SlideShare a Scribd company logo
1 of 24
Download to read offline
Course Calendar
Class DATE Contents
1 Sep. 26 Course information & Course overview
2 Oct. 4 Bayes Estimation
3 〃 11 Classical Bayes Estimation - Kalman Filter -
4 〃 18 Simulation-based Bayesian Methods
5 〃 25 Modern Bayesian Estimation :Particle Filter
6 Nov. 1 HMM(Hidden Markov Model)
Nov. 8 No Class
7 〃 15 Bayesian Decision
8 〃 29 Non parametric Approaches
9 Dec. 6 PCA(Principal Component Analysis)
10 〃 13 ICA(Independent Component Analysis)
11 〃 20 Applications of PCA and ICA
12 〃 27 Clustering, k-means et al.
13 Jan. 17 Other Topics 1 Kernel machine.
14 〃 22(Tue) Other Topics 2
Lecture Plan
Bayes Decision
1. Introduction
1.1 Pattern Recognition-
1.2 An Example Classification/Decision Theory
2. Bayes Decision Theory
2.1 Decision using Posterior Probability
2.2 Decision by Minimizing Risk
3. Discriminate Function
4. Gaussian Case
1. Introduction
3
1.1 Pattern Recognition
The second part of this course is concerned about Pattern Recognition.
Pattern recognitions (Machine Learning) want to give very high skills
for sensing and taking actions as humans do according to what they
observe.
Definitions of Pattern Recognition appeared in books
“The assignment of a physical object or event to one of several pre-
specified categories”
by Duda et al.[1]
“The science that concerns the description or classification
(recognition) of measurements”
by Schalkoff (Wiley Online Library)
Fish-Sorting Process
Sea bass 鱸
Salmon 鮭
R.O. Duda, P.E. Hart, and D. G. Stork,
“Pattern Classification”, John Wiley & Sons, 2nd edition, 2004
 
 
1
2
.
:
:feature vector in 2-d feature space
:
: action
"Correct dicision " should be an appropriate function of data
eg
x lightness
x width
x


 
  
 
x
x
x
1.2 An Example (Duda, Hart, & Stork 2004)
5
Automatic Fish-Sorting Process
action 1
belt conveyer
action 2
Typical pattern Recognition issues:
■ Classification ■ Regression
■ Clustering ■ Dimension Reduction
(Visualization)
Pattern Recognition System
data
Measurement
Preprocessing
Dimension
Reduction
Feature
Selection
Recognition
Classification
Model
change
Evaluation
analysis
results
PCA (ICA)
Clustering Cross-
ValidationPDF estimation
PDF: Probability Density Function
7
Classification/ Decision Theory
Suppose we observe fish image data x, then we want to classify it to
“sea bass” or “salmon” based on the joint probability distributions
The classification problem is to answer “How do we make the best
decision?”
   p ," sea bass" , p ," salmon"x x
x1
x2
Decision
Boundary
Classification:
Assign input vector to
one of two classes
R2
R1
Framework: - Two Category case (fish sorting example) -
■ State of nature (Class) ω (discrete random variable)
■ Prior Probability
■ Class-conditioned Probability (Likelihood)
Measurement x : brightness of fish (scalar continuous variable)
Class-conditional probability density function for each class:
1
2
: sea bass
: salmon
 
 


2. Bayes’ Decision Theory
   
   
1 2
1 2
,
where 1
P P
P P
 
  
   
   
1 1
2 2
PDF for given that the state of nature is
PDF for given that the state of nature is
p x x
p x x
 
 


9
Fig. 1 Class-conditioned probabilities
10
2.1 Decision Using Posterior Probability
■ Posterior Probabilities
■ Decision Rule (1) Minimizing error probability
■ Decision Rule (2) Likelihood ratio
   
 
   
 
the probability of being given that has been measuredDefine
Bayes rule derives
j
j j
j
xjP x
p x P
P x
p x
 
 



   
   
1 21
2 1 2
if >
if <
P x P x
P x P x
 
  
Decide
 
 
 
 
11 1
2 22
if
p x P
Pp x
 
 


