SlideShare ist ein Scribd-Unternehmen logo
1 von 40
Downloaden Sie, um offline zu lesen
Series & Applications
Series & Applications
Definitions
Series & Applications
Definitions
Sequence (Progression):a set of numbers that follow a pattern
Series & Applications
Definitions
Sequence (Progression):a set of numbers that follow a pattern
Series:a set of numbers added together
Series & Applications
Definitions
Sequence (Progression):a set of numbers that follow a pattern
Series:a set of numbers added together
a:the first term
Series & Applications
Definitions
Sequence (Progression):a set of numbers that follow a pattern
Series:a set of numbers added together
a:the first term
Tn : the nth term
Series & Applications
Definitions
Sequence (Progression):a set of numbers that follow a pattern
Series:a set of numbers added together
a:the first term
Tn : the nth term
S n : the sum of the first n terms
Series & Applications
Definitions
Sequence (Progression):a set of numbers that follow a pattern
Series:a set of numbers added together
a:the first term
Tn : the nth term
S n : the sum of the first n terms
e.g . Tn  n 2  2, find;
Series & Applications
Definitions
Sequence (Progression):a set of numbers that follow a pattern
Series:a set of numbers added together
a:the first term
Tn : the nth term
S n : the sum of the first n terms
e.g . Tn  n 2  2, find;
 i  T5
Series & Applications
Definitions
Sequence (Progression):a set of numbers that follow a pattern
Series:a set of numbers added together
a:the first term
Tn : the nth term
S n : the sum of the first n terms
e.g . Tn  n 2  2, find;
 i  T5  52  2
         27
Series & Applications
Definitions
Sequence (Progression):a set of numbers that follow a pattern
Series:a set of numbers added together
a:the first term
Tn : the nth term
S n : the sum of the first n terms
e.g . Tn  n 2  2, find;
 i  T5  52  2             (ii) whether 42 is a term in the sequence
         27
Series & Applications
Definitions
Sequence (Progression):a set of numbers that follow a pattern
Series:a set of numbers added together
a:the first term
Tn : the nth term
S n : the sum of the first n terms
e.g . Tn  n 2  2, find;
 i  T5  52  2             (ii) whether 42 is a term in the sequence
         27                          42  n 2  2
Series & Applications
Definitions
Sequence (Progression):a set of numbers that follow a pattern
Series:a set of numbers added together
a:the first term
Tn : the nth term
S n : the sum of the first n terms
e.g . Tn  n 2  2, find;
 i  T5  52  2             (ii) whether 42 is a term in the sequence
         27                          42  n 2  2
                                       n 2  40
                                       n  40
Series & Applications
Definitions
Sequence (Progression):a set of numbers that follow a pattern
Series:a set of numbers added together
a:the first term
Tn : the nth term
S n : the sum of the first n terms
e.g . Tn  n 2  2, find;
 i  T5  52  2             (ii) whether 42 is a term in the sequence
         27                          42  n 2  2
                                       n 2  40
                                       n  40 , which is not an integer
                                Thus 42 is not a term
Arithmetic Series
Arithmetic Series
An arithmetic series is a sequence of numbers in which each term after
the first is found by adding a constant amount to the previous term.
Arithmetic Series
An arithmetic series is a sequence of numbers in which each term after
the first is found by adding a constant amount to the previous term.

The constant amount is called the common difference, symbolised, d.
Arithmetic Series
An arithmetic series is a sequence of numbers in which each term after
the first is found by adding a constant amount to the previous term.

The constant amount is called the common difference, symbolised, d.
      d  T2  a
Arithmetic Series
An arithmetic series is a sequence of numbers in which each term after
the first is found by adding a constant amount to the previous term.

The constant amount is called the common difference, symbolised, d.
      d  T2  a
         T3  T2
Arithmetic Series
An arithmetic series is a sequence of numbers in which each term after
the first is found by adding a constant amount to the previous term.

The constant amount is called the common difference, symbolised, d.
      d  T2  a
         T3  T2
      d  Tn  Tn1
Arithmetic Series
An arithmetic series is a sequence of numbers in which each term after
the first is found by adding a constant amount to the previous term.

The constant amount is called the common difference, symbolised, d.
      d  T2  a                   T1  a
         T3  T2
      d  Tn  Tn1
Arithmetic Series
An arithmetic series is a sequence of numbers in which each term after
the first is found by adding a constant amount to the previous term.

