  x           f  x  sin f  x 
      dx                            dx
     x  2 cos         y  sin       dy dy d
                                              
    dx                 dy              dx d dx
        2 sin           cos
    d                 d                   cos
                                         
                                            2 sin 
                3
          dy 2                             1 2
                                          y      x  3 
   at   , 
         6 dx  1                           2    3
                3                        2 3y  3  4 x  4 3
             
                2                   4 x  2 3y  3 3  0
(iii) Show that if y  mx  k is a tangent to the ellipse
      x2 y2
         2  1, then a 2 m 2  b 2  k 2
      a2 b
(iii) Show that if y  mx  k is a tangent to the ellipse
      x2 y2
         2  1, then a 2 m 2  b 2  k 2
      a2 b
   x  a cos         y  b sin            dy  b cos
  dx                 dy                        
       a sin          b cos            dx   a sin 
  d                 d
(iii) Show that if y  mx  k is a tangent to the ellipse
      x2 y2
         2  1, then a 2 m 2  b 2  k 2
      a2 b
   x  a cos         y  b sin            dy  b cos
  dx                 dy                        
       a sin          b cos            dx   a sin 
  d                 d
                                  dy
  If y  mx  k is a tangent then    m
                                  dx
(iii) Show that if y  mx  k is a tangent to the ellipse
      x2 y2
         2  1, then a 2 m 2  b 2  k 2
      a2 b
   x  a cos         y  b sin            dy  b cos
  dx                 dy                        
       a sin          b cos            dx   a sin 
  d                 d
                                   dy
  If y  mx  k is a tangent then     m
                                   dx
                                         b cos
                               i.e. m 
                                         a sin 
(iii) Show that if y  mx  k is a tangent to the ellipse
      x2 y2
         2  1, then a 2 m 2  b 2  k 2
      a2 b
   x  a cos         y  b sin            dy  b cos
  dx                 dy                        
       a sin          b cos            dx   a sin 
  d                 d
                                   dy
  If y  mx  k is a tangent then     m
                                   dx
                                         b cos
                               i.e. m 
                                         a sin 
                                am sin   b cos
                        am sin   b cos  0  (1)
(iii) Show that if y  mx  k is a tangent to the ellipse
      x2 y2
         2  1, then a 2 m 2  b 2  k 2
      a2 b
   x  a cos         y  b sin            dy  b cos
  dx                 dy                        
       a sin          b cos            dx   a sin 
  d                 d
                                   dy
  If y  mx  k is a tangent then     m
                                   dx
                                         b cos
                               i.e. m 
                                         a sin 
                                am sin   b cos
                        am sin   b cos  0  (1)
If tangent meets ellipse at a cos , b sin   then;
                                b sin   am cos  k
(iii) Show that if y  mx  k is a tangent to the ellipse
      x2 y2
         2  1, then a 2 m 2  b 2  k 2
      a2 b
   x  a cos         y  b sin            dy  b cos
  dx                 dy                        
       a sin          b cos            dx   a sin 
  d                 d
                                   dy
  If y  mx  k is a tangent then     m
                                   dx
                                         b cos
                               i.e. m 
                                         a sin 
                                am sin   b cos
                        am sin   b cos  0  (1)
If tangent meets ellipse at a cos , b sin   then;
                                b sin   am cos  k
                     am cos  b sin   k  (2)
12 : a 2 m 2 sin 2   2abm sin  cos  b 2 cos 2   0     (+)

22 : a 2 m 2 cos 2   2abm sin  cos  b 2 sin 2   k 2
12 : a 2 m 2 sin 2   2abm sin  cos  b 2 cos 2   0           (+)

22 : a 2 m 2 cos 2   2abm sin  cos  b 2 sin 2   k 2
     a 2 m 2 sin 2   cos 2    b 2 sin 2   cos 2    k 2
12 : a 2 m 2 sin 2   2abm sin  cos  b 2 cos 2   0           (+)