Decide
independent of
observation x
(1)
(2)
(3)
11
Fig. 2 Decision
(a) Posterior Probabilities
(b) Likelihood ratio
12
Probability of Error
■ Error probability for a measurement x by decision
■ Average probability of error
   
 
        
               2 1 2 2 1 1
1 2 1 2
if we decide ( )2 1 1
if we decide ( )1 2 2
:
P x P x P x P P x P
P x x R
P x x R
P error xEx
p x dx p x dx dx dx
P error x p x dx
P error x
P error
     
 
 
 


 


     
R R R R
(4)
(5)
Fig. 3 P(error)
13
2.2 Decision by Minimizing Risk
■ Alternate Bayes Decision based on risk which defines “how much
costly each action is ?”
Suppose we observe x then take action according to make a decision
(ωi) if the true state of nature is ωj , we introduce the loss function
■ Example of loss function
From a medical image we want to classify (determine) whether it
contains cancer tissues or not.
 i j  
i
1 2
1 2
cancer, normal,
cancer, normal
 
 
 
 
cancer normal
cancer 0 1
normal 100 0
 i j  
1
2
1 2
(6)
Loss Function
Expected Loss
■ Conditional risk is the expected loss if we take action for a
measurement x.
■Action: = Deciding (i=12)
■Loss:
■Conditional Risks:
■The Overall Risk:
        
2
1
:i i j i j j
j
R x Ex P x       

  
i
i i
 :ij i j   
     
     
1 11 1 12 2
2 21 1 22 2
R x P x P x
R x P x P x
    
    
 
 
    
*
minimization
(minmum value R : Bayes Risk )
R R x x p x dx 
(7)
(8)
(9)
(10)
15
Minimum Risk Decision Rule (1)
   
   
1 21
2 1 2
if <
if >
R x R x
R x R x
 
  
Decide
   
       
1 2
21 11 1 12 22 2
Here , <
>
R x R x
P x P x
 
       
Minimum Risk Decision Rule (2)
 
 
 
 
 
 
1
1 12 22 2
21 11 12
2
if
Otherwise decide
threshold
P x P
PP x

   
  




Decide
(11)
(12)
(13)
16
Fig. 4 Likelihood ratio
17
Minimum error probability decision
=Minimizing the risk with zero-one loss function
Zero-One Loss Function:
 
 
 
 
1 2
12
Likekihood ratio decision rule (13) becomes
minimum error decision
P x P
PP x
 




Zero-One Loss Function:
 
0 if 0 1
,
1 if 1 0
i j ij
i j
i j
   
  
       
(14)
(15)
General Framework:
■ Finite set of states of nature (c Classes) :
■ Actions :
■ Loss:
■ Measurement:
 1 2, , c  
Generalization
: d-dimensional vector (feature vector)x
 1 2, , a  
     : 1,..., 1,...,ij i j i a j c     
19
3. Discriminant Function
19
Classifiers represented by discriminant functions : gi(x) i=1,…c
max gi(x)
g1(x) g2(x) gc(x)
x2
…
 where arg max
i
j
j
i g

 x
   Classifier minimizing the conditional risk: =i ig x R x
       
     
Minimizing error probability: =
Alternate function: =ln ln
i i i i
i i i
g x P x p x P
g x p x P
  
 


xdx1 …input
discriminant
fnctions
Classifier
Network structure
action
2020
■ Single discriminant function:
Two-category case
 
 
   
1
2
1 2
if 0
if 0
gives the decision boundary
g x
g x
g x g x





Decide
4.Gaussian Case:
   
     
     1
Multivariate Gaussian: ,
=ln ln
1 1
ln2 ln ln
2 2 2
i i i
i i i
T
i i i i i
p
g x p x P
d
x x P

 
 


      
x  
   
(17 )
(18)
(16)     1 2=g x g x g x
21
       
 
1
1 1 1
1 1
= ln2 ln ln
2 2 2
1 1 1
ln ln
2 2 2
T
i i i i i i
T T T
i i i i i i i i
d
g x x x P
x x x P
 


  
     
     
   