The constant amount is called the common difference, symbolised, d.
      d  T2  a                   T1  a
         T3  T2                  T2  a  d
      d  Tn  Tn1
Arithmetic Series
An arithmetic series is a sequence of numbers in which each term after
the first is found by adding a constant amount to the previous term.

The constant amount is called the common difference, symbolised, d.
      d  T2  a                   T1  a
         T3  T2                  T2  a  d
      d  Tn  Tn1                T3  a  2d
Arithmetic Series
An arithmetic series is a sequence of numbers in which each term after
the first is found by adding a constant amount to the previous term.

The constant amount is called the common difference, symbolised, d.
      d  T2  a                   T1  a
         T3  T2                  T2  a  d
      d  Tn  Tn1                T3  a  2d
                                   Tn  a  n  1d
Arithmetic Series
An arithmetic series is a sequence of numbers in which each term after
the first is found by adding a constant amount to the previous term.

The constant amount is called the common difference, symbolised, d.
      d  T2  a                         T1  a
         T3  T2                        T2  a  d
       d  Tn  Tn1                     T3  a  2d
                                         Tn  a  n  1d
e.g .i  If T3  9 and T7  21, find;
        the general term.
Arithmetic Series
An arithmetic series is a sequence of numbers in which each term after
the first is found by adding a constant amount to the previous term.

The constant amount is called the common difference, symbolised, d.
      d  T2  a                         T1  a
         T3  T2                        T2  a  d
       d  Tn  Tn1                     T3  a  2d
                                         Tn  a  n  1d
e.g .i  If T3  9 and T7  21, find;
        the general term.
        a  2d  9
Arithmetic Series
An arithmetic series is a sequence of numbers in which each term after
the first is found by adding a constant amount to the previous term.

The constant amount is called the common difference, symbolised, d.
      d  T2  a                         T1  a
         T3  T2                        T2  a  d
       d  Tn  Tn1                     T3  a  2d
                                         Tn  a  n  1d
e.g .i  If T3  9 and T7  21, find;
        the general term.
        a  2d  9
         a  6d  21
Arithmetic Series
An arithmetic series is a sequence of numbers in which each term after
the first is found by adding a constant amount to the previous term.

The constant amount is called the common difference, symbolised, d.
      d  T2  a                         T1  a
         T3  T2                        T2  a  d
       d  Tn  Tn1                     T3  a  2d
                                         Tn  a  n  1d
e.g .i  If T3  9 and T7  21, find;
        the general term.
        a  2d  9
         a  6d  21
             4d  12
              d 3
Arithmetic Series
An arithmetic series is a sequence of numbers in which each term after
the first is found by adding a constant amount to the previous term.

The constant amount is called the common difference, symbolised, d.
      d  T2  a                         T1  a
         T3  T2                        T2  a  d
       d  Tn  Tn1                     T3  a  2d
                                         Tn  a  n  1d
e.g .i  If T3  9 and T7  21, find;
        the general term.
        a  2d  9
         a  6d  21
             4d  12
              d  3 a  3
Arithmetic Series
An arithmetic series is a sequence of numbers in which each term after
the first is found by adding a constant amount to the previous term.

The constant amount is called the common difference, symbolised, d.
      d  T2  a                         T1  a
         T3  T2                        T2  a  d
       d  Tn  Tn1                     T3  a  2d
                                         Tn  a  n  1d
e.g .i  If T3  9 and T7  21, find;
        the general term.
        a  2d  9                            Tn  3  n  13
         a  6d  21
             4d  12
              d  3 a  3
Arithmetic Series
An arithmetic series is a sequence of numbers in which each term after
the first is found by adding a constant amount to the previous term.

The constant amount is called the common difference, symbolised, d.
      d  T2  a                         T1  a
         T3  T2                        T2  a  d
       d  Tn  Tn1                     T3  a  2d
                                         Tn  a  n  1d
e.g .i  If T3  9 and T7  21, find;
        the general term.
        a  2d  9                            Tn  3  n  13
         a  6d  21                              3  3n  3
             4d  12                              3n
              d  3 a  3
ii  T100
ii  T100  3100
          300
ii  T100  3100   (iii) the first term greater than 500
          300
ii  T100  3100   (iii) the first term greater than 500
          300                     Tn  500
ii  T100  3100   (iii) the first term greater than 500
          300                     Tn  500
                                   3n  500
ii  T100  3100   (iii) the first term greater than 500
          300                     Tn  500
                                   3n  500
                                        500
                                    n
                                         3
ii  T100  3100   (iii) the first term greater than 500
          300                     Tn  500
                                  3n  500
                                       500
                                   n
                                        3
                                 n  167
ii  T100  3100   (iii) the first term greater than 500
          300                       Tn  500
                                     3n  500
                                           500
                                      n
                                            3
                                   n  167
                         T167    501, is the first term  500
ii  T100  3100            (iii) the first term greater than 500
          300                                Tn  500
                                              3n  500
                                                    500
                                               n
                                                     3
                                            n  167
                                  T167    501, is the first term  500