22 : a 2 m 2 cos 2   2abm sin  cos  b 2 sin 2   k 2
     a 2 m 2 sin 2   cos 2    b 2 sin 2   cos 2    k 2
                         a 2m2  b2  k 2




             Exercise 6C; 1, 3, 11, 15, 18a

More Related Content

Viewers also liked

Xe4 launch мобильная разработка всеволод_леонов
Xe4 launch мобильная разработка всеволод_леоновXe4 launch мобильная разработка всеволод_леонов
Xe4 launch мобильная разработка всеволод_леоновЕкатерина Макарова
 
X.6 cindy melinda sofyani
X.6 cindy melinda sofyaniX.6 cindy melinda sofyani
X.6 cindy melinda sofyanicindysofyani
 
X2 t06 05 conical pendulum (2013)
X2 t06 05 conical pendulum (2013)X2 t06 05 conical pendulum (2013)
X2 t06 05 conical pendulum (2013)Nigel Simmons
 
X2 T07 02 resisted motion
X2 T07 02 resisted motionX2 T07 02 resisted motion
X2 T07 02 resisted motionNigel Simmons
 
Xarxes socials XS
Xarxes socials XSXarxes socials XS
Xarxes socials XSxsfernandoh
 
Xaneiro 2014
Xaneiro 2014Xaneiro 2014
Xaneiro 2014iesasorey
 
Xarxes socials amb seny
Xarxes socials amb senyXarxes socials amb seny
Xarxes socials amb senyxavier suñé
 
PISA 2012 CATALUNYA: primeres dades i algunes reflexions de política educativa
PISA 2012 CATALUNYA: primeres dades i algunes reflexions de política educativaPISA 2012 CATALUNYA: primeres dades i algunes reflexions de política educativa
PISA 2012 CATALUNYA: primeres dades i algunes reflexions de política educativaFundació Jaume Bofill
 
Xеджирование ценовых рисков экспортно импортных операций
Xеджирование ценовых рисков экспортно импортных операцийXеджирование ценовых рисков экспортно импортных операций
Xеджирование ценовых рисков экспортно импортных операцийticoman
 
Xabi eta endika , tabako
Xabi eta endika , tabakoXabi eta endika , tabako
Xabi eta endika , tabakoaltxaporru
 
X conferencia distrital_de_saude_da_ap_4_-_oficio_convite-programacao
X conferencia distrital_de_saude_da_ap_4_-_oficio_convite-programacaoX conferencia distrital_de_saude_da_ap_4_-_oficio_convite-programacao
X conferencia distrital_de_saude_da_ap_4_-_oficio_convite-programacaoaplalmir
 
X2 T07 02 transformations (2011)
X2 T07 02 transformations (2011)X2 T07 02 transformations (2011)
X2 T07 02 transformations (2011)Nigel Simmons
 

Viewers also liked (20)

Xavier oquendo
Xavier oquendoXavier oquendo
Xavier oquendo
 
X0 x0x
X0 x0xX0 x0x
X0 x0x
 
Xe4 launch мобильная разработка всеволод_леонов
Xe4 launch мобильная разработка всеволод_леоновXe4 launch мобильная разработка всеволод_леонов
Xe4 launch мобильная разработка всеволод_леонов
 
X.6 cindy melinda sofyani
X.6 cindy melinda sofyaniX.6 cindy melinda sofyani
X.6 cindy melinda sofyani
 
X2 t06 05 conical pendulum (2013)
X2 t06 05 conical pendulum (2013)X2 t06 05 conical pendulum (2013)
X2 t06 05 conical pendulum (2013)
 
X2 T07 02 resisted motion
X2 T07 02 resisted motionX2 T07 02 resisted motion
X2 T07 02 resisted motion
 
Xarxes socials XS
Xarxes socials XSXarxes socials XS
Xarxes socials XS
 
Xaneiro 2014
Xaneiro 2014Xaneiro 2014
Xaneiro 2014
 
Xarxes socials presentació
Xarxes socials presentacióXarxes socials presentació
Xarxes socials presentació
 
