Ganesh final report

supercritical technologl

“SUPERCRITICAL TECHNOLOGY IN POWER PLANT”
. 1
1 INTRODUCTION
1.1 Basic Rankine Cycle:
The Rankine cycle is the oldest functional heat cycle utilized by man. The
Rankine cycle is the very a basic vapor power cycle which is adopted in all the
thermal power plants. It is a four step process (Figure 1.1) which involves the
heating of the working fluid to its saturation temperature and vaporizing it
isothermally, expanding the vapor on a turbine (work cycle), condensing the
steam isothermally to the liquid phase and pumping it back to the boiler.
Figure 1.1.1 Basic Rankine Cycle
Figure 2 represents the temperature-entropy diagram for the simplest version of
the Rankine cycle. Although this simple version is rarely used it gives a very clear
and simple picture on the working of the cycle.
Process 1-2 is the pumping of the working fliud (water) into the boiler
drum. The power required is derived from the overall power developed. Process
2-3 is the heating of the water upto its saturation temperature (100°C at 1 atm
pressure for water) is reached and then isothermal heating of the water where the
“SUPERCRITICAL TECHNOLOGY IN POWER PLANT”
. 2
phase change from liquid to vapor occurs. Points 3 lie on the saturated vapor line.
The steam here is completely dry. Process 3-4 is the adiabatic expansion of the
vapor/steam on the turbine to obtain mechanical work. It is an isentropic process.
The temperature of the steam is reduced and it falls below the saturated vapor
line. The dryness fraction is reduced to less than one and a mixed liquid vapor
phase is present. Process 4-1 is the condensation process. This mixture is
condensed in a condenser isothermally and brought to the liquid phase back to the
pump.
FIGURE 1.1.2 Temperature vs. Entropy diagram for Rankine cycle
The steam is however, usually, superheated so as to obtain more work output.
Increasing the superheat to greater extent would lead to more work output.
However the energy spent in superheating the fuel is also high. The overall effect
is an increase in the thermal efficiency since the average temperature at which the
heat is added increases. Moisture content at the exit of the steam is decreased as
seen in the figure 1.3.
Superheating is usually limited to 620°C owing to metallurgical considerations.
“SUPERCRITICAL TECHNOLOGY IN POWER PLANT”
. 3
Figure1.1.3 Rankine cycle with superheating
1.2 Energy Analysis of the Rankine Cycle:
All four components in the Rankine Cycle (pump, boiler, turbine and
condenser) are steady flow devices and thus can be analyzed under steady flow
processes. K.E and P.E changes are small compared to work and heat transferred
and is thereby neglected.
Thus the steady flow equation (per unit mass) reduces to:
Q+hini = W+hfinal
Boiler and condenser do not involve any work and pump and turbine are assumed
to be isentropic. The conservation of Energy relation for each device is expressed
as follows:
 Steam turbine:
As the expansion is adiabatic (Q=0) and isentropic (S3=S4), then,
W3-4=Wturbine= (h3-h4) kJ/kg
“SUPERCRITICAL TECHNOLOGY IN POWER PLANT”
. 4
 Condenser:
Heat rejected in the condenser, Q4-1+h4=h1+W4-1
Since W4-1=0, Q4-1=h1-h4
Thus,
Q4-1=-(h4-h1) kJ/kg
 Pump:
Work required to pump water:
Wpump=h1-h2 kJ/kg (-ve work)
 Boiler:
Heat added in boiler:
Q2-3=h3-h2 kJ/kg=h3-h1-Wpump kJ/kg
Thus, the Rankine Efficiency=Work done/Heat added
= (h3-h4-Wp) / (h3-h1-Wp)
Neglecting feed pump work as it is very small compared to other quantities, the
efficiency reduces to:
ηrankine= (h3-h4) / (h3-h1).
1.3 Factors increasing the Rankine Efficiency:
i. Lowering the condenser pressure:
Lowering the condenser pressure would lead to the lowering of
temperature os steam. Thus for the same turbine inlet state, more work is obtained
at lower temperatures.
“SUPERCRITICAL TECHNOLOGY IN POWER PLANT”
. 5
This method though cannot be extensively used as it reduces the dryness
fraction x of the steam. This is highly undesirable as it decreases the turbine
efficiency is reduced due to excessive erosion of the turbine blades.
ii. Superheating the steam to high temperature:
There is an increase in the work output if superheating of steam is done. It
increases the thermal efficiency as the average temperature at which heat is added
increases.
There is also another benfit of superheating; the steam at the exit of the
turbine is drier than in case of non superheated steam.
iii. Increasing the boiler pressure:
Increasing the boiler pressure raises the average temperature at which heat
is added and thereby increases the theramal efficiency. However the dryness
fraction decreases for the same exit temperature of the boiler. This problem can be
solved by employing reheating procedure. If however the boiler pressure is raised
to supercritical point greater efficiency is obtained as the latent heat absorbed
during phase change is reduced to zero.
“SUPERCRITICAL TECHNOLOGY IN POWER PLANT”
. 6
2 SUPERCRITICAL RANKINE CYCYLE
2.1 Supercritical technology:
When temperature and pressure of live steam are increased beyond the
critical point of water, the properties of steam will change dramatically. The
critical point of water is at 374 °C and 221.2 bar (218 atm), Figure 2.1, and it is
defined to be the point where gaseous component cannot be liquefied by
increasing the pressure applied to it. Beyond this critical point water does not
experience a phase change to vapor, but it becomes a supercritical fluid.
Supercritical fluid is not a gas or liquid. It is best described to be an intermediate
between these two phases. It has similar solvent power as liquid, but its transport
properties are similar to gases.
Figure 2.1.1 Phase diagram of water
2.2Efficiency:
The Rankine cycle can be greatly improved by operating in the
supercritical region of the coolant. Most modern fossil fuel plants employ the
“SUPERCRITICAL TECHNOLOGY IN POWER PLANT”
. 7
supercritical Rankine Steam Cycle which pushes the thermal efficiency of the
plant (see equation 4) into the low to mid 40% range.
ηsupercritical = (h2-h1-h3+h4 )/( h2-h1) -(eqn 4)
2.2 Definition:
Figure 2.2.1 T-S diagram for supercritical Rankine cycle
For water, this cycle corresponds to pressures above 221.2 bar and
temperatures above 374.15°C (647.3 K). The T-S diagram for a supercritical cycle
can be seen in Figure 6. With the use of reheat and regeneration techniques, point
3 in Figure 2.1, which corresponds to the T-S vapor state of the coolant after it has
expanded through a turbine, can be pushed to the right such that the coolant
remains in the gas phase. This simplifies the system by eliminating the need for