       Exercise 6C; 1aceg, 2bdf, 3aceg, 5, 7bd, 10, 13b, 15

             Exercise 6D; 1adg, 2c, 3bd, 6a, 7, 9bd, 13

Weitere ähnliche Inhalte

Was ist angesagt?

Was ist angesagt? (16)

Some Results on Common Fixed Point Theorems in Hilbert Space
Some Results on Common Fixed Point Theorems in Hilbert SpaceSome Results on Common Fixed Point Theorems in Hilbert Space
Some Results on Common Fixed Point Theorems in Hilbert Space
 
Ap gp
Ap gpAp gp
Ap gp
 
Sequences and Series (Mathematics)
Sequences and Series (Mathematics) Sequences and Series (Mathematics)
Sequences and Series (Mathematics)
 
Solving recurrences
Solving recurrencesSolving recurrences
Solving recurrences
 
Critical thoughts about modern option pricing
Critical thoughts about modern option pricingCritical thoughts about modern option pricing
Critical thoughts about modern option pricing
 
recurrence relations
 recurrence relations recurrence relations
recurrence relations
 
Arithmetic sequences and series
Arithmetic sequences and seriesArithmetic sequences and series
Arithmetic sequences and series
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Ft3 new
Ft3 newFt3 new
Ft3 new
 
Sequences and series
Sequences and seriesSequences and series
Sequences and series
 
Recurrence relation
Recurrence relationRecurrence relation
Recurrence relation
 
Arithmetic seqence
Arithmetic seqenceArithmetic seqence
Arithmetic seqence
 
Modeling with Recurrence Relations
Modeling with Recurrence RelationsModeling with Recurrence Relations
Modeling with Recurrence Relations
 
Free Ebooks Download
Free Ebooks Download Free Ebooks Download
Free Ebooks Download
 
Last my paper equity, implied, and local volatilities
Last my paper equity, implied, and local volatilitiesLast my paper equity, implied, and local volatilities
Last my paper equity, implied, and local volatilities
 
recurence solutions
recurence solutionsrecurence solutions
recurence solutions
 

Andere mochten auch

Dividing Polynomials Slide Share
Dividing Polynomials Slide ShareDividing Polynomials Slide Share
Dividing Polynomials Slide ShareKristen T
 
Sequence and series
Sequence and seriesSequence and series
Sequence and seriesviannafaye
 
Dividing polynomials
Dividing polynomialsDividing polynomials
Dividing polynomialssalvie alvaro
 
Sequences and series power point
Sequences and series power pointSequences and series power point
Sequences and series power pointlmgraham85
 
Arithmetic Sequence and Arithmetic Series
Arithmetic Sequence and Arithmetic SeriesArithmetic Sequence and Arithmetic Series
Arithmetic Sequence and Arithmetic SeriesJoey Valdriz
 
Ppt on sequences and series by mukul sharma
Ppt on sequences and series by mukul sharmaPpt on sequences and series by mukul sharma
Ppt on sequences and series by mukul sharmajoywithmath
 
Sequences and series
Sequences and seriesSequences and series
Sequences and seriesmstf mstf
 
Arithmetic Sequence and Series
Arithmetic Sequence and SeriesArithmetic Sequence and Series
Arithmetic Sequence and Seriesitutor
 

Andere mochten auch (10)

Dividing Polynomials Slide Share
Dividing Polynomials Slide ShareDividing Polynomials Slide Share
Dividing Polynomials Slide Share
 
Sequence and series
Sequence and seriesSequence and series
Sequence and series
 
Dividing polynomials
Dividing polynomialsDividing polynomials
Dividing polynomials
 
Sequences and series power point
Sequences and series power pointSequences and series power point
Sequences and series power point
 
