SlideShare ist ein Scribd-Unternehmen logo
1 von 101
Downloaden Sie, um offline zu lesen
Projectile Motion
Projectile Motion
    y




           x
Projectile Motion
    y



        
            x
Projectile Motion
    y



        
            x
Projectile Motion
                     y       maximum range
                                   45

                         
                             x

Initial conditions
Projectile Motion
                     y            maximum range
                                        45

                         
                                  x

Initial conditions   when t = 0


          v
      
Projectile Motion
                         y            maximum range
                                            45

                             
                                      x

Initial conditions       when t = 0


          v          
                     y
      
              
              x
Projectile Motion
                         y                    maximum range
                                                    45

                             
                                              x
Initial conditions       when t = 0

                                 
                                 x
          v                         cos
                     
                     y           v
                                x  v cos
                                 
              
              x
Projectile Motion
                         y                     maximum range
                                                      45

                             
                                              x
Initial conditions       when t = 0

                                 
                                 x            
                                              y
                                    cos        sin 
          v          
                     y           v            v
                                x  v cos
                                             y  v sin 
                                              
              
              x
Projectile Motion
                         y                     maximum range
                                                      45

                             
                                              x
Initial conditions       when t = 0

                                 
                                 x            
                                              y
                                    cos        sin 
          v          
                     y           v            v
                                x  v cos
                                             y  v sin 
                                              
              
              x                  x0
Projectile Motion
                         y                     maximum range
                                                      45

                             
                                              x
Initial conditions       when t = 0

                                 
                                 x            
                                              y
          v                         cos        sin 
                     
                     y           v            v
                                x  v cos
                                             y  v sin 
                                              
              
              x                  x0          y0
  0
x           g
         y
  0
x           g
         y
x  c1

  0
x           g
         y
x  c1
        y   gt  c2
         
  0
       x                    g
                         y
      x  c1
                        y   gt  c2
                         
when t  0, x  v cos
                        y  v sin 
                         
  0
       x                    g
                         y
      x  c1
                        y   gt  c2
                         
when t  0, x  v cos
                        y  v sin 
                         
   c1  v cos
    x  v cos
    
  0
       x                      g
                           y
      x  c1
                          y   gt  c2
                           
when t  0, x  v cos
                          y  v sin 
                           
   c1  v cos              c2  v sin 
    x  v cos
                        y   gt  v sin 
                         
  0
       x                        g
                             y
      x  c1
                            y   gt  c2
                             
when t  0, x  v cos
                            y  v sin 
                             
   c1  v cos                c2  v sin 
    x  v cos
                          y   gt  v sin 
                           

                              1 2
   x  vt cos  c3      y   gt  vt sin   c4
                              2
  0
       x                        g
                             y
      x  c1
                            y   gt  c2
                             
when t  0, x  v cos
                            y  v sin 
                             
   c1  v cos                c2  v sin 
    x  v cos
                          y   gt  v sin 
                           

                              1 2
   x  vt cos  c3      y   gt  vt sin   c4
                              2
    when t  0, x  0          y0
  0
       x                        g
                             y
      x  c1
                            y   gt  c2
                             
when t  0, x  v cos
                            y  v sin 
                             
   c1  v cos                c2  v sin 
    x  v cos
                          y   gt  v sin 
                           

                              1 2
   x  vt cos  c3      y   gt  vt sin   c4
                              2
    when t  0, x  0          y0
       c3  0
    x  vt cos
  0
       x                          g
                               y
      x  c1
                             y   gt  c2
                              
when t  0, x  v cos
                             y  v sin 
                              
   c1  v cos                 c2  v sin 
    x  v cos
                           y   gt  v sin 
                            

                               1 2
   x  vt cos  c3       y   gt  vt sin   c4
                               2
    when t  0, x  0           y0
       c3  0                   c4  0
    x  vt cos               1
                         y   gt 2  vt sin 
                              2
  0
       x                                   g
                                        y
      x  c1
                                       y   gt  c2
                                        
when t  0, x  v cos
                                       y  v sin 
                                        
   c1  v cos                           c2  v sin 
    x  v cos
                                     y   gt  v sin 
                                      
                                        1
   x  vt cos  c3                y   gt 2  vt sin   c4
                                        2
    when t  0, x  0                    y0
      c3  0                            c4  0
    x  vt cos                         1 2
                                  y   gt  vt sin 
                                        2
       Note: parametric coordinates of a parabola
  0
            x                                      g
                                                y
           x  c1
                                               y   gt  c2
                                                
     when t  0, x  v cos
                                               y  v sin 
                                                
        c1  v cos                              c2  v sin 
          x  v cos
                                             y   gt  v sin 
                                              