steam separators, dryers, and turbines specially designed for low quality steam.
“SUPERCRITICAL TECHNOLOGY IN POWER PLANT”
. 8
Material Concerns:
The primary concern with this cycle, at least for water, is the material
limits of the primary and support equipment. The materials in a boiler can be
exposed to temperatures above their limit, within reason, so long as the rate of
heat transfer to the coolant is sufficient to “cool” the material below its given
limit. The same holds true for the turbine materials. With the advent of modern
materials, i.e. super alloys and ceramics, not only are the physical limits of the
materials being pushed to extremes, but the systems are functioning much closer
to their limits. The current super alloys and coatings are allowing turbine inlet
temperatures of up to 700°C (973 K). the fourth generation super alloys with
ruthenium mono-crystal structures promise turbine inlet temperatures up to
1097°C (1370 K). Special alloys like Iconel 740, Haynes 230, CCA617, etc. are
used.
The metallurgical challenges faced and solutions:
 Normal Stainless steel proves of absolutely no use in building SC and USC
Boilers.
 The high temperature and pressure in the boiler induce huge amount of stresses
and fatigue in the materials. Also chances of oxidation are very high at such high
temperature and pressure.
 To resist these stress levels and oxidation different advanced materials and alloys
should be introduced.
 Also they should me machinable and weldable. This is a great metallurgical
challenge.
“SUPERCRITICAL TECHNOLOGY IN POWER PLANT”
. 9
3 DESIGN AND WORKING
3.1 Boiler Design:
The design of Super and Ultra supercritical boilers (also called as Benson
Boiler) is very critical as the working pressures of these boilers are very high. The
boiler shells, the economizer unit, super heaters, air preheaters are specially
designed. Their location is also of great significance.
i. Boiler shell:
As shown in the figure 3.1 the geometry of the boilers and the
configuration of the inlets determine the recirculation pattern inside boiler. The
intensive recirculation created in the symmetric boiler results in a more uniform
temperature field, lower temperature peaks, moderate oxygen concentration and
complete burnout of the combustible gases and char
Fig 3.1.1 Predicted Recirculation inside the combustion chamber
Table 3.1 lists the peak temperatures and burnout for designs A, B and C. the table also
lists the standard deviations of the predicted temperature and oxygen fields. The lowest
values for C indicate the higher degree of homogeneity. Thus the symmetrical boiler
seems to be the most suitable design.
“SUPERCRITICAL TECHNOLOGY IN POWER PLANT”
. 10
ii. Location of burners:
The number of burners in the boiler shell is also of prime importance.
Amongst all of them the downfired boilers are most suitable and advantageous.
Table 3.2 gives a clear idea.
iii. Boiler dimensions:
One of the most important advantages of HTAC applications are high heat
fluxes. Thus, compact combustion chambers can be built and the investment costs
can be lowered. The fourth calculation series was carried out in order to find the
combustion chamber dimensions which can, on one hand, ensure an efficient heat
exchange between combustion gas and water/steam mixture and on the other
hand, ensure high values of firing density. Three different sizes are tested and
they are named in as the small boiler, the medium size boiler and the large boiler
.It has been observed (see Table 3.3) that the small boiler is too short. At the top a
region of high temperatures exists and its enthalpy cannot be efficiently used. On
the contrary, in the large boiler although the heat fluxes areuniform, they are two
times lower than in the medium size boiler. Therefore, the medium size boiler
configuration is chosen for further investigations.
Small boiler Medium size boiler Large boiler
Firing Density
kW/m3
774 238 89
Outlet temperature,
K
1805 1558 1299
Table3.1.1 Results of the boiler size determination
3.2 Working:
As already discussed, the working of Supercritical Boilers is similar to the
working of sub-critical boilers. It works on the supercritical rankine cycle. Most
supercritical boilers are being run at operating pressures above of 235 bars. The
working of ultra supercritical boilers has operating pressures above 273 bars
“SUPERCRITICAL TECHNOLOGY IN POWER PLANT”
. 11
4 MATERIAL SELECTION
4.1 Metallurgical Problems:
The available materials today like stainless steel which are usually used
for boiler parts are not suitable for SC and USC boilers. They do not have the
enough creep strength to resist the high pressure. Also there is high rate of
oxidation at such high temperature and pressures which are beyond the capability
of these materials to resist. Capable, qualified materials must be available to the
industry to enable development of steam generators for SC steam conditions.
Major components, such as infurnace tubing for the waterwalls, superheater/
reheater sections, headers, external piping, and other accessories require
advancements in materials technology to allow outlet steam temperature increases
to reach 760°C (1400F). Experiences with projects such as the pioneering Philo
and Eddystone supercritical plants and the problems with the stainless steel steam
piping and superheater fireside corrosion provided a valuable precautionary
lesson for SC development. Industry organizations thus recognized that a
thorough program was required to develop new and improved materials and
protection methods necessary for these high temperature steam conditions.
4.2 Materials used:
The materials used should be sustainable to the very high pressure being
developed and should not get oxidized due to the very high temperature. Different
high temperature materials are being used like 9 to 12% ferritic steels T91/P91,
T92/P92, T112/P122 steel, Advanced Austenitic alloys TP347, HFG, Super 304,
Nickel and chrome-nickel super alloys like Inconel 740.
Table 4.2 gives a very brief idea about the boiler materials used for
different parts of the boiler.
“SUPERCRITICAL TECHNOLOGY IN POWER PLANT”
. 12
Heat surface Tube material Header material
Economiser SA-210 C SA-106 C
Furnace Walls SA-213 T12 SA-106 C
Super
heater/Reheater
SA-213 T12
SA-213 T23
SA-213 TP 304H
SA-213
TP347HFG
SUPER 304H
SA-335 P12
SA-335 P91
SA-335 P911
Steam Piping SA 335 P91
Table 4.2.1 Materials for different boiler parts
The materials for the other parts of the power plant (like turbine) also must be
sustainable for the super critically heated steam. The following table gives a detail idea
on the turbine materials of a plant operating on a supercritical cycle. (Table 4.3)