Xbdgher
XbdgherXbdgher
Xbdgher
 
Xarxes socials amb seny
Xarxes socials amb senyXarxes socials amb seny
Xarxes socials amb seny
 
PISA 2012 CATALUNYA: primeres dades i algunes reflexions de política educativa
PISA 2012 CATALUNYA: primeres dades i algunes reflexions de política educativaPISA 2012 CATALUNYA: primeres dades i algunes reflexions de política educativa
PISA 2012 CATALUNYA: primeres dades i algunes reflexions de política educativa
 
xa7o4.pdf
xa7o4.pdfxa7o4.pdf
xa7o4.pdf
 
XcelWelcomePkt
XcelWelcomePktXcelWelcomePkt
XcelWelcomePkt
 
Xеджирование ценовых рисков экспортно импортных операций
Xеджирование ценовых рисков экспортно импортных операцийXеджирование ценовых рисков экспортно импортных операций
Xеджирование ценовых рисков экспортно импортных операций
 
Xabi eta endika , tabako
Xabi eta endika , tabakoXabi eta endika , tabako
Xabi eta endika , tabako
 
X conferencia distrital_de_saude_da_ap_4_-_oficio_convite-programacao
X conferencia distrital_de_saude_da_ap_4_-_oficio_convite-programacaoX conferencia distrital_de_saude_da_ap_4_-_oficio_convite-programacao
X conferencia distrital_de_saude_da_ap_4_-_oficio_convite-programacao
 
Xarxipèlag 2.0 i web 2.0
Xarxipèlag 2.0 i web 2.0Xarxipèlag 2.0 i web 2.0
Xarxipèlag 2.0 i web 2.0
 
Xantos
XantosXantos
Xantos
 
X2 T07 02 transformations (2011)
X2 T07 02 transformations (2011)X2 T07 02 transformations (2011)
X2 T07 02 transformations (2011)
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

FAIL REKOD PENGAJARAN.pptx fail rekod pengajaran
FAIL REKOD PENGAJARAN.pptx fail rekod pengajaranFAIL REKOD PENGAJARAN.pptx fail rekod pengajaran
FAIL REKOD PENGAJARAN.pptx fail rekod pengajaransekolah233
 
TUYỂN TẬP 20 ĐỀ THI KHẢO SÁT HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2020 (CÓ Đ...
TUYỂN TẬP 20 ĐỀ THI KHẢO SÁT HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2020 (CÓ Đ...TUYỂN TẬP 20 ĐỀ THI KHẢO SÁT HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2020 (CÓ Đ...
TUYỂN TẬP 20 ĐỀ THI KHẢO SÁT HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2020 (CÓ Đ...Nguyen Thanh Tu Collection
 
TUYỂN TẬP 25 ĐỀ THI HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2023 CÓ ĐÁP ÁN (SƯU...
TUYỂN TẬP 25 ĐỀ THI HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2023 CÓ ĐÁP ÁN (SƯU...TUYỂN TẬP 25 ĐỀ THI HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2023 CÓ ĐÁP ÁN (SƯU...
TUYỂN TẬP 25 ĐỀ THI HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2023 CÓ ĐÁP ÁN (SƯU...Nguyen Thanh Tu Collection
 
Bahare Shariat Jild 3 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 3 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 3 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 3 By SadurshSharia Mufti Amjad Ali Azmibookbahareshariat
 
Bahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali Azmibookbahareshariat
 
Bahare Shariat Jild 5 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 5 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 5 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 5 By SadurshSharia Mufti Amjad Ali Azmibookbahareshariat
 
Bahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali Azmibookbahareshariat
 
مختصر علم احكام القرآن فقه القرآن وفق منهج العرض
مختصر علم احكام القرآن فقه القرآن وفق منهج العرضمختصر علم احكام القرآن فقه القرآن وفق منهج العرض
مختصر علم احكام القرآن فقه القرآن وفق منهج العرضأنور غني الموسوي
 
Bahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali Azmibookbahareshariat
 

Recently uploaded (11)

FAIL REKOD PENGAJARAN.pptx fail rekod pengajaran
FAIL REKOD PENGAJARAN.pptx fail rekod pengajaranFAIL REKOD PENGAJARAN.pptx fail rekod pengajaran
FAIL REKOD PENGAJARAN.pptx fail rekod pengajaran
 
TUYỂN TẬP 20 ĐỀ THI KHẢO SÁT HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2020 (CÓ Đ...
TUYỂN TẬP 20 ĐỀ THI KHẢO SÁT HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2020 (CÓ Đ...TUYỂN TẬP 20 ĐỀ THI KHẢO SÁT HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2020 (CÓ Đ...
TUYỂN TẬP 20 ĐỀ THI KHẢO SÁT HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2020 (CÓ Đ...
 
TUYỂN TẬP 25 ĐỀ THI HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2023 CÓ ĐÁP ÁN (SƯU...
TUYỂN TẬP 25 ĐỀ THI HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2023 CÓ ĐÁP ÁN (SƯU...TUYỂN TẬP 25 ĐỀ THI HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2023 CÓ ĐÁP ÁN (SƯU...
TUYỂN TẬP 25 ĐỀ THI HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2023 CÓ ĐÁP ÁN (SƯU...
 
Bahare Shariat Jild 3 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 3 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 3 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 3 By SadurshSharia Mufti Amjad Ali Azmi
 
Bahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali Azmi
 
Bahare Shariat Jild 5 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 5 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 5 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 5 By SadurshSharia Mufti Amjad Ali Azmi
 
Bahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali Azmi
 
Energy drink .
Energy drink                           .Energy drink                           .
Energy drink .
 
مختصر علم احكام القرآن فقه القرآن وفق منهج العرض
مختصر علم احكام القرآن فقه القرآن وفق منهج العرضمختصر علم احكام القرآن فقه القرآن وفق منهج العرض
مختصر علم احكام القرآن فقه القرآن وفق منهج العرض
 
Bahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali Azmi
 
LAR MARIA MÃE DE ÁFRICA .
LAR MARIA MÃE DE ÁFRICA                 .LAR MARIA MÃE DE ÁFRICA                 .
LAR MARIA MÃE DE ÁFRICA .
 

X2 T03 03 parameters, ellipse (2011)