                                                1
         x  vt cos  c3                  y   gt 2  vt sin   c4
                                                2
          when t  0, x  0                      y0
            c3  0                              c4  0
          x  vt cos                           1 2
                                          y   gt  vt sin 
                                                2
               Note: parametric coordinates of a parabola
        x
t
     v cos 
  0
          x                                     g
                                             y
         x  c1
                                            y   gt  c2
                                             
   when t  0, x  v cos
                                            y  v sin 
                                             
      c1  v cos                             c2  v sin 
        x  v cos
                                          y   gt  v sin 
                                           
                                              1 2
       x  vt cos  c3                  y   gt  vt sin   c4
                                              2
        when t  0, x  0                      y0
          c3  0                              c4  0
        x  vt cos                          1 2
                                        y   gt  vt sin 
                                             2
           Note: parametric coordinates of a parabola
      x                gx 2     x sin 
t           y 2            
   v cos          2v cos  cos 
                            2


                   gx 2
             y   2 sec 2   x tan 
                   2v
  0
          x                                       g
                                               y
         x  c1
                                              y   gt  c2
                                               
   when t  0, x  v cos
                                              y  v sin 
                                               
      c1  v cos                               c2  v sin 
        x  v cos
                                            y   gt  v sin 
                                             
                                                1
       x  vt cos  c3                    y   gt 2  vt sin   c4
                                                2
        when t  0, x  0                        y0
          c3  0                                c4  0
        x  vt cos                           1 2
                                        y   gt  vt sin 
                                              2
           Note: parametric coordinates of a parabola
      x                gx 2     x sin 
t           y 2                             gx 2
   v cos          2v cos  cos          y   2  tan 2   1  x tan 
                            2

                                                2v
                   gx 2
             y   2 sec 2   x tan 
                   2v
Common Questions
Common Questions
(1) When does the particle hit the ground?
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0                     roots of the quadratic
    ii  substitute into x
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
    i  find when y  0
                   
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
     i  find when y  0
                      
    ii  substitute into y
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0                           roots of the quadratic
    ii  substitute into x
(3) What is the greatest height of the particle?
     i  find when y  0
                      
                                                   vertex of the parabola
    ii  substitute into y
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
     i  find when y  0
                      
    ii  substitute into y
(4) What angle does the particle make with the ground?
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
     i  find when y  0
                      
    ii  substitute into y
(4) What angle does the particle make with the ground?
    i  find when y  0
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
     i  find when y  0
                      
    ii  substitute into y
(4) What angle does the particle make with the ground?
     i  find when y  0
    ii  substitute into y
                          
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
     i  find when y  0
                      
    ii  substitute into y
(4) What angle does the particle make with the ground?
    i  find when y  0
   ii  substitute into y
                                    
                                     y
   iii  tan  
                  y
                 
                 x                             
                                               x
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0                           roots of the quadratic
    ii  substitute into x
(3) What is the greatest height of the particle?
     i  find when y  0
                      
                                                   vertex of the parabola
    ii  substitute into y
(4) What angle does the particle make with the ground?
    i  find when y  0                      (i) find slope of the tangent
   ii  substitute into y
                             
                              y                        ii  m  tan
   iii  tan  
                  y
                 
                 x                        
                                          x
Summary
Summary
 A particle undergoing projectile motion obeys
Summary
 A particle undergoing projectile motion obeys
              0
            x           and            g
                                    y
Summary
 A particle undergoing projectile motion obeys
               0
             x             and         g
                                    y

 with initial conditions
Summary
 A particle undergoing projectile motion obeys
               0
             x             and          g
                                     y

 with initial conditions

           x  v cos
                          and     y  v sin 
                                   
Summary
   A particle undergoing projectile motion obeys
                  0
                x            and             g
                                          y

   with initial conditions

              x  v cos
                            and        y  v sin 
                                        

e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                 3
        tan 1 to the ground. Determine;.
                 4
Summary
    A particle undergoing projectile motion obeys
                  0
                x             and             g
                                           y

    with initial conditions

              x  v cos
                             and        y  v sin 
                                         

 e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                  3
         tan 1 to the ground. Determine;.
                  4
a) greatest height obtained
Summary
    A particle undergoing projectile motion obeys
                   0
                 x             and             g
                                            y

     with initial conditions

               x  v cos
                              and        y  v sin 
                                          

  e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                   3
          tan 1 to the ground. Determine;.
                   4
 a) greatest height obtained
Initial conditions
Summary
    A particle undergoing projectile motion obeys
                   0
                 x             and             g
                                            y

     with initial conditions

               x  v cos
                              and        y  v sin 
                                          

  e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                   3
          tan 1 to the ground. Determine;.
                   4
 a) greatest height obtained
Initial conditions                                       5
                                                                            3
                                                                     3
                                                          tan 1
                                                                     4
                                                                4
Summary
    A particle undergoing projectile motion obeys
                   0
                 x             and             g
                                            y

     with initial conditions

               x  v cos
                              and        y  v sin 
                                          

  e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                   3
          tan 1 to the ground. Determine;.
                   4
 a) greatest height obtained
Initial conditions x  v cos
                                                        5
                                                                            3
                                                                     3
                                                          tan 1
                                                                     4
                                                                4
Summary
    A particle undergoing projectile motion obeys
                   0
                 x             and            g
                                           y