“SUPERCRITICAL TECHNOLOGY IN POWER PLANT”
. 13
Table 4.2.2 Materials for other parts
The following figures show some of the materials used for SC and USC boilers. Iconel
740 is widely used for steam pipings in almost all of them.
Figure 4.1 TP347HFG Figure 4.2 Iconel 740
Component 1,050° F 1,150 °F 1,300° F 1,400 °F
Casings
(shells, valves,
steam chests,
nozzles)
CrMoV (cast)
10CrMoVMb
9–10% Cr (W)
12CrW (Co)
CrMoWVNbN
CF8C-
Plus
CCA617
Inconel
625
Nimonic
263
CCA617
Inconel
740
CF8C-
Plus
Bolting 422
9–12%
CrMoV
Nimonic 80A
9–12% CrMoV
CrMoWVNbN
Nimonic
105
Nimonic
115
Waspaloy
Nimonic
105
Nimonic
115
U700
Rotors/Discs 1CrMoV
12CrMoVNbN
9–12 % CrWCo
12CrMoWVNbN
CCA617
Inconel
625
CCA617
Inconel
740
Nozzles/Blades 422
10CrMoVNbN
9–12% CrWCo
10CrMoVCbN
Wrought
Ni-based
Wrought
Ni-
based
“SUPERCRITICAL TECHNOLOGY IN POWER PLANT”
. 14
5 SUPERCRITICAL BOILERS
5.1 A typical Supercritical Boilers:
Largest CFB and first supercritical CFB sold to date is the Lagisza 460 MWe
unit Ordered by Poludniowy Koncern Energetyczny SA (PKE) in Poland. The design is
Essentially complete with financial closing expected in the first quarter of 2006 at
which time Fabrication and construction will commence. The largest capacity units in
operation today are the two (2) 300 MWe JEA repowered units which were designed to
fire any Combination of petroleum coke and bituminous coals. The physically largest
Foster Wheeler boilers in operation are the 262 MWe Turow Units 4, 5, and 6 which
were designed to fire a high moisture brown coal. The design and configuration of
these units with Compact solids separators and INTREX™ heat exchangers were used
as the basis for the Lagisza design as well as for this study. The Lagisza design was
adjusted to accommodate a typical bituminous coal and the steam cycle.
Figure 5.1.1 The Lagisza 300 MWe plant in Pola
“SUPERCRITICAL TECHNOLOGY IN POWER PLANT”
. 15
5.2 Super and Sub Critical Boilers (comparative study):
There are many advantages of super critical boilers over normal
subcritical boilers, the prime advantage being the increased efficiency and reduced
emissions. There are many more advantages like no need of steam dryers, higher
operating pressures leading to more work output etc.
It is thus very important to have a comparative study of both the
boilers.
Table 5.2.1 Comparison of sub and supercritical boilers
Technology Efficiency (%) Steam
pressure/temperature
Typical emissions
Ultra Supercritical
33–35
>242 bar and 593.33°C SO2-0.408 kg/MHh
NOx-0.286 kg/MWh
CO2-0.96 T/MWh
Supercritical
36–40
>221.2 bar and 537°C SO2-0.431 kg/MHh
NOx-0.304 kg/MWh
CO2-1.02 T/MWh
Subritical
42–45
165 bar 537°C SO2-0.445 kg/MHh
NOx-0.31 kg/MWh
CO2-1.02 T/MWh
“SUPERCRITICAL TECHNOLOGY IN POWER PLANT”
. 16
6 ADVANCE IN SC TECHNOLGY AND FUTURE IN INDIA
6.2 Supercritical Boilers in India:
There haven’t been any supercritical boilers in use in India so far. The European
countries, USA, Japan have been using supercritical technology since the last two
decades. However, there are upcoming projects to build power plants working under
the supercritical technology in India.
The National Thermal Power Corporation (NTPC) had entrusted a techno
economic study to M/s EPDC for super-critical Vs Sub-critical Boilers for their
proposed Sipat STPS (4x500 MW) in Madhya Pradesh.
M/s EPDC has recommended that a first step to the introduction of super-
critical technology, the most proven steam conditions may be chosen and the most
applicable steam conditions in India shall be 246 kg/cm2
, 538° C/566° C. With these
steam parameters, M/s EPDC has estimated that the capital cost for a supercritical
power station (4x500 MW) shall be about 2% higher than that of sub-critical power
plant but at the same time the plant efficiency shall improve from 38.64% to 39.6%.
Being a pit head thermal power project, the saving in fuel charges is not justified by
increase in fixed charges.
Here are some upcoming projects in India:
 North Karanpura, Jharkhand – 3x660 MW
 Darlipali, Orissa – 4x800 MW
 Lara, Chattisgarh – 5x800 MW
 Marakanam, Tamilnadu – 4x800 MW
 Tanda-II, Uttar Pradesh - 2x660 MW
 Meja, Uttar Pradesh - 2x660 MW
 Sholapur – 2x660 MW
 New Nabinagar-3x660 MW
 Many more projects including 800 MW ultra super critical units under
consideration
“SUPERCRITICAL TECHNOLOGY IN POWER PLANT”
. 17
7 CONCLUSION
The supercritical Rankine cycle, in general, offers an additional 30% relative
improvement in the thermal efficiency as compared to the same system operating in the
subcritical region. The cycle has been successfully utilized in fossil fuel plants but the
current available materials prohibit reliable application of the supercritical cycle to
nuclear applications. There is much work to be done in order to advance materials to
the point where they will be able to reliably withstand the stresses of a supercritical
environment inside a nuclear reactor for a designed life span of 60 years.
Supercritical boiler technology has matured, through advancements in design
and materials. Coal-fired supercritical units supplied around the world over the past
several years have been operating with high efficiency performance and high
availability.
“SUPERCRITICAL TECHNOLOGY IN POWER PLANT”
. 18
REFERENCES
1. “Design Aspects of the Ultra-Supercritical CFB Boiler”; Stephen J.
Goidich, Song Wu, Zhen Fan; Foster Wheeler North America Corp.
2. “Novel conceptual design of a supercritical pulverized coal boiler utilizing
high temperature air combustion (HTAC) technology”; Natalia Schaffel-
Mancini, Marco Mancini, Andrzej Szlek, Roman Weber; Institute of
Energy Process Engineering and Fuel Technology, Clausthal University of
Technology, Agricolastr. 4, 38678 Clausthal-Zellerfeld, Germany; 6
February 2010.
3. “Supercritical (Once Through) Boiler Technology”; J.W. Smith, Babcock
& Wilcox, Barberton, Ohio, U.S.A.; May 1998.
4. “Steam Generator for Advanced Ultra-Supercritical Power Plants 700 to
760°C”; P.S. Weitzel; ASME 2011 Power Conference, Denver, Colorado,
U.S.A; July 12-14, 2011.
5. “Supercritical boiler technology for future market conditions”; Joachim
Franke and Rudolf Kral; Siemens Power Generation; Parsons Conference;
2003.
6. “Steam Turbine Design Considerations for Supercritical Cycles”; Justin
Zachary, Paul Kochis, Ram Narula; Coal Gen 2007 Conference;1-3
August 2007.
7. “Technology status of thermal power plants in India and opportunities in
renovation and modernization”; TERI, D S Block, India Habitat Centre,
Lodi Road, New Delhi – 110003.
8. “Applied Thermodynamics”; Dr. H.N Sawant; January 1992; revised July
2004.
9. “http://en.wikipedia.org/wiki/Boiler#Supercritical_steam_generator”