0302 ch 3 day 2
0302 ch 3 day 20302 ch 3 day 2
0302 ch 3 day 2
 
Arithmetic Sequence and Arithmetic Series
Arithmetic Sequence and Arithmetic SeriesArithmetic Sequence and Arithmetic Series
Arithmetic Sequence and Arithmetic Series
 
Ppt on sequences and series by mukul sharma
Ppt on sequences and series by mukul sharmaPpt on sequences and series by mukul sharma
Ppt on sequences and series by mukul sharma
 
Sequences and series
Sequences and seriesSequences and series
Sequences and series
 
Sequences And Series
Sequences And SeriesSequences And Series
Sequences And Series
 
Arithmetic Sequence and Series
Arithmetic Sequence and SeriesArithmetic Sequence and Series
Arithmetic Sequence and Series
 

Ähnlich wie 11X1 T10 01 definitions & arithmetic series

11 x1 t14 01 definitions & arithmetic series (2013)
11 x1 t14 01 definitions & arithmetic series (2013)11 x1 t14 01 definitions & arithmetic series (2013)
11 x1 t14 01 definitions & arithmetic series (2013)Nigel Simmons
 
11x1 t14 02 geometric series (2012)
11x1 t14 02 geometric series (2012)11x1 t14 02 geometric series (2012)
11x1 t14 02 geometric series (2012)Nigel Simmons
 
11X1 T14 02 geometric series (2011)
11X1 T14 02 geometric series (2011)11X1 T14 02 geometric series (2011)
11X1 T14 02 geometric series (2011)Nigel Simmons
 
11X1 T14 02 geometric series (2010)
11X1 T14 02 geometric series (2010)11X1 T14 02 geometric series (2010)
11X1 T14 02 geometric series (2010)Nigel Simmons
 
11X1 T10 02 geometric series
11X1 T10 02 geometric series11X1 T10 02 geometric series
11X1 T10 02 geometric seriesNigel Simmons
 
Pre-Cal 40S Slides June 2, 2008
Pre-Cal 40S Slides June 2, 2008Pre-Cal 40S Slides June 2, 2008
Pre-Cal 40S Slides June 2, 2008Darren Kuropatwa
 
Applied Math 40S Slides May 30, 2007
Applied Math 40S Slides May 30, 2007Applied Math 40S Slides May 30, 2007
Applied Math 40S Slides May 30, 2007Darren Kuropatwa
 
Pre-Cal 40S Slides January 16, 2008
Pre-Cal 40S Slides January 16,  2008Pre-Cal 40S Slides January 16,  2008
Pre-Cal 40S Slides January 16, 2008Darren Kuropatwa
 
Pre-Cal 40S Slides May 29, 2007
Pre-Cal 40S Slides May 29, 2007Pre-Cal 40S Slides May 29, 2007
Pre-Cal 40S Slides May 29, 2007Darren Kuropatwa
 
Sequences & series
Sequences & seriesSequences & series
Sequences & seriesThabani Masoka
 
Applied Math 40S June 2 AM, 2008
Applied Math 40S June 2 AM, 2008Applied Math 40S June 2 AM, 2008
Applied Math 40S June 2 AM, 2008Darren Kuropatwa
 
Arithmetic progression
Arithmetic progression Arithmetic progression
Arithmetic progression SANJAY GANGAN
 
Pre-Cal 20S January 21, 2009
Pre-Cal 20S January 21, 2009Pre-Cal 20S January 21, 2009
Pre-Cal 20S January 21, 2009Darren Kuropatwa
 
Arithmetic Sequences and Series-Boger.ppt
Arithmetic Sequences and Series-Boger.pptArithmetic Sequences and Series-Boger.ppt
Arithmetic Sequences and Series-Boger.pptGIDEONPAUL13
 
Arithmetic Sequences and Series-Boger.ppt
Arithmetic Sequences and Series-Boger.pptArithmetic Sequences and Series-Boger.ppt
Arithmetic Sequences and Series-Boger.pptJosephMuez2
 
Arithmetic Sequences and Series-Boger.ppt
Arithmetic Sequences and Series-Boger.pptArithmetic Sequences and Series-Boger.ppt
Arithmetic Sequences and Series-Boger.pptreboy_arroyo
 
Arithmetic Sequences and Series-Boger.ppt
Arithmetic Sequences and Series-Boger.pptArithmetic Sequences and Series-Boger.ppt
Arithmetic Sequences and Series-Boger.pptAngelle Pantig
 