      
  0= T
i i i ig x x  T
x W x
 1
0
1 1
ln ln
2 2
T
i i i i i iP 
      
Case (i=1,2)
Boundary is given by a linear line
i   1 2General Case
Boundary is quadratic curves
 
decision
boundary
decision
boundary
(19)
(20)
1 11
where ,
2
i i i i i 
  W   
22
References:
1) R.O. Duda, P.E. Hart, and D. G. Stork, “Pattern Classification”,
John Wiley & Sons, 2nd edition, 2004
2) C. M. Bishop, “Pattern Recognition and Machine Learning”,
Springer, 2006
3) E. Alpaydin, Introduction to Machine Learning, MIT Press, 2009
4) A. Huvarinen et. al., ”Independent Component Analysis”
Wiley-Interscience 2001
Another action : Rejection
No classification for lower degree of conviction case
What next ?
In the discussions so far all of the relevant probabilities are known,
but this assumption will not be assured.
Fukunaga’s definition of Pattern Recognition:
“A problem of estimating density functions in a high–dimensional
space and dividing the space into the regions of categories or
classes”
23
 
 
   
 
 
     
1
/2 1/2
1
1 1 1
, exp
22
is d-dimensional random vector
:
: :
: Determinant of
T
d
T
d
x x
x x x
E x
Cov x E x x
  


 
 
      
 

   
  
Appendix:
Multivariable Gaussian Density Distribution
2012 mdsp pr07 bayes decision

More Related Content

What's hot

Overview on Optimization algorithms in Deep Learning
Overview on Optimization algorithms in Deep LearningOverview on Optimization algorithms in Deep Learning
Overview on Optimization algorithms in Deep LearningKhang Pham
 
What Is A Neural Network? | How Deep Neural Networks Work | Neural Network Tu...
What Is A Neural Network? | How Deep Neural Networks Work | Neural Network Tu...What Is A Neural Network? | How Deep Neural Networks Work | Neural Network Tu...
What Is A Neural Network? | How Deep Neural Networks Work | Neural Network Tu...Simplilearn
 
Logistic regression in Machine Learning
Logistic regression in Machine LearningLogistic regression in Machine Learning
Logistic regression in Machine LearningKuppusamy P
 
Support Vector Machines for Classification
Support Vector Machines for ClassificationSupport Vector Machines for Classification
Support Vector Machines for ClassificationPrakash Pimpale
 
Beginners Guide to Non-Negative Matrix Factorization
Beginners Guide to Non-Negative Matrix FactorizationBeginners Guide to Non-Negative Matrix Factorization
Beginners Guide to Non-Negative Matrix FactorizationBenjamin Bengfort
 
08 Machine Learning Maximum Aposteriori
08 Machine Learning Maximum Aposteriori08 Machine Learning Maximum Aposteriori
08 Machine Learning Maximum AposterioriAndres Mendez-Vazquez
 
Optimization in Deep Learning
Optimization in Deep LearningOptimization in Deep Learning
Optimization in Deep LearningYan Xu
 
Backpropagation And Gradient Descent In Neural Networks | Neural Network Tuto...
Backpropagation And Gradient Descent In Neural Networks | Neural Network Tuto...Backpropagation And Gradient Descent In Neural Networks | Neural Network Tuto...
Backpropagation And Gradient Descent In Neural Networks | Neural Network Tuto...Simplilearn
 
An Introduction to Computer Vision
An Introduction to Computer VisionAn Introduction to Computer Vision
An Introduction to Computer Visionguestd1b1b5
 
Belief Networks & Bayesian Classification
Belief Networks & Bayesian ClassificationBelief Networks & Bayesian Classification
Belief Networks & Bayesian ClassificationAdnan Masood
 
Gaussian process in machine learning
Gaussian process in machine learningGaussian process in machine learning
Gaussian process in machine learningVARUN KUMAR
 
Chapter 09 classification advanced
Chapter 09 classification advancedChapter 09 classification advanced
Chapter 09 classification advancedHouw Liong The
 
Machine learning Algorithms
Machine learning AlgorithmsMachine learning Algorithms
Machine learning AlgorithmsWalaa Hamdy Assy
 
Data science project presentation
Data science project presentationData science project presentation
Data science project presentationKevin Bluer
 

What's hot (20)

Overview on Optimization algorithms in Deep Learning
Overview on Optimization algorithms in Deep LearningOverview on Optimization algorithms in Deep Learning
Overview on Optimization algorithms in Deep Learning
 