Recomendados

Steam power plant von
Steam power plantSteam power plant
Steam power plantamolvjmech87
22 views63 Folien
Power cycles von
Power cyclesPower cycles
Power cyclesHimanshu Rajput
7.1K views27 Folien
MET 401 Chapter 2 improvement_to_rankine_cycle von
MET 401 Chapter 2 improvement_to_rankine_cycleMET 401 Chapter 2 improvement_to_rankine_cycle
MET 401 Chapter 2 improvement_to_rankine_cycleIbrahim AboKhalil
8.4K views11 Folien
Steam Power Cycle and Basics of Boiler von
Steam Power Cycle and Basics of BoilerSteam Power Cycle and Basics of Boiler
Steam Power Cycle and Basics of BoilerMulugeta Wotango
6.4K views82 Folien
Supercritical steam generators von
Supercritical steam generatorsSupercritical steam generators
Supercritical steam generatorsAshutosh Katti
13.9K views21 Folien
METHODS OF IMPROVING STEAM TURBINE PERFORMANCE von
METHODS OF IMPROVING STEAM TURBINE PERFORMANCEMETHODS OF IMPROVING STEAM TURBINE PERFORMANCE
METHODS OF IMPROVING STEAM TURBINE PERFORMANCEVanita Thakkar
17.3K views32 Folien

Más contenido relacionado

Was ist angesagt?

Closed feed water heaters :) von
Closed feed water heaters :)Closed feed water heaters :)
Closed feed water heaters :)JhePoi Santos
32.9K views20 Folien
Fectors Affecting the efficiency of Rankine cycle von
Fectors Affecting the efficiency of Rankine cycleFectors Affecting the efficiency of Rankine cycle
Fectors Affecting the efficiency of Rankine cycleRushikesh Raval
10K views10 Folien
Super critical boiler von
Super critical boilerSuper critical boiler
Super critical boilerSHIVAJI CHOUDHURY
72.8K views33 Folien
Steam Power Plant and Rankine Cycles von
Steam Power Plant and Rankine CyclesSteam Power Plant and Rankine Cycles
Steam Power Plant and Rankine CyclesRidwanul Hoque
286 views17 Folien
Kalina cycle von
Kalina cycleKalina cycle
Kalina cycleSai Kiran
7.8K views21 Folien
Thermal Power plant familarisation & its Auxillaries von
Thermal Power plant familarisation & its AuxillariesThermal Power plant familarisation & its Auxillaries
Thermal Power plant familarisation & its AuxillariesVaibhav Paydelwar
2.7K views61 Folien

Was ist angesagt?(20)

Closed feed water heaters :) von JhePoi Santos
Closed feed water heaters :)Closed feed water heaters :)
Closed feed water heaters :)
JhePoi Santos32.9K views
Fectors Affecting the efficiency of Rankine cycle von Rushikesh Raval
Fectors Affecting the efficiency of Rankine cycleFectors Affecting the efficiency of Rankine cycle
Fectors Affecting the efficiency of Rankine cycle
Rushikesh Raval10K views
Steam Power Plant and Rankine Cycles von Ridwanul Hoque
Steam Power Plant and Rankine CyclesSteam Power Plant and Rankine Cycles
Steam Power Plant and Rankine Cycles
Ridwanul Hoque286 views
Kalina cycle von Sai Kiran
Kalina cycleKalina cycle
Kalina cycle
Sai Kiran7.8K views
Thermal Power plant familarisation & its Auxillaries von Vaibhav Paydelwar
Thermal Power plant familarisation & its AuxillariesThermal Power plant familarisation & its Auxillaries
Thermal Power plant familarisation & its Auxillaries
Vaibhav Paydelwar2.7K views
Design of superheater for 210 MW thermal powerplant final von Kundan Chakraborty
Design of superheater for 210 MW thermal powerplant finalDesign of superheater for 210 MW thermal powerplant final
Design of superheater for 210 MW thermal powerplant final
Kundan Chakraborty4.1K views
Vapour power 4 by RANA SAIFULLAH KHAN von Rana Saif Khan
Vapour power 4 by RANA SAIFULLAH KHANVapour power 4 by RANA SAIFULLAH KHAN
Vapour power 4 by RANA SAIFULLAH KHAN
Rana Saif Khan684 views
Regenerative feed water heating cycle von 431996
Regenerative feed water heating cycleRegenerative feed water heating cycle
Regenerative feed water heating cycle
4319963.5K views
01 regenerative feed heating von Anil Palamwar
01 regenerative feed heating01 regenerative feed heating
01 regenerative feed heating
Anil Palamwar13.6K views
ganesh ppts on supercritical thenology von nirgudebhau111
ganesh ppts on supercritical thenologyganesh ppts on supercritical thenology
ganesh ppts on supercritical thenology
nirgudebhau1113.7K views
Heat recovery steam generator von umar farooq
Heat recovery steam generatorHeat recovery steam generator
Heat recovery steam generator
umar farooq3.3K views
Tutorial questions reheat rankine cycle von Ibrahim AboKhalil
Tutorial  questions   reheat rankine cycleTutorial  questions   reheat rankine cycle
Tutorial questions reheat rankine cycle
Ibrahim AboKhalil28.2K views
Vapour power cycle a von naphis ahamad
Vapour power cycle aVapour power cycle a
Vapour power cycle a
naphis ahamad10.3K views

Similar a Ganesh final report

Rnakine reheat regen von
Rnakine reheat regenRnakine reheat regen
Rnakine reheat regenGaya Prasad Kurmi
357 views32 Folien
Unit_2_58.pdf von
Unit_2_58.pdfUnit_2_58.pdf
Unit_2_58.pdfNiranjanSaraswat3
17 views63 Folien
steam power plant von
steam power plantsteam power plant
steam power plantOmar Qasim
585 views37 Folien
NTPC Project KORBA(SUPER THEMAL POWER PLANT) von
NTPC Project KORBA(SUPER THEMAL POWER PLANT)NTPC Project KORBA(SUPER THEMAL POWER PLANT)
NTPC Project KORBA(SUPER THEMAL POWER PLANT)Rajan Kumar Choudhary
8.1K views42 Folien
vapour-power-cycle h.pptx von
vapour-power-cycle                          h.pptxvapour-power-cycle                          h.pptx
vapour-power-cycle h.pptxMahamad Jawhar
171 views125 Folien
Improvement of rankine efficinecy of steam power plants von
Improvement of rankine efficinecy of steam power plantsImprovement of rankine efficinecy of steam power plants
Improvement of rankine efficinecy of steam power plantsDhilip Pugalenthi
7.1K views20 Folien