     with initial conditions

               x  v cos
                              and       y  v sin 
                                         

  e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                   3
          tan 1 to the ground. Determine;.
                   4
 a) greatest height obtained
Initial conditions x  v cos
                                                         5
                                                                          3
                     x  25 
                             4
                                                       tan 1
                                                                  3
                           5                                    4
                        20m/s                                 4
Summary
    A particle undergoing projectile motion obeys
                   0
                 x             and            g
                                           y

     with initial conditions

               x  v cos
                              and       y  v sin 
                                         

  e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                   3
          tan 1 to the ground. Determine;.
                   4
 a) greatest height obtained
Initial conditions x  v cos
                                   y  v sin 
                                                         5
                                                                          3
                     x  25 
                             4
                                                       tan 1
                                                                  3
                           5                                    4
                        20m/s                                 4
Summary
    A particle undergoing projectile motion obeys
                   0
                 x             and            g
                                           y

     with initial conditions

               x  v cos
                              and       y  v sin 
                                         

  e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                   3
          tan 1 to the ground. Determine;.
                   4
 a) greatest height obtained
Initial conditions x  v cos
                                    y  v sin 
                                                         5
                                                                          3
                     x  25 
                             4
                                    y  25 
                                             3
                                                     tan 1
                                                                  3
                           5             5                    4
                        20m/s          15m/s                 4
  0
x          10
         y
  0
x          10
         y
x  c1

  0
x          10
         y
x  c1
        y  10t  c2
         
  0
    x                  10
                     y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  0
    x                  10
                     y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  c1  20
   x  20
   
  0
    x                  10
                     y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  c1  20                c2  15
   x  20
                    y  10t  15
                     
  0
    x                  10
                     y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  c1  20                c2  15
   x  20
                    y  10t  15
                     
   x  20t  c3
  0
    x                   10
                      y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  c1  20                c2  15
   x  20
                    y  10t  15
                     
   x  20t  c3      y  5t 2  15t  c4
  0
    x                   10
                      y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  c1  20                c2  15
   x  20
                    y  10t  15
                     
  x  20t  c3       y  5t 2  15t  c4
 when t  0, x  0      y0
  0
    x                   10
                      y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  c1  20                c2  15
   x  20
                    y  10t  15
                     
  x  20t  c3       y  5t 2  15t  c4
 when t  0, x  0      y0
   c3  0
   x  20t
  0
    x                    10
                       y
   x  c1
                      y  10t  c2
                       
when t  0, x  20
                        y  15
                         
  c1  20                  c2  15
   x  20
                      y  10t  15
                       
  x  20t  c3        y  5t 2  15t  c4
 when t  0, x  0       y0
   c3  0               c4  0
   x  20t           y  5t 2  15t
  0
          x                             10
                                      y
         x  c1
                                     y  10t  c2
                                      
      when t  0, x  20
                                       y  15
                                        
        c1  20                           c2  15
          x  20
                                     y  10t  15
                                      
        x  20t  c3                 y  5t 2  15t  c4
       when t  0, x  0                y0
         c3  0                        c4  0
         x  20t                    y  5t 2  15t
greatest height occurs when y  0
                            
  0
          x                             10
                                      y
         x  c1
                                     y  10t  c2
                                      
      when t  0, x  20
                                       y  15
                                        
        c1  20                           c2  15
          x  20
                                     y  10t  15
                                      
        x  20t  c3                 y  5t 2  15t  c4
       when t  0, x  0                y0
         c3  0                        c4  0
         x  20t                    y  5t 2  15t
greatest height occurs when y  0
                            
           10t  15  0
                   3
              t
                   2
  0
          x                                  10
                                           y
         x  c1
                                          y  10t  c2
                                           
      when t  0, x  20
                                            y  15
                                             
        c1  20                                c2  15
          x  20
                                          y  10t  15
                                           
        x  20t  c3                      y  5t 2  15t  c4
       when t  0, x  0                     y0
         c3  0                             c4  0
         x  20t                         y  5t 2  15t
greatest height occurs when y  0
                                           3         3
                                                           2
                                                              3
           10t  15  0            when t  , y  5   15 
                                            2         2     2
                   3                               45
              t                                 
                   2                               4
  0
          x                                   10
                                            y
         x  c1
                                           y  10t  c2
                                            
      when t  0, x  20
                                             y  15
                                              
        c1  20                                 c2  15
         x  20
                                           y  10t  15
                                            
        x  20t  c3                       y  5t 2  15t  c4
       when t  0, x  0                      y0
         c3  0                              c4  0
         x  20t                          y  5t 2  15t
greatest height occurs when y  0
                                              3         3
                                                             2
                                                                3
           10t  15  0             when t  , y  5   15 
                                               2        2     2
                   3                                 45
              t                                   
                   2                                 4
                                 1
           greatest height is 11 m above the ground
                                 4
b) range
b) range
  time of flight is 3 seconds
b) range
  time of flight is 3 seconds
  when t  3, x  203
                 60
b) range
  time of flight is 3 seconds
  when t  3, x  203
                 60
   range is 60m
b) range
   time of flight is 3 seconds
   when t  3, x  203
                  60
   range is 60m
                                           1
c) velocity and direction of the ball after second
                                           2
b) range
   time of flight is 3 seconds
   when t  3, x  203
                  60
   range is 60m
                                           1
c) velocity and direction of the ball after second
                                           2
             1                    1
   when t  , x  20
                         y  10   15
                           