What Is A Neural Network? | How Deep Neural Networks Work | Neural Network Tu...
What Is A Neural Network? | How Deep Neural Networks Work | Neural Network Tu...What Is A Neural Network? | How Deep Neural Networks Work | Neural Network Tu...
What Is A Neural Network? | How Deep Neural Networks Work | Neural Network Tu...
 
svm classification
svm classificationsvm classification
svm classification
 
Logistic regression in Machine Learning
Logistic regression in Machine LearningLogistic regression in Machine Learning
Logistic regression in Machine Learning
 
Edge detection
Edge detectionEdge detection
Edge detection
 
Support Vector Machines for Classification
Support Vector Machines for ClassificationSupport Vector Machines for Classification
Support Vector Machines for Classification
 
Beginners Guide to Non-Negative Matrix Factorization
Beginners Guide to Non-Negative Matrix FactorizationBeginners Guide to Non-Negative Matrix Factorization
Beginners Guide to Non-Negative Matrix Factorization
 
08 Machine Learning Maximum Aposteriori
08 Machine Learning Maximum Aposteriori08 Machine Learning Maximum Aposteriori
08 Machine Learning Maximum Aposteriori
 
linear classification
linear classificationlinear classification
linear classification
 
Optimization in Deep Learning
Optimization in Deep LearningOptimization in Deep Learning
Optimization in Deep Learning
 
SVM
SVM SVM
SVM
 
Backpropagation And Gradient Descent In Neural Networks | Neural Network Tuto...
Backpropagation And Gradient Descent In Neural Networks | Neural Network Tuto...Backpropagation And Gradient Descent In Neural Networks | Neural Network Tuto...
Backpropagation And Gradient Descent In Neural Networks | Neural Network Tuto...
 
An Introduction to Computer Vision
An Introduction to Computer VisionAn Introduction to Computer Vision
An Introduction to Computer Vision
 
Belief Networks & Bayesian Classification
Belief Networks & Bayesian ClassificationBelief Networks & Bayesian Classification
Belief Networks & Bayesian Classification
 
20191019 sinkhorn
20191019 sinkhorn20191019 sinkhorn
20191019 sinkhorn
 
Gaussian process in machine learning
Gaussian process in machine learningGaussian process in machine learning
Gaussian process in machine learning
 
Chapter 09 classification advanced
Chapter 09 classification advancedChapter 09 classification advanced
Chapter 09 classification advanced
 
Machine learning Algorithms
Machine learning AlgorithmsMachine learning Algorithms
Machine learning Algorithms
 
Hog
HogHog
Hog
 
Data science project presentation
Data science project presentationData science project presentation
Data science project presentation
 

Similar to 2012 mdsp pr07 bayes decision

2012 mdsp pr02 1004
2012 mdsp pr02 10042012 mdsp pr02 1004
2012 mdsp pr02 1004nozomuhamada
 
Bayseian decision theory
Bayseian decision theoryBayseian decision theory
Bayseian decision theorysia16
 
Normal density and discreminant analysis
Normal density and discreminant analysisNormal density and discreminant analysis
Normal density and discreminant analysisVARUN KUMAR
 
Introduction
IntroductionIntroduction
Introductionbutest
 
Estimation and Prediction of Complex Systems: Progress in Weather and Climate
Estimation and Prediction of Complex Systems: Progress in Weather and ClimateEstimation and Prediction of Complex Systems: Progress in Weather and Climate
Estimation and Prediction of Complex Systems: Progress in Weather and Climatemodons
 
The world of loss function
The world of loss functionThe world of loss function
The world of loss function홍배 김
 
2012 mdsp pr08 nonparametric approach
2012 mdsp pr08 nonparametric approach2012 mdsp pr08 nonparametric approach
2012 mdsp pr08 nonparametric approachnozomuhamada
 
Bayesian decesion theory
Bayesian decesion theoryBayesian decesion theory
Bayesian decesion theoryVARUN KUMAR
 
Probability and Statistics Cookbook
Probability and Statistics CookbookProbability and Statistics Cookbook
Probability and Statistics CookbookChairat Nuchnuanrat
 