Similar a Ganesh final report(20)

steam power plant von Omar Qasim
steam power plantsteam power plant
steam power plant
Omar Qasim585 views
Improvement of rankine efficinecy of steam power plants von Dhilip Pugalenthi
Improvement of rankine efficinecy of steam power plantsImprovement of rankine efficinecy of steam power plants
Improvement of rankine efficinecy of steam power plants
Dhilip Pugalenthi7.1K views
Rankine Cycle & How to increase its efficiency von Raja Dolat
Rankine Cycle & How to increase its efficiencyRankine Cycle & How to increase its efficiency
Rankine Cycle & How to increase its efficiency
Raja Dolat9.3K views
vapour-power-cycle.pptx von DhruvBagade
vapour-power-cycle.pptxvapour-power-cycle.pptx
vapour-power-cycle.pptx
DhruvBagade129 views
Thermal power plant von Rabi Kumar
Thermal power plantThermal power plant
Thermal power plant
Rabi Kumar189 views
ME6301 ENGINEERING THERMODYNAMICS SHORT QUESTIONS AND ANSWERS - UNIT III von BIBIN CHIDAMBARANATHAN
ME6301 ENGINEERING THERMODYNAMICS SHORT QUESTIONS AND ANSWERS - UNIT IIIME6301 ENGINEERING THERMODYNAMICS SHORT QUESTIONS AND ANSWERS - UNIT III
ME6301 ENGINEERING THERMODYNAMICS SHORT QUESTIONS AND ANSWERS - UNIT III
Chap 01 von Anai Gaia
Chap 01Chap 01
Chap 01
Anai Gaia1.2K views
Thermal Analysis of Steam Turbine Power Plants von IOSR Journals
Thermal Analysis of Steam Turbine Power PlantsThermal Analysis of Steam Turbine Power Plants
Thermal Analysis of Steam Turbine Power Plants
IOSR Journals681 views
Lecture 5.pptx von NelyJay
Lecture 5.pptxLecture 5.pptx
Lecture 5.pptx
NelyJay4 views
thermal project 1 von James Li
thermal project 1thermal project 1
thermal project 1
James Li1.9K views

Último

The basics - information, data, technology and systems.pdf von
The basics - information, data, technology and systems.pdfThe basics - information, data, technology and systems.pdf
The basics - information, data, technology and systems.pdfJonathanCovena1
106 views1 Folie
Collective Bargaining and Understanding a Teacher Contract(16793704.1).pptx von
Collective Bargaining and Understanding a Teacher Contract(16793704.1).pptxCollective Bargaining and Understanding a Teacher Contract(16793704.1).pptx
Collective Bargaining and Understanding a Teacher Contract(16793704.1).pptxCenter for Integrated Training & Education
91 views57 Folien
Lecture: Open Innovation von
Lecture: Open InnovationLecture: Open Innovation
Lecture: Open InnovationMichal Hron
99 views56 Folien
11.30.23 Poverty and Inequality in America.pptx von
11.30.23 Poverty and Inequality in America.pptx11.30.23 Poverty and Inequality in America.pptx
11.30.23 Poverty and Inequality in America.pptxmary850239
149 views33 Folien
REPRESENTATION - GAUNTLET.pptx von
REPRESENTATION - GAUNTLET.pptxREPRESENTATION - GAUNTLET.pptx
REPRESENTATION - GAUNTLET.pptxiammrhaywood
91 views26 Folien
CWP_23995_2013_17_11_2023_FINAL_ORDER.pdf von
CWP_23995_2013_17_11_2023_FINAL_ORDER.pdfCWP_23995_2013_17_11_2023_FINAL_ORDER.pdf
CWP_23995_2013_17_11_2023_FINAL_ORDER.pdfSukhwinderSingh895865
518 views6 Folien

Último(20)

The basics - information, data, technology and systems.pdf von JonathanCovena1
The basics - information, data, technology and systems.pdfThe basics - information, data, technology and systems.pdf
The basics - information, data, technology and systems.pdf
JonathanCovena1106 views
Lecture: Open Innovation von Michal Hron
Lecture: Open InnovationLecture: Open Innovation
Lecture: Open Innovation
Michal Hron99 views
11.30.23 Poverty and Inequality in America.pptx von mary850239
11.30.23 Poverty and Inequality in America.pptx11.30.23 Poverty and Inequality in America.pptx
11.30.23 Poverty and Inequality in America.pptx
mary850239149 views
REPRESENTATION - GAUNTLET.pptx von iammrhaywood
REPRESENTATION - GAUNTLET.pptxREPRESENTATION - GAUNTLET.pptx
REPRESENTATION - GAUNTLET.pptx
iammrhaywood91 views
Scope of Biochemistry.pptx von shoba shoba
Scope of Biochemistry.pptxScope of Biochemistry.pptx
Scope of Biochemistry.pptx
shoba shoba126 views
American Psychological Association 7th Edition.pptx von SamiullahAfridi4
American Psychological Association  7th Edition.pptxAmerican Psychological Association  7th Edition.pptx
American Psychological Association 7th Edition.pptx
SamiullahAfridi482 views
Create a Structure in VBNet.pptx von Breach_P
Create a Structure in VBNet.pptxCreate a Structure in VBNet.pptx
Create a Structure in VBNet.pptx
Breach_P72 views
Ch. 7 Political Participation and Elections.pptx von Rommel Regala
Ch. 7 Political Participation and Elections.pptxCh. 7 Political Participation and Elections.pptx
Ch. 7 Political Participation and Elections.pptx
Rommel Regala90 views
Drama KS5 Breakdown von WestHatch
Drama KS5 BreakdownDrama KS5 Breakdown
Drama KS5 Breakdown
WestHatch73 views
OEB 2023 Co-learning To Speed Up AI Implementation in Courses.pptx von Inge de Waard
OEB 2023 Co-learning To Speed Up AI Implementation in Courses.pptxOEB 2023 Co-learning To Speed Up AI Implementation in Courses.pptx
OEB 2023 Co-learning To Speed Up AI Implementation in Courses.pptx
Inge de Waard169 views
Psychology KS4 von WestHatch
Psychology KS4Psychology KS4
Psychology KS4
WestHatch76 views
AI Tools for Business and Startups von Svetlin Nakov
AI Tools for Business and StartupsAI Tools for Business and Startups
AI Tools for Business and Startups
Svetlin Nakov105 views
Solar System and Galaxies.pptx von DrHafizKosar
Solar System and Galaxies.pptxSolar System and Galaxies.pptx
Solar System and Galaxies.pptx
DrHafizKosar89 views
7 NOVEL DRUG DELIVERY SYSTEM.pptx von Sachin Nitave
7 NOVEL DRUG DELIVERY SYSTEM.pptx7 NOVEL DRUG DELIVERY SYSTEM.pptx
7 NOVEL DRUG DELIVERY SYSTEM.pptx
Sachin Nitave59 views