             2                     2
                              10
b) range
   time of flight is 3 seconds
   when t  3, x  203
                  60
   range is 60m
                                           1
c) velocity and direction of the ball after second
                                           2
             1                    1
   when t  , x  20
                         y  10   15
                                                    10 5
             2                     2                        10
                              10                    
                                                         20
b) range
   time of flight is 3 seconds
   when t  3, x  203
                  60
   range is 60m
                                           1
c) velocity and direction of the ball after second
                                           2
             1                    1
   when t  , x  20
                         y  10   15
                                                    10 5
             2                     2                        10
                              10                    
         1
 tan                                                   20
         2
       2634
b) range
   time of flight is 3 seconds
   when t  3, x  203
                  60
   range is 60m
                                           1
c) velocity and direction of the ball after second
                                           2
             1                    1
   when t  , x  20
                         y  10   15
                                                       10 5
             2                     2                             10
                              10                      
         1
 tan                                                     20
         2
       2634
                       1
                after second, velocity  10 5m/s and it is traveling at
                       2
                  an angle of 2634 to the horizontal
d) cartesian equation of the path
d) cartesian equation of the path

        x  20t
             x
        t
            20
d) cartesian equation of the path

        x  20t              y  5t 2  15t
                                         2
             x                      x   15 x 
        t                   y  5         
            20                      20      20 
                                 x 2 3x
                             y      
                                 80    4
d) cartesian equation of the path

        x  20t              y  5t 2  15t
                                         2
             x                      x   15 x 
        t                   y  5         
            20                      20      20 
                                 x 2 3x
                             y      
                                 80    4
d) cartesian equation of the path

        x  20t              y  5t 2  15t
                                         2
             x                      x   15 x 
        t                   y  5         
            20                      20      20 
                                 x 2 3x
                             y      
                                 80    4
d) cartesian equation of the path

         x  20t              y  5t 2  15t
                                          2
              x                      x   15 x 
         t                   y  5         
             20                      20      20 
                                  x 2 3x
                              y      
                                  80    4
Using the cartesian equation to solve the problem
d) cartesian equation of the path

         x  20t               y  5t 2  15t
                                              2
              x                       x   15 x 
         t                    y  5         
             20                       20      20 
                                   x 2 3x
                               y      
                                   80    4
Using the cartesian equation to solve the problem
a) greatest height is y value of the vertex
d) cartesian equation of the path

         x  20t               y  5t 2  15t
                                              2
              x                       x   15 x 
         t                    y  5         
             20                       20      20 
                                   x 2 3x
                               y      
                                   80    4
Using the cartesian equation to solve the problem
a) greatest height is y value of the vertex
          2
      3          1
       4( )(0)
      4         80
       9
    
      16
d) cartesian equation of the path

         x  20t               y  5t 2  15t
                                              2
              x                       x   15 x 
         t                    y  5         
             20                       20      20 
                                   x 2 3x
                               y      
                                   80    4
Using the cartesian equation to solve the problem
a) greatest height is y value of the vertex             
          2                                       y
      3          1                                   4a
       4( )(0)
      4         80                                    9 20
                                                     
       9                                               16 1
    
      16                                             45
                                                   
                                                      4
d) cartesian equation of the path

         x  20t               y  5t 2  15t
                                              2
              x                       x     x
         t                    y  5   15 
             20                       20    20 
                                   x 2 3x
                               y      
                                   80    4
Using the cartesian equation to solve the problem
a) greatest height is y value of the vertex           
          2                                     y
      3          1                                 4a
       4( )(0)
      4         80                                  9 20
                                                   