Introduction to conventional machine learning techniques
Introduction to conventional machine learning techniquesIntroduction to conventional machine learning techniques
Introduction to conventional machine learning techniquesXavier Rafael Palou
 
MLHEP 2015: Introductory Lecture #1
MLHEP 2015: Introductory Lecture #1MLHEP 2015: Introductory Lecture #1
MLHEP 2015: Introductory Lecture #1arogozhnikov
 
MLHEP 2015: Introductory Lecture #4
MLHEP 2015: Introductory Lecture #4MLHEP 2015: Introductory Lecture #4
MLHEP 2015: Introductory Lecture #4arogozhnikov
 
2012 mdsp pr05 particle filter
2012 mdsp pr05 particle filter2012 mdsp pr05 particle filter
2012 mdsp pr05 particle filternozomuhamada
 

Similar to 2012 mdsp pr07 bayes decision (20)

Bayes ML.ppt
Bayes ML.pptBayes ML.ppt
Bayes ML.ppt
 
2012 mdsp pr02 1004
2012 mdsp pr02 10042012 mdsp pr02 1004
2012 mdsp pr02 1004
 
CSC446: Pattern Recognition (LN4)
CSC446: Pattern Recognition (LN4)CSC446: Pattern Recognition (LN4)
CSC446: Pattern Recognition (LN4)
 
Bayseian decision theory
Bayseian decision theoryBayseian decision theory
Bayseian decision theory
 
Normal density and discreminant analysis
Normal density and discreminant analysisNormal density and discreminant analysis
Normal density and discreminant analysis
 
A basic introduction to learning
A basic introduction to learningA basic introduction to learning
A basic introduction to learning
 
Introduction
IntroductionIntroduction
Introduction
 
Estimation and Prediction of Complex Systems: Progress in Weather and Climate
Estimation and Prediction of Complex Systems: Progress in Weather and ClimateEstimation and Prediction of Complex Systems: Progress in Weather and Climate
Estimation and Prediction of Complex Systems: Progress in Weather and Climate
 
The world of loss function
The world of loss functionThe world of loss function
The world of loss function
 
ML unit-1.pptx
ML unit-1.pptxML unit-1.pptx
ML unit-1.pptx
 
2012 mdsp pr08 nonparametric approach
2012 mdsp pr08 nonparametric approach2012 mdsp pr08 nonparametric approach
2012 mdsp pr08 nonparametric approach
 
Machine Learning
Machine LearningMachine Learning
Machine Learning
 
Bayesian decesion theory
Bayesian decesion theoryBayesian decesion theory
Bayesian decesion theory
 
CSC446: Pattern Recognition (LN5)
CSC446: Pattern Recognition (LN5)CSC446: Pattern Recognition (LN5)
CSC446: Pattern Recognition (LN5)
 
Probability and Statistics Cookbook
Probability and Statistics CookbookProbability and Statistics Cookbook
Probability and Statistics Cookbook
 
Introduction to conventional machine learning techniques
Introduction to conventional machine learning techniquesIntroduction to conventional machine learning techniques
Introduction to conventional machine learning techniques
 
MLHEP 2015: Introductory Lecture #1
MLHEP 2015: Introductory Lecture #1MLHEP 2015: Introductory Lecture #1
MLHEP 2015: Introductory Lecture #1
 
Cookbook en
Cookbook enCookbook en
Cookbook en
 
MLHEP 2015: Introductory Lecture #4
MLHEP 2015: Introductory Lecture #4MLHEP 2015: Introductory Lecture #4
MLHEP 2015: Introductory Lecture #4
 
2012 mdsp pr05 particle filter
2012 mdsp pr05 particle filter2012 mdsp pr05 particle filter
2012 mdsp pr05 particle filter
 

More from nozomuhamada

2012 mdsp pr13 support vector machine
2012 mdsp pr13 support vector machine2012 mdsp pr13 support vector machine
2012 mdsp pr13 support vector machinenozomuhamada
 
2012 mdsp pr12 k means mixture of gaussian
2012 mdsp pr12 k means mixture of gaussian2012 mdsp pr12 k means mixture of gaussian
2012 mdsp pr12 k means mixture of gaussiannozomuhamada
 