13 3 arithmetic and geometric series and their sums
13 3 arithmetic and geometric series and their sums13 3 arithmetic and geometric series and their sums
13 3 arithmetic and geometric series and their sumshisema01
 

Ähnlich wie 11X1 T10 01 definitions & arithmetic series (20)

11 x1 t14 01 definitions & arithmetic series (2013)
11 x1 t14 01 definitions & arithmetic series (2013)11 x1 t14 01 definitions & arithmetic series (2013)
11 x1 t14 01 definitions & arithmetic series (2013)
 
11x1 t14 02 geometric series (2012)
11x1 t14 02 geometric series (2012)11x1 t14 02 geometric series (2012)
11x1 t14 02 geometric series (2012)
 
11X1 T14 02 geometric series (2011)
11X1 T14 02 geometric series (2011)11X1 T14 02 geometric series (2011)
11X1 T14 02 geometric series (2011)
 
11X1 T14 02 geometric series (2010)
11X1 T14 02 geometric series (2010)11X1 T14 02 geometric series (2010)
11X1 T14 02 geometric series (2010)
 
11X1 T10 02 geometric series
11X1 T10 02 geometric series11X1 T10 02 geometric series
11X1 T10 02 geometric series
 
Pre-Cal 40S Slides June 2, 2008
Pre-Cal 40S Slides June 2, 2008Pre-Cal 40S Slides June 2, 2008
Pre-Cal 40S Slides June 2, 2008
 
Applied Math 40S Slides May 30, 2007
Applied Math 40S Slides May 30, 2007Applied Math 40S Slides May 30, 2007
Applied Math 40S Slides May 30, 2007
 
Pre-Cal 40S Slides January 16, 2008
Pre-Cal 40S Slides January 16,  2008Pre-Cal 40S Slides January 16,  2008
Pre-Cal 40S Slides January 16, 2008
 
Pre-Cal 40S Slides May 29, 2007
Pre-Cal 40S Slides May 29, 2007Pre-Cal 40S Slides May 29, 2007
Pre-Cal 40S Slides May 29, 2007
 
Sequences & series
Sequences & seriesSequences & series
Sequences & series
 
Applied Math 40S June 2 AM, 2008
Applied Math 40S June 2 AM, 2008Applied Math 40S June 2 AM, 2008
Applied Math 40S June 2 AM, 2008
 
Arithmetic progression
Arithmetic progression Arithmetic progression
Arithmetic progression
 
Pre-Cal 20S January 21, 2009
Pre-Cal 20S January 21, 2009Pre-Cal 20S January 21, 2009
Pre-Cal 20S January 21, 2009
 
Pre-Cal 40S June 3, 2009
Pre-Cal 40S June 3, 2009Pre-Cal 40S June 3, 2009
Pre-Cal 40S June 3, 2009
 
rcg-ch4a.pdf
rcg-ch4a.pdfrcg-ch4a.pdf
rcg-ch4a.pdf
 
Arithmetic Sequences and Series-Boger.ppt
Arithmetic Sequences and Series-Boger.pptArithmetic Sequences and Series-Boger.ppt
Arithmetic Sequences and Series-Boger.ppt
 
Arithmetic Sequences and Series-Boger.ppt
Arithmetic Sequences and Series-Boger.pptArithmetic Sequences and Series-Boger.ppt
Arithmetic Sequences and Series-Boger.ppt
 
Arithmetic Sequences and Series-Boger.ppt
Arithmetic Sequences and Series-Boger.pptArithmetic Sequences and Series-Boger.ppt
Arithmetic Sequences and Series-Boger.ppt
 
Arithmetic Sequences and Series-Boger.ppt
Arithmetic Sequences and Series-Boger.pptArithmetic Sequences and Series-Boger.ppt
Arithmetic Sequences and Series-Boger.ppt
 
13 3 arithmetic and geometric series and their sums
13 3 arithmetic and geometric series and their sums13 3 arithmetic and geometric series and their sums
13 3 arithmetic and geometric series and their sums
 

Mehr von Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

Mehr von Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Kürzlich hochgeladen

How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Seán Kennedy
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4MiaBumagat1
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
FILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipinoFILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipinojohnmickonozaleda
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
Culture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptxCulture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptxPoojaSen20
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfErwinPantujan2
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 

Kürzlich hochgeladen (20)

YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
FILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipinoFILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipino
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
Culture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptxCulture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptx
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 