       9                                             16 1
    
      16                                           45
                                                 
                                                    4
                                1
          greatest height is 11 m above the ground
                                4
b) range
b) range
    x 2 3x
y      
   80     4
   x      x 
  3 
   4     20 
b) range
    x 2 3x
y      
   80     4
   x      x 
  3 
   4     20 
roots are 0 and 60
 range is 60m
1
b) range             c) velocity and direction of the ball after second
                                                                2
    x 2 3x
y      
   80     4
   x      x 
  3 
   4     20 
roots are 0 and 60
 range is 60m
1
b) range             c) velocity and direction of the ball after second
                                                                2
    x 2 3x                       1
                        when t  , x  10
y      
   80     4                       2
   x      x 
  3 
   4     20 
roots are 0 and 60
 range is 60m
1
b) range             c) velocity and direction of the ball after second
                                                                2
    x 2 3x                       1
                        when t  , x  10                x 2 3x
y                                                 y        
   80     4                       2
                                                        80      4
   x      x                                     dy  x 3
  3                                                     
   4     20                                     dx 40 4
roots are 0 and 60
 range is 60m
1
b) range             c) velocity and direction of the ball after second
                                                                2
    x 2 3x                       1
                        when t  , x  10                x 2 3x
y                                                 y        
   80     4                       2
                                                        80      4
   x      x                                     dy  x 3
  3                                                     
   4     20                                     dx 40 4
roots are 0 and 60                   dy 1
                        when x  10, 
 range is 60m                       dx 2
1
b) range             c) velocity and direction of the ball after second
                                                                2
    x 2 3x                       1
                        when t  , x  10                x 2 3x
y                                                 y        
   80     4                       2
                                                        80      4
   x      x                                     dy  x 3
  3                                                     
   4     20                                     dx 40 4
                                     dy 1                   1
roots are 0 and 60      when x  10,              tan  
 range is 60m                       dx 2                   2
                                                         2634
1
b) range             c) velocity and direction of the ball after second
                                                                2
    x 2 3x                       1
                        when t  , x  10                x 2 3x
y                                                 y        
   80     4                       2
                                                        80      4
   x      x                                     dy  x 3
  3                                                     
   4     20                                     dx 40 4
                                      dy 1                  1
roots are 0 and 60      when x  10,              tan  
 range is 60m                        dx 2                  2
                                v
                                       x                 2634
                                    t cos 
1
b) range             c) velocity and direction of the ball after second
                                                                2
    x 2 3x                       1
                        when t  , x  10                x 2 3x
y                                                 y        
   80     4                       2
                                                        80      4
   x      x                                     dy  x 3
  3                                                     
   4     20                                     dx 40 4
                                      dy 1                  1
roots are 0 and 60      when x  10,              tan  
 range is 60m                        dx 2                  2
                                v
                                       x                 2634
                                    t cos                    5
                                                                 1
                                                         
                                                             2
1
b) range             c) velocity and direction of the ball after second
                                                                 2
    x 2 3x                       1
                        when t  , x  10                x 2 3x
y                                                 y        
   80     4                       2
                                                        80       4
   x      x                                     dy  x 3
  3                                                     
   4     20                                     dx 40 4
                                      dy 1                  1
roots are 0 and 60      when x  10,              tan  
 range is 60m                        dx 2                  2
                                v
                                       x                 2634
                                    t cos                    5
                                                                   1
                                       10                  
                                                              2
                                     1 2
                                       
                                     2     5
                                  10 5
1
b) range             c) velocity and direction of the ball after second
                                                                 2
    x 2 3x                       1
                        when t  , x  10                x 2 3x
y                                                 y        
   80     4                       2
                                                        80       4
   x      x                                     dy  x 3
  3                                                     
   4     20                                     dx 40 4
                                      dy 1                  1
roots are 0 and 60      when x  10,              tan  
 range is 60m                        dx 2                  2
                                v
                                       x                 2634
                                    t cos                    5
                                                                   1
                                       10                  
                                                              2
                                     1 2
                                       
                                     2     5
                                   10 5
                               1
                        after second, velocity  10 5m/s and it is
                               2
                       traveling at an angle of 26 34 to the horizontal
1
b) range                  c) velocity and direction of the ball after second
                                                                      2
      x 3x
        2                              1
                             when t  , x  10                x 2 3x
 y                                                     y        
      80     4                         2
                                                             80       4
     x       x                                       dy  x 3
    3                                                        
     4      20                                       dx 40 4
                                           dy 1                  1
roots are 0 and 60           when x  10,              tan  
  range is 60m                            dx 2                  2
                                     v
                                            x                 2634
                                         t cos                    5
                                                                        1
                                            10                  
Exercise 3G; 1ac, 2ac,                                             2
                                          1 2
4, 6, 8, 9, 11, 13, 16, 18                  
                                          2     5
 Exercise 3H; 2, 4, 6,                10 5
                                  1
       7, 10, 11           after second, velocity  10 5m/s and it is
                                  2
                          traveling at an angle of 26 34 to the horizontal

Weitere ähnliche Inhalte

Mehr von Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

Mehr von Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Kürzlich hochgeladen

Millenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptxMillenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptxJanEmmanBrigoli
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operationalssuser3e220a
 