Ganesh final report

  • 1. “SUPERCRITICAL TECHNOLOGY IN POWER PLANT” . 1 1 INTRODUCTION 1.1 Basic Rankine Cycle: The Rankine cycle is the oldest functional heat cycle utilized by man. The Rankine cycle is the very a basic vapor power cycle which is adopted in all the thermal power plants. It is a four step process (Figure 1.1) which involves the heating of the working fluid to its saturation temperature and vaporizing it isothermally, expanding the vapor on a turbine (work cycle), condensing the steam isothermally to the liquid phase and pumping it back to the boiler. Figure 1.1.1 Basic Rankine Cycle Figure 2 represents the temperature-entropy diagram for the simplest version of the Rankine cycle. Although this simple version is rarely used it gives a very clear and simple picture on the working of the cycle. Process 1-2 is the pumping of the working fliud (water) into the boiler drum. The power required is derived from the overall power developed. Process 2-3 is the heating of the water upto its saturation temperature (100°C at 1 atm pressure for water) is reached and then isothermal heating of the water where the
  • 2. “SUPERCRITICAL TECHNOLOGY IN POWER PLANT” . 2 phase change from liquid to vapor occurs. Points 3 lie on the saturated vapor line. The steam here is completely dry. Process 3-4 is the adiabatic expansion of the vapor/steam on the turbine to obtain mechanical work. It is an isentropic process. The temperature of the steam is reduced and it falls below the saturated vapor line. The dryness fraction is reduced to less than one and a mixed liquid vapor phase is present. Process 4-1 is the condensation process. This mixture is condensed in a condenser isothermally and brought to the liquid phase back to the pump. FIGURE 1.1.2 Temperature vs. Entropy diagram for Rankine cycle The steam is however, usually, superheated so as to obtain more work output. Increasing the superheat to greater extent would lead to more work output. However the energy spent in superheating the fuel is also high. The overall effect is an increase in the thermal efficiency since the average temperature at which the heat is added increases. Moisture content at the exit of the steam is decreased as seen in the figure 1.3. Superheating is usually limited to 620°C owing to metallurgical considerations.
  • 3. “SUPERCRITICAL TECHNOLOGY IN POWER PLANT” . 3 Figure1.1.3 Rankine cycle with superheating 1.2 Energy Analysis of the Rankine Cycle: All four components in the Rankine Cycle (pump, boiler, turbine and condenser) are steady flow devices and thus can be analyzed under steady flow processes. K.E and P.E changes are small compared to work and heat transferred and is thereby neglected. Thus the steady flow equation (per unit mass) reduces to: Q+hini = W+hfinal Boiler and condenser do not involve any work and pump and turbine are assumed to be isentropic. The conservation of Energy relation for each device is expressed as follows:  Steam turbine: As the expansion is adiabatic (Q=0) and isentropic (S3=S4), then, W3-4=Wturbine= (h3-h4) kJ/kg
  • 4. “SUPERCRITICAL TECHNOLOGY IN POWER PLANT” . 4  Condenser: Heat rejected in the condenser, Q4-1+h4=h1+W4-1 Since W4-1=0, Q4-1=h1-h4 Thus, Q4-1=-(h4-h1) kJ/kg  Pump: Work required to pump water: Wpump=h1-h2 kJ/kg (-ve work)  Boiler: Heat added in boiler: Q2-3=h3-h2 kJ/kg=h3-h1-Wpump kJ/kg Thus, the Rankine Efficiency=Work done/Heat added = (h3-h4-Wp) / (h3-h1-Wp) Neglecting feed pump work as it is very small compared to other quantities, the efficiency reduces to: ηrankine= (h3-h4) / (h3-h1). 1.3 Factors increasing the Rankine Efficiency: i. Lowering the condenser pressure: Lowering the condenser pressure would lead to the lowering of temperature os steam. Thus for the same turbine inlet state, more work is obtained at lower temperatures.
  • 5. “SUPERCRITICAL TECHNOLOGY IN POWER PLANT” . 5 This method though cannot be extensively used as it reduces the dryness fraction x of the steam. This is highly undesirable as it decreases the turbine efficiency is reduced due to excessive erosion of the turbine blades. ii. Superheating the steam to high temperature: There is an increase in the work output if superheating of steam is done. It increases the thermal efficiency as the average temperature at which heat is added increases. There is also another benfit of superheating; the steam at the exit of the turbine is drier than in case of non superheated steam. iii. Increasing the boiler pressure: Increasing the boiler pressure raises the average temperature at which heat is added and thereby increases the theramal efficiency. However the dryness fraction decreases for the same exit temperature of the boiler. This problem can be solved by employing reheating procedure. If however the boiler pressure is raised to supercritical point greater efficiency is obtained as the latent heat absorbed during phase change is reduced to zero.
  • 6. “SUPERCRITICAL TECHNOLOGY IN POWER PLANT” . 6 2 SUPERCRITICAL RANKINE CYCYLE 2.1 Supercritical technology: When temperature and pressure of live steam are increased beyond the critical point of water, the properties of steam will change dramatically. The critical point of water is at 374 °C and 221.2 bar (218 atm), Figure 2.1, and it is defined to be the point where gaseous component cannot be liquefied by increasing the pressure applied to it. Beyond this critical point water does not experience a phase change to vapor, but it becomes a supercritical fluid. Supercritical fluid is not a gas or liquid. It is best described to be an intermediate between these two phases. It has similar solvent power as liquid, but its transport properties are similar to gases. Figure 2.1.1 Phase diagram of water 2.2Efficiency: The Rankine cycle can be greatly improved by operating in the supercritical region of the coolant. Most modern fossil fuel plants employ the
  • 7. “SUPERCRITICAL TECHNOLOGY IN POWER PLANT” . 7 supercritical Rankine Steam Cycle which pushes the thermal efficiency of the plant (see equation 4) into the low to mid 40% range. ηsupercritical = (h2-h1-h3+h4 )/( h2-h1) -(eqn 4) 2.2 Definition: Figure 2.2.1 T-S diagram for supercritical Rankine cycle For water, this cycle corresponds to pressures above 221.2 bar and temperatures above 374.15°C (647.3 K). The T-S diagram for a supercritical cycle can be seen in Figure 6. With the use of reheat and regeneration techniques, point 3 in Figure 2.1, which corresponds to the T-S vapor state of the coolant after it has expanded through a turbine, can be pushed to the right such that the coolant remains in the gas phase. This simplifies the system by eliminating the need for steam separators, dryers, and turbines specially designed for low quality steam.