11X1 T10 01 definitions & arithmetic series

  • 3. Series & Applications Definitions Sequence (Progression):a set of numbers that follow a pattern
  • 4. Series & Applications Definitions Sequence (Progression):a set of numbers that follow a pattern Series:a set of numbers added together
  • 5. Series & Applications Definitions Sequence (Progression):a set of numbers that follow a pattern Series:a set of numbers added together a:the first term
  • 6. Series & Applications Definitions Sequence (Progression):a set of numbers that follow a pattern Series:a set of numbers added together a:the first term Tn : the nth term
  • 7. Series & Applications Definitions Sequence (Progression):a set of numbers that follow a pattern Series:a set of numbers added together a:the first term Tn : the nth term S n : the sum of the first n terms
  • 8. Series & Applications Definitions Sequence (Progression):a set of numbers that follow a pattern Series:a set of numbers added together a:the first term Tn : the nth term S n : the sum of the first n terms e.g . Tn  n 2  2, find;
  • 9. Series & Applications Definitions Sequence (Progression):a set of numbers that follow a pattern Series:a set of numbers added together a:the first term Tn : the nth term S n : the sum of the first n terms e.g . Tn  n 2  2, find; i  T5
  • 10. Series & Applications Definitions Sequence (Progression):a set of numbers that follow a pattern Series:a set of numbers added together a:the first term Tn : the nth term S n : the sum of the first n terms e.g . Tn  n 2  2, find; i  T5  52  2  27
  • 11. Series & Applications Definitions Sequence (Progression):a set of numbers that follow a pattern Series:a set of numbers added together a:the first term Tn : the nth term S n : the sum of the first n terms e.g . Tn  n 2  2, find; i  T5  52  2 (ii) whether 42 is a term in the sequence  27
  • 12. Series & Applications Definitions Sequence (Progression):a set of numbers that follow a pattern Series:a set of numbers added together a:the first term Tn : the nth term S n : the sum of the first n terms e.g . Tn  n 2  2, find; i  T5  52  2 (ii) whether 42 is a term in the sequence  27 42  n 2  2
  • 13. Series & Applications Definitions Sequence (Progression):a set of numbers that follow a pattern Series:a set of numbers added together a:the first term Tn : the nth term S n : the sum of the first n terms e.g . Tn  n 2  2, find; i  T5  52  2 (ii) whether 42 is a term in the sequence  27 42  n 2  2 n 2  40 n  40
  • 14. Series & Applications Definitions Sequence (Progression):a set of numbers that follow a pattern Series:a set of numbers added together a:the first term Tn : the nth term S n : the sum of the first n terms e.g . Tn  n 2  2, find; i  T5  52  2 (ii) whether 42 is a term in the sequence  27 42  n 2  2 n 2  40 n  40 , which is not an integer Thus 42 is not a term
  • 16. Arithmetic Series An arithmetic series is a sequence of numbers in which each term after the first is found by adding a constant amount to the previous term.
  • 17. Arithmetic Series An arithmetic series is a sequence of numbers in which each term after the first is found by adding a constant amount to the previous term. The constant amount is called the common difference, symbolised, d.
  • 18. Arithmetic Series An arithmetic series is a sequence of numbers in which each term after the first is found by adding a constant amount to the previous term. The constant amount is called the common difference, symbolised, d. d  T2  a
  • 19. Arithmetic Series An arithmetic series is a sequence of numbers in which each term after the first is found by adding a constant amount to the previous term. The constant amount is called the common difference, symbolised, d. d  T2  a  T3  T2
  • 20. Arithmetic Series An arithmetic series is a sequence of numbers in which each term after the first is found by adding a constant amount to the previous term. The constant amount is called the common difference, symbolised, d. d  T2  a  T3  T2 d  Tn  Tn1
  • 21. Arithmetic Series An arithmetic series is a sequence of numbers in which each term after the first is found by adding a constant amount to the previous term. The constant amount is called the common difference, symbolised, d. d  T2  a T1  a  T3  T2 d  Tn  Tn1