2012 mdsp pr11 ica part 2 face recognition
2012 mdsp pr11 ica part 2 face recognition2012 mdsp pr11 ica part 2 face recognition
2012 mdsp pr11 ica part 2 face recognitionnozomuhamada
 
2012 mdsp pr10 ica
2012 mdsp pr10 ica2012 mdsp pr10 ica
2012 mdsp pr10 icanozomuhamada
 
2012 mdsp pr09 pca lda
2012 mdsp pr09 pca lda2012 mdsp pr09 pca lda
2012 mdsp pr09 pca ldanozomuhamada
 
2012 mdsp pr06  hmm
2012 mdsp pr06  hmm2012 mdsp pr06  hmm
2012 mdsp pr06  hmmnozomuhamada
 
2012 mdsp pr04 monte carlo
2012 mdsp pr04 monte carlo2012 mdsp pr04 monte carlo
2012 mdsp pr04 monte carlonozomuhamada
 
2012 mdsp pr03 kalman filter
2012 mdsp pr03 kalman filter2012 mdsp pr03 kalman filter
2012 mdsp pr03 kalman filternozomuhamada
 
2012 mdsp pr01 introduction 0921
2012 mdsp pr01 introduction 09212012 mdsp pr01 introduction 0921
2012 mdsp pr01 introduction 0921nozomuhamada
 
招待講演(鶴岡)
招待講演(鶴岡)招待講演(鶴岡)
招待講演(鶴岡)nozomuhamada
 

More from nozomuhamada (12)

2012 mdsp pr13 support vector machine
2012 mdsp pr13 support vector machine2012 mdsp pr13 support vector machine
2012 mdsp pr13 support vector machine
 
2012 mdsp pr12 k means mixture of gaussian
2012 mdsp pr12 k means mixture of gaussian2012 mdsp pr12 k means mixture of gaussian
2012 mdsp pr12 k means mixture of gaussian
 
2012 mdsp pr11 ica part 2 face recognition
2012 mdsp pr11 ica part 2 face recognition2012 mdsp pr11 ica part 2 face recognition
2012 mdsp pr11 ica part 2 face recognition
 
2012 mdsp pr10 ica
2012 mdsp pr10 ica2012 mdsp pr10 ica
2012 mdsp pr10 ica
 
2012 mdsp pr09 pca lda
2012 mdsp pr09 pca lda2012 mdsp pr09 pca lda
2012 mdsp pr09 pca lda
 
2012 mdsp pr06  hmm
2012 mdsp pr06  hmm2012 mdsp pr06  hmm
2012 mdsp pr06  hmm
 
2012 mdsp pr04 monte carlo
2012 mdsp pr04 monte carlo2012 mdsp pr04 monte carlo
2012 mdsp pr04 monte carlo
 
2012 mdsp pr03 kalman filter
2012 mdsp pr03 kalman filter2012 mdsp pr03 kalman filter
2012 mdsp pr03 kalman filter
 
2012 mdsp pr01 introduction 0921
2012 mdsp pr01 introduction 09212012 mdsp pr01 introduction 0921
2012 mdsp pr01 introduction 0921
 
Ieice中国地区
Ieice中国地区Ieice中国地区
Ieice中国地区
 
招待講演(鶴岡)
招待講演(鶴岡)招待講演(鶴岡)
招待講演(鶴岡)
 
最終講義
最終講義最終講義
最終講義
 

Recently uploaded

Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoffsammart93
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...apidays
 
Ransomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfRansomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfOverkill Security
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Zilliz
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamUiPathCommunity
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024The Digital Insurer
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Victor Rentea
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfOrbitshub
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProduct Anonymous
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024The Digital Insurer
 
Spring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUKSpring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUKJago de Vreede
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyKhushali Kathiriya
 
AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024The Digital Insurer
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Angeliki Cooney
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobeapidays
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Orbitshub
 

Recently uploaded (20)

Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
Ransomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfRansomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdf
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
Spring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUKSpring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUK
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
 