  • 1. Conics & Parameters y 1) Circle a -a a x x2  y2  a2 -a
  • 2. Conics & Parameters y 1) Circle a P  x, y  -a a x x2  y2  a2 -a
  • 3. Conics & Parameters y 1) Circle a P  x, y  a  -a x a x x2  y2  a2 -a x  cos a
  • 4. Conics & Parameters y 1) Circle a P  x, y  a  -a x a x x2  y2  a2 -a x  cos a x  a cos
  • 5. Conics & Parameters y 1) Circle a P  x, y  a y  -a x a x x2  y2  a2 -a x y  cos  sin  a a x  a cos y  a sin 
  • 6. Conics & Parameters y 1) Circle a P  x, y  a y  -a x a x x2  y2  a2 -a x y Proof:  cos  sin  a a x 2  y 2  a 2 cos 2   a 2 sin 2  x  a cos y  a sin   a 2 cos 2   sin 2    a2
  • 7. 2) Ellipse y b P  x, y  -a a x -b
  • 8. 2) Ellipse y b P  x, y  -a a x -b x2  y2  a2
  • 9. 2) Ellipse y b P  x, y   -a x a x -b x2  y2  a2
  • 10. 2) Ellipse y b P  x, y   -a x a x -b x2  y2  a2 x  cos a x  a cos
  • 11. 2) Ellipse y b P  x, y  y -a x a x -b x2  y2  a2 x  cos a x  a cos
  • 12. 2) Ellipse y b P  x, y  y -a x a x -b x2  y2  a2 x y  cos  sin  a b x  a cos y  b sin 
  • 13. 2) Ellipse y b P  x, y  x2  y 2  b2 y -a x a x -b x2  y2  a2 Proof: x y  cos  sin  a b x 2 y 2 a 2 cos 2  b 2 sin 2  2  2  2  x  a cos y  b sin  a b a b2  cos 2   sin 2  1
  • 14. Equation of Tangent and Normal y b P x1 , y1  -a a x -b x2 y2 2  2 1 a b
  • 15. Equation of Tangent and Normal y b P x1 , y1  -a a x -b x2 y2 2  2 1 a b 2 x 2 y dy  df df dy   2  0  dx  dy  dx    2 a b dx
  • 16. Equation of Tangent and Normal y b P x1 , y1  -a a x -b x2 y2 2  2 1 a b 2 x 2 y dy  df df dy   2  0  dx  dy  dx    2 a b dx 2 y dy 2x 2   2 b dx a dy b2 x  2 dx a y
  • 17. Equation of Tangent and Normal y b P x1 , y1  -a a x -b x2 y2 2  2 1 a b 2 x 2 y dy  df df dy   2  0  dx  dy  dx    2 a b dx 2 y dy 2x 2   2 at P x1 , y1  b dx a dy b2 x dy b 2 x1  2  2 dx a y dx a y1
  • 18. y b P x1 , y1  -a a x -b tangent: b 2 x1 y  y1   2  x  x1  a y1
  • 19. y b P x1 , y1  -a a x -b tangent: b 2 x1 y  y1   2  x  x1  a y1 a 2 y1 y  a 2 y12  b 2 x1 x  b 2 x12 b 2 x1 x  a 2 y1 y  b 2 x12  a 2 y12
  • 20. y b P x1 , y1  -a a x -b tangent: b 2 x1 y  y1   2  x  x1  a y1 a 2 y1 y  a 2 y12  b 2 x1 x  b 2 x12 b 2 x1 x  a 2 y1 y  b 2 x12  a 2 y12 x1 x y1 y x12 y12 2  2  2 2 a b a b
  • 21. y b P x1 , y1  -a a x -b tangent: b 2 x1 y  y1   2  x  x1  a y1 a 2 y1 y  a 2 y12  b 2 x1 x  b 2 x12 b 2 x1 x  a 2 y1 y  b 2 x12  a 2 y12 x1 x y1 y x12 y12 2  2  2 2 a b a b x1 x y1 y 2  2 1 a b
  • 22. y b P x1 , y1  -a a x -b tangent: normal: b 2 x1 a 2 y1 y  y1   2  x  x1  y  y1  2  x  x1  a y1 b x1 a 2 y1 y  a 2 y12  b 2 x1 x  b 2 x12 b 2 x1 x  a 2 y1 y  b 2 x12  a 2 y12 x1 x y1 y x12 y12 2  2  2 2 a b a b x1 x y1 y 2  2 1 a b