  • 8. “SUPERCRITICAL TECHNOLOGY IN POWER PLANT” . 8 Material Concerns: The primary concern with this cycle, at least for water, is the material limits of the primary and support equipment. The materials in a boiler can be exposed to temperatures above their limit, within reason, so long as the rate of heat transfer to the coolant is sufficient to “cool” the material below its given limit. The same holds true for the turbine materials. With the advent of modern materials, i.e. super alloys and ceramics, not only are the physical limits of the materials being pushed to extremes, but the systems are functioning much closer to their limits. The current super alloys and coatings are allowing turbine inlet temperatures of up to 700°C (973 K). the fourth generation super alloys with ruthenium mono-crystal structures promise turbine inlet temperatures up to 1097°C (1370 K). Special alloys like Iconel 740, Haynes 230, CCA617, etc. are used. The metallurgical challenges faced and solutions:  Normal Stainless steel proves of absolutely no use in building SC and USC Boilers.  The high temperature and pressure in the boiler induce huge amount of stresses and fatigue in the materials. Also chances of oxidation are very high at such high temperature and pressure.  To resist these stress levels and oxidation different advanced materials and alloys should be introduced.  Also they should me machinable and weldable. This is a great metallurgical challenge.
  • 9. “SUPERCRITICAL TECHNOLOGY IN POWER PLANT” . 9 3 DESIGN AND WORKING 3.1 Boiler Design: The design of Super and Ultra supercritical boilers (also called as Benson Boiler) is very critical as the working pressures of these boilers are very high. The boiler shells, the economizer unit, super heaters, air preheaters are specially designed. Their location is also of great significance. i. Boiler shell: As shown in the figure 3.1 the geometry of the boilers and the configuration of the inlets determine the recirculation pattern inside boiler. The intensive recirculation created in the symmetric boiler results in a more uniform temperature field, lower temperature peaks, moderate oxygen concentration and complete burnout of the combustible gases and char Fig 3.1.1 Predicted Recirculation inside the combustion chamber Table 3.1 lists the peak temperatures and burnout for designs A, B and C. the table also lists the standard deviations of the predicted temperature and oxygen fields. The lowest values for C indicate the higher degree of homogeneity. Thus the symmetrical boiler seems to be the most suitable design.
  • 10. “SUPERCRITICAL TECHNOLOGY IN POWER PLANT” . 10 ii. Location of burners: The number of burners in the boiler shell is also of prime importance. Amongst all of them the downfired boilers are most suitable and advantageous. Table 3.2 gives a clear idea. iii. Boiler dimensions: One of the most important advantages of HTAC applications are high heat fluxes. Thus, compact combustion chambers can be built and the investment costs can be lowered. The fourth calculation series was carried out in order to find the combustion chamber dimensions which can, on one hand, ensure an efficient heat exchange between combustion gas and water/steam mixture and on the other hand, ensure high values of firing density. Three different sizes are tested and they are named in as the small boiler, the medium size boiler and the large boiler .It has been observed (see Table 3.3) that the small boiler is too short. At the top a region of high temperatures exists and its enthalpy cannot be efficiently used. On the contrary, in the large boiler although the heat fluxes areuniform, they are two times lower than in the medium size boiler. Therefore, the medium size boiler configuration is chosen for further investigations. Small boiler Medium size boiler Large boiler Firing Density kW/m3 774 238 89 Outlet temperature, K 1805 1558 1299 Table3.1.1 Results of the boiler size determination 3.2 Working: As already discussed, the working of Supercritical Boilers is similar to the working of sub-critical boilers. It works on the supercritical rankine cycle. Most supercritical boilers are being run at operating pressures above of 235 bars. The working of ultra supercritical boilers has operating pressures above 273 bars
  • 11. “SUPERCRITICAL TECHNOLOGY IN POWER PLANT” . 11 4 MATERIAL SELECTION 4.1 Metallurgical Problems: The available materials today like stainless steel which are usually used for boiler parts are not suitable for SC and USC boilers. They do not have the enough creep strength to resist the high pressure. Also there is high rate of oxidation at such high temperature and pressures which are beyond the capability of these materials to resist. Capable, qualified materials must be available to the industry to enable development of steam generators for SC steam conditions. Major components, such as infurnace tubing for the waterwalls, superheater/ reheater sections, headers, external piping, and other accessories require advancements in materials technology to allow outlet steam temperature increases to reach 760°C (1400F). Experiences with projects such as the pioneering Philo and Eddystone supercritical plants and the problems with the stainless steel steam piping and superheater fireside corrosion provided a valuable precautionary lesson for SC development. Industry organizations thus recognized that a thorough program was required to develop new and improved materials and protection methods necessary for these high temperature steam conditions. 4.2 Materials used: The materials used should be sustainable to the very high pressure being developed and should not get oxidized due to the very high temperature. Different high temperature materials are being used like 9 to 12% ferritic steels T91/P91, T92/P92, T112/P122 steel, Advanced Austenitic alloys TP347, HFG, Super 304, Nickel and chrome-nickel super alloys like Inconel 740. Table 4.2 gives a very brief idea about the boiler materials used for different parts of the boiler.
  • 12. “SUPERCRITICAL TECHNOLOGY IN POWER PLANT” . 12 Heat surface Tube material Header material Economiser SA-210 C SA-106 C Furnace Walls SA-213 T12 SA-106 C Super heater/Reheater SA-213 T12 SA-213 T23 SA-213 TP 304H SA-213 TP347HFG SUPER 304H SA-335 P12 SA-335 P91 SA-335 P911 Steam Piping SA 335 P91 Table 4.2.1 Materials for different boiler parts The materials for the other parts of the power plant (like turbine) also must be sustainable for the super critically heated steam. The following table gives a detail idea on the turbine materials of a plant operating on a supercritical cycle. (Table 4.3)