2012 mdsp pr07 bayes decision

  • 1. Course Calendar Class DATE Contents 1 Sep. 26 Course information & Course overview 2 Oct. 4 Bayes Estimation 3 〃 11 Classical Bayes Estimation - Kalman Filter - 4 〃 18 Simulation-based Bayesian Methods 5 〃 25 Modern Bayesian Estimation :Particle Filter 6 Nov. 1 HMM(Hidden Markov Model) Nov. 8 No Class 7 〃 15 Bayesian Decision 8 〃 29 Non parametric Approaches 9 Dec. 6 PCA(Principal Component Analysis) 10 〃 13 ICA(Independent Component Analysis) 11 〃 20 Applications of PCA and ICA 12 〃 27 Clustering, k-means et al. 13 Jan. 17 Other Topics 1 Kernel machine. 14 〃 22(Tue) Other Topics 2
  • 2. Lecture Plan Bayes Decision 1. Introduction 1.1 Pattern Recognition- 1.2 An Example Classification/Decision Theory 2. Bayes Decision Theory 2.1 Decision using Posterior Probability 2.2 Decision by Minimizing Risk 3. Discriminate Function 4. Gaussian Case
  • 3. 1. Introduction 3 1.1 Pattern Recognition The second part of this course is concerned about Pattern Recognition. Pattern recognitions (Machine Learning) want to give very high skills for sensing and taking actions as humans do according to what they observe. Definitions of Pattern Recognition appeared in books “The assignment of a physical object or event to one of several pre- specified categories” by Duda et al.[1] “The science that concerns the description or classification (recognition) of measurements” by Schalkoff (Wiley Online Library)
  • 4. Fish-Sorting Process Sea bass 鱸 Salmon 鮭 R.O. Duda, P.E. Hart, and D. G. Stork, “Pattern Classification”, John Wiley & Sons, 2nd edition, 2004
  • 5.     1 2 . : :feature vector in 2-d feature space : : action "Correct dicision " should be an appropriate function of data eg x lightness x width x          x x x 1.2 An Example (Duda, Hart, & Stork 2004) 5 Automatic Fish-Sorting Process action 1 belt conveyer action 2
  • 6. Typical pattern Recognition issues: ■ Classification ■ Regression ■ Clustering ■ Dimension Reduction (Visualization) Pattern Recognition System data Measurement Preprocessing Dimension Reduction Feature Selection Recognition Classification Model change Evaluation analysis results PCA (ICA) Clustering Cross- ValidationPDF estimation PDF: Probability Density Function
  • 7. 7 Classification/ Decision Theory Suppose we observe fish image data x, then we want to classify it to “sea bass” or “salmon” based on the joint probability distributions The classification problem is to answer “How do we make the best decision?”    p ," sea bass" , p ," salmon"x x x1 x2 Decision Boundary Classification: Assign input vector to one of two classes R2 R1
  • 8. Framework: - Two Category case (fish sorting example) - ■ State of nature (Class) ω (discrete random variable) ■ Prior Probability ■ Class-conditioned Probability (Likelihood) Measurement x : brightness of fish (scalar continuous variable) Class-conditional probability density function for each class: 1 2 : sea bass : salmon       2. Bayes’ Decision Theory         1 2 1 2 , where 1 P P P P              1 1 2 2 PDF for given that the state of nature is PDF for given that the state of nature is p x x p x x      
  • 10. 10 2.1 Decision Using Posterior Probability ■ Posterior Probabilities ■ Decision Rule (1) Minimizing error probability ■ Decision Rule (2) Likelihood ratio             the probability of being given that has been measuredDefine Bayes rule derives j j j j xjP x p x P P x p x                1 21 2 1 2 if > if < P x P x P x P x      Decide         11 1 2 22 if p x P Pp x       Decide independent of observation x (1) (2) (3)
  • 11. 11 Fig. 2 Decision (a) Posterior Probabilities (b) Likelihood ratio
  • 12. 12 Probability of Error ■ Error probability for a measurement x by decision ■ Average probability of error                               2 1 2 2 1 1 1 2 1 2 if we decide ( )2 1 1 if we decide ( )1 2 2 : P x P x P x P P x P P x x R P x x R P error xEx p x dx p x dx dx dx P error x p x dx P error x P error                         R R R R (4) (5) Fig. 3 P(error)