Textual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSTextual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSMae Pangan
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfPatidar M
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmStan Meyer
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
The Contemporary World: The Globalization of World Politics
The Contemporary World: The Globalization of World PoliticsThe Contemporary World: The Globalization of World Politics
The Contemporary World: The Globalization of World PoliticsRommel Regala
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
TEACHER REFLECTION FORM (NEW SET........).docx
TEACHER REFLECTION FORM (NEW SET........).docxTEACHER REFLECTION FORM (NEW SET........).docx
TEACHER REFLECTION FORM (NEW SET........).docxruthvilladarez
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Projectjordimapav
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
EMBODO Lesson Plan Grade 9 Law of Sines.docx
EMBODO Lesson Plan Grade 9 Law of Sines.docxEMBODO Lesson Plan Grade 9 Law of Sines.docx
EMBODO Lesson Plan Grade 9 Law of Sines.docxElton John Embodo
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Seán Kennedy
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 

Kürzlich hochgeladen (20)

Millenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptxMillenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptx
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operational
 
Textual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSTextual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHS
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdf
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and Film
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
The Contemporary World: The Globalization of World Politics
The Contemporary World: The Globalization of World PoliticsThe Contemporary World: The Globalization of World Politics
The Contemporary World: The Globalization of World Politics
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
TEACHER REFLECTION FORM (NEW SET........).docx
TEACHER REFLECTION FORM (NEW SET........).docxTEACHER REFLECTION FORM (NEW SET........).docx
TEACHER REFLECTION FORM (NEW SET........).docx
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Project
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
EMBODO Lesson Plan Grade 9 Law of Sines.docx
EMBODO Lesson Plan Grade 9 Law of Sines.docxEMBODO Lesson Plan Grade 9 Law of Sines.docx
EMBODO Lesson Plan Grade 9 Law of Sines.docx
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
Paradigm shift in nursing research by RS MEHTA
Paradigm shift in nursing research by RS MEHTAParadigm shift in nursing research by RS MEHTA
Paradigm shift in nursing research by RS MEHTA
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 

12 x1 t07 01 projectile motion (2012)