  • 13. “SUPERCRITICAL TECHNOLOGY IN POWER PLANT” . 13 Table 4.2.2 Materials for other parts The following figures show some of the materials used for SC and USC boilers. Iconel 740 is widely used for steam pipings in almost all of them. Figure 4.1 TP347HFG Figure 4.2 Iconel 740 Component 1,050° F 1,150 °F 1,300° F 1,400 °F Casings (shells, valves, steam chests, nozzles) CrMoV (cast) 10CrMoVMb 9–10% Cr (W) 12CrW (Co) CrMoWVNbN CF8C- Plus CCA617 Inconel 625 Nimonic 263 CCA617 Inconel 740 CF8C- Plus Bolting 422 9–12% CrMoV Nimonic 80A 9–12% CrMoV CrMoWVNbN Nimonic 105 Nimonic 115 Waspaloy Nimonic 105 Nimonic 115 U700 Rotors/Discs 1CrMoV 12CrMoVNbN 9–12 % CrWCo 12CrMoWVNbN CCA617 Inconel 625 CCA617 Inconel 740 Nozzles/Blades 422 10CrMoVNbN 9–12% CrWCo 10CrMoVCbN Wrought Ni-based Wrought Ni- based
  • 14. “SUPERCRITICAL TECHNOLOGY IN POWER PLANT” . 14 5 SUPERCRITICAL BOILERS 5.1 A typical Supercritical Boilers: Largest CFB and first supercritical CFB sold to date is the Lagisza 460 MWe unit Ordered by Poludniowy Koncern Energetyczny SA (PKE) in Poland. The design is Essentially complete with financial closing expected in the first quarter of 2006 at which time Fabrication and construction will commence. The largest capacity units in operation today are the two (2) 300 MWe JEA repowered units which were designed to fire any Combination of petroleum coke and bituminous coals. The physically largest Foster Wheeler boilers in operation are the 262 MWe Turow Units 4, 5, and 6 which were designed to fire a high moisture brown coal. The design and configuration of these units with Compact solids separators and INTREX™ heat exchangers were used as the basis for the Lagisza design as well as for this study. The Lagisza design was adjusted to accommodate a typical bituminous coal and the steam cycle. Figure 5.1.1 The Lagisza 300 MWe plant in Pola
  • 15. “SUPERCRITICAL TECHNOLOGY IN POWER PLANT” . 15 5.2 Super and Sub Critical Boilers (comparative study): There are many advantages of super critical boilers over normal subcritical boilers, the prime advantage being the increased efficiency and reduced emissions. There are many more advantages like no need of steam dryers, higher operating pressures leading to more work output etc. It is thus very important to have a comparative study of both the boilers. Table 5.2.1 Comparison of sub and supercritical boilers Technology Efficiency (%) Steam pressure/temperature Typical emissions Ultra Supercritical 33–35 >242 bar and 593.33°C SO2-0.408 kg/MHh NOx-0.286 kg/MWh CO2-0.96 T/MWh Supercritical 36–40 >221.2 bar and 537°C SO2-0.431 kg/MHh NOx-0.304 kg/MWh CO2-1.02 T/MWh Subritical 42–45 165 bar 537°C SO2-0.445 kg/MHh NOx-0.31 kg/MWh CO2-1.02 T/MWh
  • 16. “SUPERCRITICAL TECHNOLOGY IN POWER PLANT” . 16 6 ADVANCE IN SC TECHNOLGY AND FUTURE IN INDIA 6.2 Supercritical Boilers in India: There haven’t been any supercritical boilers in use in India so far. The European countries, USA, Japan have been using supercritical technology since the last two decades. However, there are upcoming projects to build power plants working under the supercritical technology in India. The National Thermal Power Corporation (NTPC) had entrusted a techno economic study to M/s EPDC for super-critical Vs Sub-critical Boilers for their proposed Sipat STPS (4x500 MW) in Madhya Pradesh. M/s EPDC has recommended that a first step to the introduction of super- critical technology, the most proven steam conditions may be chosen and the most applicable steam conditions in India shall be 246 kg/cm2 , 538° C/566° C. With these steam parameters, M/s EPDC has estimated that the capital cost for a supercritical power station (4x500 MW) shall be about 2% higher than that of sub-critical power plant but at the same time the plant efficiency shall improve from 38.64% to 39.6%. Being a pit head thermal power project, the saving in fuel charges is not justified by increase in fixed charges. Here are some upcoming projects in India:  North Karanpura, Jharkhand – 3x660 MW  Darlipali, Orissa – 4x800 MW  Lara, Chattisgarh – 5x800 MW  Marakanam, Tamilnadu – 4x800 MW  Tanda-II, Uttar Pradesh - 2x660 MW  Meja, Uttar Pradesh - 2x660 MW  Sholapur – 2x660 MW  New Nabinagar-3x660 MW  Many more projects including 800 MW ultra super critical units under consideration
  • 17. “SUPERCRITICAL TECHNOLOGY IN POWER PLANT” . 17 7 CONCLUSION The supercritical Rankine cycle, in general, offers an additional 30% relative improvement in the thermal efficiency as compared to the same system operating in the subcritical region. The cycle has been successfully utilized in fossil fuel plants but the current available materials prohibit reliable application of the supercritical cycle to nuclear applications. There is much work to be done in order to advance materials to the point where they will be able to reliably withstand the stresses of a supercritical environment inside a nuclear reactor for a designed life span of 60 years. Supercritical boiler technology has matured, through advancements in design and materials. Coal-fired supercritical units supplied around the world over the past several years have been operating with high efficiency performance and high availability.
  • 18. “SUPERCRITICAL TECHNOLOGY IN POWER PLANT” . 18 REFERENCES 1. “Design Aspects of the Ultra-Supercritical CFB Boiler”; Stephen J. Goidich, Song Wu, Zhen Fan; Foster Wheeler North America Corp. 2. “Novel conceptual design of a supercritical pulverized coal boiler utilizing high temperature air combustion (HTAC) technology”; Natalia Schaffel- Mancini, Marco Mancini, Andrzej Szlek, Roman Weber; Institute of Energy Process Engineering and Fuel Technology, Clausthal University of Technology, Agricolastr. 4, 38678 Clausthal-Zellerfeld, Germany; 6 February 2010. 3. “Supercritical (Once Through) Boiler Technology”; J.W. Smith, Babcock & Wilcox, Barberton, Ohio, U.S.A.; May 1998. 4. “Steam Generator for Advanced Ultra-Supercritical Power Plants 700 to 760°C”; P.S. Weitzel; ASME 2011 Power Conference, Denver, Colorado, U.S.A; July 12-14, 2011. 5. “Supercritical boiler technology for future market conditions”; Joachim Franke and Rudolf Kral; Siemens Power Generation; Parsons Conference; 2003. 6. “Steam Turbine Design Considerations for Supercritical Cycles”; Justin Zachary, Paul Kochis, Ram Narula; Coal Gen 2007 Conference;1-3 August 2007. 7. “Technology status of thermal power plants in India and opportunities in renovation and modernization”; TERI, D S Block, India Habitat Centre, Lodi Road, New Delhi – 110003. 8. “Applied Thermodynamics”; Dr. H.N Sawant; January 1992; revised July 2004. 9. “http://en.wikipedia.org/wiki/Boiler#Supercritical_steam_generator”