  • 23. y b P x1 , y1  -a a x -b tangent: normal: b 2 x1 a 2 y1 y  y1   2  x  x1  y  y1  2  x  x1  a y1 b x1 a 2 y1 y  a 2 y12  b 2 x1 x  b 2 x12 b 2 x1 y  b 2 x1 y1  a 2 y1 x  a 2 x1 y1 b 2 x1 x  a 2 y1 y  b 2 x12  a 2 y12 a 2 y1 x  b 2 x1 y  a 2 x1 y1  b 2 x1 y1 x1 x y1 y x12 y12 2  2  2 2 a b a b x1 x y1 y 2  2 1 a b
  • 24. y b P x1 , y1  -a a x -b tangent: normal: b 2 x1 a 2 y1 y  y1   2  x  x1  y  y1  2  x  x1  a y1 b x1 a 2 y1 y  a 2 y12  b 2 x1 x  b 2 x12 b 2 x1 y  b 2 x1 y1  a 2 y1 x  a 2 x1 y1 b 2 x1 x  a 2 y1 y  b 2 x12  a 2 y12 a 2 y1 x  b 2 x1 y  a 2 x1 y1  b 2 x1 y1 x1 x y1 y x12 y12 a2 x b2 y 2  2  2 2   a2  b2 a b a b x1 y1 x1 x y1 y 2  2 1 a b
  • 25. Using Parametric Coordinates; at Pa cos , b sin  
  • 26. Using Parametric Coordinates; at Pa cos , b sin   dy ab 2 cos  2 dx a b sin  b cos  a sin 
  • 27. Using Parametric Coordinates; at Pa cos , b sin   dy ab 2 cos  2 dx a b sin  b cos  a sin  tangent: b cos y  b sin     x  a cos  a sin 
  • 28. Using Parametric Coordinates; at Pa cos , b sin   dy ab 2 cos  2 dx a b sin  b cos  a sin  tangent: b cos y  b sin     x  a cos  a sin  ay sin   ab sin   bx cos  ab cos 2  2 bx cos  ay sin   ab sin 2   ab cos 2 
  • 29. Using Parametric Coordinates; at Pa cos , b sin   dy ab 2 cos  2 dx a b sin  b cos  a sin  tangent: b cos y  b sin     x  a cos  a sin  ay sin   ab sin   bx cos  ab cos 2  2 bx cos  ay sin   ab sin 2   ab cos 2  x cos y sin    sin 2   cos 2  a b
  • 30. Using Parametric Coordinates; at Pa cos , b sin   dy ab 2 cos  2 dx a b sin  b cos  a sin  tangent: b cos y  b sin     x  a cos  a sin  ay sin   ab sin   bx cos  ab cos 2  2 bx cos  ay sin   ab sin 2   ab cos 2  x cos y sin    sin 2   cos 2  a b x cos y sin   1 a b
  • 31. Using Parametric Coordinates; at Pa cos , b sin   dy ab 2 cos  2 dx a b sin  b cos  a sin  tangent: normal: b cos a sin  y  b sin     x  a cos  y  b sin    x  a cos  a sin  b cos ay sin   ab sin   bx cos  ab cos 2  2 bx cos  ay sin   ab sin 2   ab cos 2  x cos y sin    sin 2   cos 2  a b x cos y sin   1 a b
  • 32. Using Parametric Coordinates; at Pa cos , b sin   dy ab 2 cos  2 dx a b sin  b cos  a sin  tangent: normal: b cos a sin  y  b sin     x  a cos  y  b sin    x  a cos  a sin  b cos ay sin   ab sin   bx cos  ab cos  by cos  b sin  cos 2 2 2 bx cos  ay sin   ab sin 2   ab cos 2   ax sin   a 2 sin  cos x cos y sin  ax sin   by cos   sin 2   cos 2  a b  a 2  b 2 sin  cos x cos y sin   1 a b
  • 33. Using Parametric Coordinates; at Pa cos , b sin   dy ab 2 cos  2 dx a b sin  b cos  a sin  tangent: normal: b cos a sin  y  b sin     x  a cos  y  b sin    x  a cos  a sin  b cos ay sin   ab sin   bx cos  ab cos  by cos  b sin  cos 2 2 2 bx cos  ay sin   ab sin 2   ab cos 2   ax sin   a 2 sin  cos x cos y sin  ax sin   by cos   sin 2   cos 2  a b  a 2  b 2 sin  cos x cos y sin   1 ax  by  a 2  b2 a b cos sin 
  • 34. x2 y 2 For ellipse 2  2 1 a b tangent at  x1 , y1  x1 x y1 y 2  2 1 a b