  • 5. Projectile Motion y maximum range   45  x Initial conditions
  • 6. Projectile Motion y maximum range   45  x Initial conditions when t = 0 v 
  • 7. Projectile Motion y maximum range   45  x Initial conditions when t = 0 v  y   x
  • 8. Projectile Motion y maximum range   45  x Initial conditions when t = 0  x v  cos  y v  x  v cos   x
  • 9. Projectile Motion y maximum range   45  x Initial conditions when t = 0  x  y  cos  sin  v  y v v  x  v cos  y  v sin    x
  • 10. Projectile Motion y maximum range   45  x Initial conditions when t = 0  x  y  cos  sin  v  y v v  x  v cos  y  v sin    x x0
  • 11. Projectile Motion y maximum range   45  x Initial conditions when t = 0  x  y v  cos  sin   y v v  x  v cos  y  v sin    x x0 y0
  • 12.   0 x    g y
  • 13.   0 x    g y x  c1 
  • 14.   0 x    g y x  c1  y   gt  c2 
  • 15.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin  
  • 16.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos x  v cos 
  • 17.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin  
  • 18.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin   1 2 x  vt cos  c3 y   gt  vt sin   c4 2
  • 19.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin   1 2 x  vt cos  c3 y   gt  vt sin   c4 2 when t  0, x  0 y0
  • 20.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin   1 2 x  vt cos  c3 y   gt  vt sin   c4 2 when t  0, x  0 y0 c3  0 x  vt cos
  • 21.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin   1 2 x  vt cos  c3 y   gt  vt sin   c4 2 when t  0, x  0 y0 c3  0 c4  0 x  vt cos 1 y   gt 2  vt sin  2
  • 22.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin   1 x  vt cos  c3 y   gt 2  vt sin   c4 2 when t  0, x  0 y0 c3  0 c4  0 x  vt cos 1 2 y   gt  vt sin  2 Note: parametric coordinates of a parabola
  • 23.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin   1 x  vt cos  c3 y   gt 2  vt sin   c4 2 when t  0, x  0 y0 c3  0 c4  0 x  vt cos 1 2 y   gt  vt sin  2 Note: parametric coordinates of a parabola x t v cos 
  • 24.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin   1 2 x  vt cos  c3 y   gt  vt sin   c4 2 when t  0, x  0 y0 c3  0 c4  0 x  vt cos 1 2 y   gt  vt sin  2 Note: parametric coordinates of a parabola x gx 2 x sin  t y 2  v cos  2v cos  cos  2 gx 2 y   2 sec 2   x tan  2v
  • 25.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin   1 x  vt cos  c3 y   gt 2  vt sin   c4 2 when t  0, x  0 y0 c3  0 c4  0 x  vt cos 1 2 y   gt  vt sin  2 Note: parametric coordinates of a parabola x gx 2 x sin  t y 2  gx 2 v cos  2v cos  cos  y   2  tan 2   1  x tan  2 2v gx 2 y   2 sec 2   x tan  2v
  • 27. Common Questions (1) When does the particle hit the ground?
  • 28. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0
  • 29. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle?
  • 30. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0
  • 31. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x
  • 32. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 roots of the quadratic ii  substitute into x
  • 33. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle?
  • 34. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0 
  • 35. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0  ii  substitute into y
  • 36. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 roots of the quadratic ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0  vertex of the parabola ii  substitute into y
  • 37. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0  ii  substitute into y (4) What angle does the particle make with the ground?
  • 38. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0  ii  substitute into y (4) What angle does the particle make with the ground? i  find when y  0
  • 39. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0  ii  substitute into y (4) What angle does the particle make with the ground? i  find when y  0 ii  substitute into y 
  • 40. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0  ii  substitute into y (4) What angle does the particle make with the ground? i  find when y  0 ii  substitute into y   y iii  tan   y  x  x
  • 41. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 roots of the quadratic ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0  vertex of the parabola ii  substitute into y (4) What angle does the particle make with the ground? i  find when y  0 (i) find slope of the tangent ii  substitute into y   y  ii  m  tan iii  tan   y  x  x
  • 43. Summary A particle undergoing projectile motion obeys
  • 44. Summary A particle undergoing projectile motion obeys   0 x and    g y
  • 45. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions
  • 46. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin  
  • 47. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4
  • 48. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained
  • 49. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained Initial conditions
  • 50. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained Initial conditions 5 3 3   tan 1 4 4
  • 51. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained Initial conditions x  v cos  5 3 3   tan 1 4 4
  • 52. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained Initial conditions x  v cos  5 3 x  25  4     tan 1 3 5 4  20m/s 4
  • 53. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained Initial conditions x  v cos  y  v sin   5 3 x  25  4     tan 1 3 5 4  20m/s 4
  • 54. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained Initial conditions x  v cos  y  v sin   5 3 x  25  4 y  25  3       tan 1 3 5 5 4  20m/s  15m/s 4
  • 55.   0 x   10 y
  • 56.   0 x   10 y x  c1 
  • 57.   0 x   10 y x  c1  y  10t  c2 
  • 58.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15 
  • 59.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 x  20 
  • 60.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15 
  • 61.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3
  • 62.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4
  • 63.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0
  • 64.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0 c3  0 x  20t
  • 65.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0 c3  0 c4  0 x  20t y  5t 2  15t