  • 13. 13 2.2 Decision by Minimizing Risk ■ Alternate Bayes Decision based on risk which defines “how much costly each action is ?” Suppose we observe x then take action according to make a decision (ωi) if the true state of nature is ωj , we introduce the loss function ■ Example of loss function From a medical image we want to classify (determine) whether it contains cancer tissues or not.  i j   i 1 2 1 2 cancer, normal, cancer, normal         cancer normal cancer 0 1 normal 100 0  i j   1 2 1 2 (6) Loss Function
  • 14. Expected Loss ■ Conditional risk is the expected loss if we take action for a measurement x. ■Action: = Deciding (i=12) ■Loss: ■Conditional Risks: ■The Overall Risk:          2 1 :i i j i j j j R x Ex P x            i i i  :ij i j                1 11 1 12 2 2 21 1 22 2 R x P x P x R x P x P x                    * minimization (minmum value R : Bayes Risk ) R R x x p x dx  (7) (8) (9) (10)
  • 15. 15 Minimum Risk Decision Rule (1)         1 21 2 1 2 if < if > R x R x R x R x      Decide             1 2 21 11 1 12 22 2 Here , < > R x R x P x P x           Minimum Risk Decision Rule (2)             1 1 12 22 2 21 11 12 2 if Otherwise decide threshold P x P PP x             Decide (11) (12) (13)
  • 17. 17 Minimum error probability decision =Minimizing the risk with zero-one loss function Zero-One Loss Function:         1 2 12 Likekihood ratio decision rule (13) becomes minimum error decision P x P PP x       Zero-One Loss Function:   0 if 0 1 , 1 if 1 0 i j ij i j i j                (14) (15)
  • 18. General Framework: ■ Finite set of states of nature (c Classes) : ■ Actions : ■ Loss: ■ Measurement:  1 2, , c   Generalization : d-dimensional vector (feature vector)x  1 2, , a        : 1,..., 1,...,ij i j i a j c     
  • 19. 19 3. Discriminant Function 19 Classifiers represented by discriminant functions : gi(x) i=1,…c max gi(x) g1(x) g2(x) gc(x) x2 …  where arg max i j j i g   x    Classifier minimizing the conditional risk: =i ig x R x               Minimizing error probability: = Alternate function: =ln ln i i i i i i i g x P x p x P g x p x P        xdx1 …input discriminant fnctions Classifier Network structure action
  • 20. 2020 ■ Single discriminant function: Two-category case         1 2 1 2 if 0 if 0 gives the decision boundary g x g x g x g x      Decide 4.Gaussian Case:                1 Multivariate Gaussian: , =ln ln 1 1 ln2 ln ln 2 2 2 i i i i i i T i i i i i p g x p x P d x x P               x       (17 ) (18) (16)     1 2=g x g x g x
  • 21. 21           1 1 1 1 1 1 = ln2 ln ln 2 2 2 1 1 1 ln ln 2 2 2 T i i i i i i T T T i i i i i i i i d g x x x P x x x P                                 0= T i i i ig x x  T x W x  1 0 1 1 ln ln 2 2 T i i i i i iP         Case (i=1,2) Boundary is given by a linear line i   1 2General Case Boundary is quadratic curves   decision boundary decision boundary (19) (20) 1 11 where , 2 i i i i i    W   
  • 22. 22 References: 1) R.O. Duda, P.E. Hart, and D. G. Stork, “Pattern Classification”, John Wiley & Sons, 2nd edition, 2004 2) C. M. Bishop, “Pattern Recognition and Machine Learning”, Springer, 2006 3) E. Alpaydin, Introduction to Machine Learning, MIT Press, 2009 4) A. Huvarinen et. al., ”Independent Component Analysis” Wiley-Interscience 2001 Another action : Rejection No classification for lower degree of conviction case What next ? In the discussions so far all of the relevant probabilities are known, but this assumption will not be assured. Fukunaga’s definition of Pattern Recognition: “A problem of estimating density functions in a high–dimensional space and dividing the space into the regions of categories or classes”
  • 23. 23                   1 /2 1/2 1 1 1 1 , exp 22 is d-dimensional random vector : : : : Determinant of T d T d x x x x x E x Cov x E x x                           Appendix: Multivariable Gaussian Density Distribution