  • 35. x2 y 2 For ellipse 2  2 1 a b tangent at  x1 , y1  normal at  x1 , y1  x1 x y1 y  2 1 a2 x b2 y 2   a2  b2 a b x1 y1
  • 36. x2 y 2 For ellipse 2  2 1 a b tangent at  x1 , y1  normal at  x1 , y1  x1 x y1 y  2 1 a2 x b2 y 2   a2  b2 a b x1 y1 tangent at a cos , b sin   x cos y sin   1 a b
  • 37. x2 y 2 For ellipse 2  2 1 a b tangent at  x1 , y1  normal at  x1 , y1  x1 x y1 y  2 1 a2 x b2 y 2   a2  b2 a b x1 y1 tangent at a cos , b sin   normal at a cos , b sin   x cos y sin  ax by  1   a 2  b2 a b cos sin 
  • 38. x2 e.g. (i) Find the equation of the tangent to the ellipse  y 2  1 16   3 at the point  2,   2 
  • 39. x2 e.g. (i) Find the equation of the tangent to the ellipse  y 2  1 16   3 at the point  2,   2  x dy  2y  0 8 dx dy  x  dx 16 y
  • 40. x2 e.g. (i) Find the equation of the tangent to the ellipse  y 2  1 16   3 at the point  2,   2  x dy  2y  0   3  dy 2 at  2, ,  8 dx  2  dx  3 16  dy  x  2   dx 16 y dy 1  dx 4 3
  • 41. x2 e.g. (i) Find the equation of the tangent to the ellipse  y 2  1 16   3 at the point  2,   2  x dy  2y  0   3  dy 2 at  2, ,  8 dx  2  dx  3 16  dy  x  2   dx 16 y dy 1  dx 4 3 3 1 y   x  2 2 4 3
  • 42. x2 e.g. (i) Find the equation of the tangent to the ellipse  y 2  1 16   3 at the point  2,   2  x dy  2y  0   3  dy 2 at  2, ,  8 dx  2  dx  3 16  dy  x  2   dx 16 y dy 1  dx 4 3 3 1 y   x  2 2 4 3 4 3y  6  x  2 x  4 3y  8  0
  • 43. (ii) Find the equation of the normal to the ellipse x  2cos , y  sin   at the point   6
  • 44. (ii) Find the equation of the normal to the ellipse x  2cos , y  sin   at the point   6 y  sin f  x  dy  f  x  cos f  x  dx
  • 45. (ii) Find the equation of the normal to the ellipse x  2cos , y  sin   at the point   6 y  sin f  x  y  cos f  x  dy dy  f  x  cos f  x    f  x  sin f  x  dx dx
  • 46. (ii) Find the equation of the normal to the ellipse x  2cos , y  sin   at the point   6 y  sin f  x  y  cos f  x  dy dy  f  x  cos f  x    f  x  sin f  x  dx dx x  2 cos dx  2 sin  d
  • 47. (ii) Find the equation of the normal to the ellipse x  2cos , y  sin   at the point   6 y  sin f  x  y  cos f  x  dy dy  f  x  cos f  x    f  x  sin f  x  dx dx x  2 cos y  sin  dx dy  2 sin   cos d d
  • 48. (ii) Find the equation of the normal to the ellipse x  2cos , y  sin   at the point   6 y  sin f  x  y  cos f  x  dy dy  f  x  cos f  x    f  x  sin f  x  dx dx x  2 cos y  sin  dy dy d   dx dy dx d dx  2 sin   cos d d cos   2 sin 
  • 49. (ii) Find the equation of the normal to the ellipse x  2cos , y  sin   at the point   6 y  sin f  x  y  cos f  x  dy dy  f  x  cos f  x    f  x  sin f  x  dx dx x  2 cos y  sin  dy dy d   dx dy dx d dx  2 sin   cos d d cos   2 sin  3  dy 2 at   ,  6 dx  1  3  2