  • 22. Arithmetic Series An arithmetic series is a sequence of numbers in which each term after the first is found by adding a constant amount to the previous term. The constant amount is called the common difference, symbolised, d. d  T2  a T1  a  T3  T2 T2  a  d d  Tn  Tn1
  • 23. Arithmetic Series An arithmetic series is a sequence of numbers in which each term after the first is found by adding a constant amount to the previous term. The constant amount is called the common difference, symbolised, d. d  T2  a T1  a  T3  T2 T2  a  d d  Tn  Tn1 T3  a  2d
  • 24. Arithmetic Series An arithmetic series is a sequence of numbers in which each term after the first is found by adding a constant amount to the previous term. The constant amount is called the common difference, symbolised, d. d  T2  a T1  a  T3  T2 T2  a  d d  Tn  Tn1 T3  a  2d Tn  a  n  1d
  • 25. Arithmetic Series An arithmetic series is a sequence of numbers in which each term after the first is found by adding a constant amount to the previous term. The constant amount is called the common difference, symbolised, d. d  T2  a T1  a  T3  T2 T2  a  d d  Tn  Tn1 T3  a  2d Tn  a  n  1d e.g .i  If T3  9 and T7  21, find; the general term.
  • 26. Arithmetic Series An arithmetic series is a sequence of numbers in which each term after the first is found by adding a constant amount to the previous term. The constant amount is called the common difference, symbolised, d. d  T2  a T1  a  T3  T2 T2  a  d d  Tn  Tn1 T3  a  2d Tn  a  n  1d e.g .i  If T3  9 and T7  21, find; the general term. a  2d  9
  • 27. Arithmetic Series An arithmetic series is a sequence of numbers in which each term after the first is found by adding a constant amount to the previous term. The constant amount is called the common difference, symbolised, d. d  T2  a T1  a  T3  T2 T2  a  d d  Tn  Tn1 T3  a  2d Tn  a  n  1d e.g .i  If T3  9 and T7  21, find; the general term. a  2d  9 a  6d  21
  • 28. Arithmetic Series An arithmetic series is a sequence of numbers in which each term after the first is found by adding a constant amount to the previous term. The constant amount is called the common difference, symbolised, d. d  T2  a T1  a  T3  T2 T2  a  d d  Tn  Tn1 T3  a  2d Tn  a  n  1d e.g .i  If T3  9 and T7  21, find; the general term. a  2d  9 a  6d  21 4d  12 d 3
  • 29. Arithmetic Series An arithmetic series is a sequence of numbers in which each term after the first is found by adding a constant amount to the previous term. The constant amount is called the common difference, symbolised, d. d  T2  a T1  a  T3  T2 T2  a  d d  Tn  Tn1 T3  a  2d Tn  a  n  1d e.g .i  If T3  9 and T7  21, find; the general term. a  2d  9 a  6d  21 4d  12 d  3 a  3
  • 30. Arithmetic Series An arithmetic series is a sequence of numbers in which each term after the first is found by adding a constant amount to the previous term. The constant amount is called the common difference, symbolised, d. d  T2  a T1  a  T3  T2 T2  a  d d  Tn  Tn1 T3  a  2d Tn  a  n  1d e.g .i  If T3  9 and T7  21, find; the general term. a  2d  9 Tn  3  n  13 a  6d  21 4d  12 d  3 a  3
  • 31. Arithmetic Series An arithmetic series is a sequence of numbers in which each term after the first is found by adding a constant amount to the previous term. The constant amount is called the common difference, symbolised, d. d  T2  a T1  a  T3  T2 T2  a  d d  Tn  Tn1 T3  a  2d Tn  a  n  1d e.g .i  If T3  9 and T7  21, find; the general term. a  2d  9 Tn  3  n  13 a  6d  21  3  3n  3 4d  12  3n d  3 a  3
  • 33. ii  T100  3100  300
  • 34. ii  T100  3100 (iii) the first term greater than 500  300
  • 35. ii  T100  3100 (iii) the first term greater than 500  300 Tn  500
  • 36. ii  T100  3100 (iii) the first term greater than 500  300 Tn  500 3n  500
  • 37. ii  T100  3100 (iii) the first term greater than 500  300 Tn  500 3n  500 500 n 3
  • 38. ii  T100  3100 (iii) the first term greater than 500  300 Tn  500 3n  500 500 n 3 n  167
  • 39. ii  T100  3100 (iii) the first term greater than 500  300 Tn  500 3n  500 500 n 3 n  167 T167  501, is the first term  500
  • 40. ii  T100  3100 (iii) the first term greater than 500  300 Tn  500 3n  500 500 n 3 n  167 T167  501, is the first term  500 Exercise 6C; 1aceg, 2bdf, 3aceg, 5, 7bd, 10, 13b, 15 Exercise 6D; 1adg, 2c, 3bd, 6a, 7, 9bd, 13