  • 66.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0 c3  0 c4  0 x  20t y  5t 2  15t greatest height occurs when y  0 
  • 67.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0 c3  0 c4  0 x  20t y  5t 2  15t greatest height occurs when y  0   10t  15  0 3 t 2
  • 68.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0 c3  0 c4  0 x  20t y  5t 2  15t greatest height occurs when y  0  3 3 2  3  10t  15  0 when t  , y  5   15  2 2  2 3 45 t  2 4
  • 69.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0 c3  0 c4  0 x  20t y  5t 2  15t greatest height occurs when y  0  3  3 2  3  10t  15  0 when t  , y  5   15  2 2  2 3 45 t  2 4 1  greatest height is 11 m above the ground 4
  • 71. b) range time of flight is 3 seconds
  • 72. b) range time of flight is 3 seconds when t  3, x  203  60
  • 73. b) range time of flight is 3 seconds when t  3, x  203  60  range is 60m
  • 74. b) range time of flight is 3 seconds when t  3, x  203  60  range is 60m 1 c) velocity and direction of the ball after second 2
  • 75. b) range time of flight is 3 seconds when t  3, x  203  60  range is 60m 1 c) velocity and direction of the ball after second 2 1 1 when t  , x  20  y  10   15  2  2  10
  • 76. b) range time of flight is 3 seconds when t  3, x  203  60  range is 60m 1 c) velocity and direction of the ball after second 2 1 1 when t  , x  20  y  10   15  10 5 2  2 10  10  20
  • 77. b) range time of flight is 3 seconds when t  3, x  203  60  range is 60m 1 c) velocity and direction of the ball after second 2 1 1 when t  , x  20  y  10   15  10 5 2  2 10  10  1 tan   20 2   2634
  • 78. b) range time of flight is 3 seconds when t  3, x  203  60  range is 60m 1 c) velocity and direction of the ball after second 2 1 1 when t  , x  20  y  10   15  10 5 2  2 10  10  1 tan   20 2   2634 1  after second, velocity  10 5m/s and it is traveling at 2 an angle of 2634 to the horizontal
  • 79. d) cartesian equation of the path
  • 80. d) cartesian equation of the path x  20t x t 20
  • 81. d) cartesian equation of the path x  20t y  5t 2  15t 2 x  x   15 x  t y  5    20  20   20   x 2 3x y  80 4
  • 82. d) cartesian equation of the path x  20t y  5t 2  15t 2 x  x   15 x  t y  5    20  20   20   x 2 3x y  80 4
  • 83. d) cartesian equation of the path x  20t y  5t 2  15t 2 x  x   15 x  t y  5    20  20   20   x 2 3x y  80 4
  • 84. d) cartesian equation of the path x  20t y  5t 2  15t 2 x  x   15 x  t y  5    20  20   20   x 2 3x y  80 4 Using the cartesian equation to solve the problem
  • 85. d) cartesian equation of the path x  20t y  5t 2  15t 2 x  x   15 x  t y  5    20  20   20   x 2 3x y  80 4 Using the cartesian equation to solve the problem a) greatest height is y value of the vertex
  • 86. d) cartesian equation of the path x  20t y  5t 2  15t 2 x  x   15 x  t y  5    20  20   20   x 2 3x y  80 4 Using the cartesian equation to solve the problem a) greatest height is y value of the vertex 2 3 1     4( )(0) 4 80 9  16
  • 87. d) cartesian equation of the path x  20t y  5t 2  15t 2 x  x   15 x  t y  5    20  20   20   x 2 3x y  80 4 Using the cartesian equation to solve the problem a) greatest height is y value of the vertex  2 y 3 1 4a     4( )(0) 4 80 9 20    9 16 1  16 45  4
  • 88. d) cartesian equation of the path x  20t y  5t 2  15t 2 x  x  x t y  5   15  20  20   20   x 2 3x y  80 4 Using the cartesian equation to solve the problem a) greatest height is y value of the vertex  2 y 3 1 4a     4( )(0) 4 80 9 20    9 16 1  16 45  4 1  greatest height is 11 m above the ground 4
  • 90. b) range  x 2 3x y  80 4 x x   3  4 20 
  • 91. b) range  x 2 3x y  80 4 x x   3  4 20  roots are 0 and 60  range is 60m
  • 92. 1 b) range c) velocity and direction of the ball after second 2  x 2 3x y  80 4 x x   3  4 20  roots are 0 and 60  range is 60m
  • 93. 1 b) range c) velocity and direction of the ball after second 2  x 2 3x 1 when t  , x  10 y  80 4 2 x x   3  4 20  roots are 0 and 60  range is 60m
  • 94. 1 b) range c) velocity and direction of the ball after second 2  x 2 3x 1 when t  , x  10  x 2 3x y  y  80 4 2 80 4 x x  dy  x 3  3    4 20  dx 40 4 roots are 0 and 60  range is 60m
  • 95. 1 b) range c) velocity and direction of the ball after second 2  x 2 3x 1 when t  , x  10  x 2 3x y  y  80 4 2 80 4 x x  dy  x 3  3    4 20  dx 40 4 roots are 0 and 60 dy 1 when x  10,   range is 60m dx 2
  • 96. 1 b) range c) velocity and direction of the ball after second 2  x 2 3x 1 when t  , x  10  x 2 3x y  y  80 4 2 80 4 x x  dy  x 3  3    4 20  dx 40 4 dy 1 1 roots are 0 and 60 when x  10,  tan    range is 60m dx 2 2   2634
  • 97. 1 b) range c) velocity and direction of the ball after second 2  x 2 3x 1 when t  , x  10  x 2 3x y  y  80 4 2 80 4 x x  dy  x 3  3    4 20  dx 40 4 dy 1 1 roots are 0 and 60 when x  10,  tan    range is 60m dx 2 2 v x   2634 t cos 
  • 98. 1 b) range c) velocity and direction of the ball after second 2  x 2 3x 1 when t  , x  10  x 2 3x y  y  80 4 2 80 4 x x  dy  x 3  3    4 20  dx 40 4 dy 1 1 roots are 0 and 60 when x  10,  tan    range is 60m dx 2 2 v x   2634 t cos  5 1  2
  • 99. 1 b) range c) velocity and direction of the ball after second 2  x 2 3x 1 when t  , x  10  x 2 3x y  y  80 4 2 80 4 x x  dy  x 3  3    4 20  dx 40 4 dy 1 1 roots are 0 and 60 when x  10,  tan    range is 60m dx 2 2 v x   2634 t cos  5 1 10   2 1 2  2 5  10 5
  • 100. 1 b) range c) velocity and direction of the ball after second 2  x 2 3x 1 when t  , x  10  x 2 3x y  y  80 4 2 80 4 x x  dy  x 3  3    4 20  dx 40 4 dy 1 1 roots are 0 and 60 when x  10,  tan    range is 60m dx 2 2 v x   2634 t cos  5 1 10   2 1 2  2 5  10 5 1  after second, velocity  10 5m/s and it is 2 traveling at an angle of 26 34 to the horizontal
  • 101. 1 b) range c) velocity and direction of the ball after second 2  x 3x 2 1 when t  , x  10  x 2 3x y  y  80 4 2 80 4 x x  dy  x 3  3    4 20  dx 40 4 dy 1 1 roots are 0 and 60 when x  10,  tan    range is 60m dx 2 2 v x   2634 t cos  5 1 10  Exercise 3G; 1ac, 2ac,  2 1 2 4, 6, 8, 9, 11, 13, 16, 18  2 5 Exercise 3H; 2, 4, 6,  10 5 1 7, 10, 11  after second, velocity  10 5m/s and it is 2 traveling at an angle of 26 34 to the horizontal