  • 50. (ii) Find the equation of the normal to the ellipse x  2cos , y  sin   at the point   6 y  sin f  x  y  cos f  x  dy dy  f  x  cos f  x    f  x  sin f  x  dx dx x  2 cos y  sin  dy dy d   dx dy dx d dx  2 sin   cos d d cos   2 sin  3  dy 2 1 2 y  x  3  at   ,  6 dx  1 2 3  3  2
  • 51. (ii) Find the equation of the normal to the ellipse x  2cos , y  sin   at the point   6 y  sin f  x  y  cos f  x  dy dy  f  x  cos f  x    f  x  sin f  x  dx dx x  2 cos y  sin  dy dy d   dx dy dx d dx  2 sin   cos d d cos   2 sin  3  dy 2 1 2 y  x  3  at   ,  6 dx  1 2 3  3 2 3y  3  4 x  4 3  2 4 x  2 3y  3 3  0
  • 52. (iii) Show that if y  mx  k is a tangent to the ellipse x2 y2  2  1, then a 2 m 2  b 2  k 2 a2 b
  • 53. (iii) Show that if y  mx  k is a tangent to the ellipse x2 y2  2  1, then a 2 m 2  b 2  k 2 a2 b x  a cos y  b sin  dy  b cos dx dy    a sin   b cos dx a sin  d d
  • 54. (iii) Show that if y  mx  k is a tangent to the ellipse x2 y2  2  1, then a 2 m 2  b 2  k 2 a2 b x  a cos y  b sin  dy  b cos dx dy    a sin   b cos dx a sin  d d dy If y  mx  k is a tangent then m dx
  • 55. (iii) Show that if y  mx  k is a tangent to the ellipse x2 y2  2  1, then a 2 m 2  b 2  k 2 a2 b x  a cos y  b sin  dy  b cos dx dy    a sin   b cos dx a sin  d d dy If y  mx  k is a tangent then m dx  b cos i.e. m  a sin 
  • 56. (iii) Show that if y  mx  k is a tangent to the ellipse x2 y2  2  1, then a 2 m 2  b 2  k 2 a2 b x  a cos y  b sin  dy  b cos dx dy    a sin   b cos dx a sin  d d dy If y  mx  k is a tangent then m dx  b cos i.e. m  a sin  am sin   b cos am sin   b cos  0  (1)
  • 57. (iii) Show that if y  mx  k is a tangent to the ellipse x2 y2  2  1, then a 2 m 2  b 2  k 2 a2 b x  a cos y  b sin  dy  b cos dx dy    a sin   b cos dx a sin  d d dy If y  mx  k is a tangent then m dx  b cos i.e. m  a sin  am sin   b cos am sin   b cos  0  (1) If tangent meets ellipse at a cos , b sin   then; b sin   am cos  k
  • 58. (iii) Show that if y  mx  k is a tangent to the ellipse x2 y2  2  1, then a 2 m 2  b 2  k 2 a2 b x  a cos y  b sin  dy  b cos dx dy    a sin   b cos dx a sin  d d dy If y  mx  k is a tangent then m dx  b cos i.e. m  a sin  am sin   b cos am sin   b cos  0  (1) If tangent meets ellipse at a cos , b sin   then; b sin   am cos  k am cos  b sin   k  (2)
  • 59. 12 : a 2 m 2 sin 2   2abm sin  cos  b 2 cos 2   0 (+) 22 : a 2 m 2 cos 2   2abm sin  cos  b 2 sin 2   k 2
  • 60. 12 : a 2 m 2 sin 2   2abm sin  cos  b 2 cos 2   0 (+) 22 : a 2 m 2 cos 2   2abm sin  cos  b 2 sin 2   k 2 a 2 m 2 sin 2   cos 2    b 2 sin 2   cos 2    k 2
  • 61. 12 : a 2 m 2 sin 2   2abm sin  cos  b 2 cos 2   0 (+) 22 : a 2 m 2 cos 2   2abm sin  cos  b 2 sin 2   k 2 a 2 m 2 sin 2   cos 2    b 2 sin 2   cos 2    k 2 a 2m2  b2  k 2 Exercise 6C; 1, 3, 11, 15, 18a