SlideShare ist ein Scribd-Unternehmen logo
1 von 156
Downloaden Sie, um offline zu lesen
Numerical Methods - Interpolation
Unequal Intervals
Dr. N. B. Vyas
Department of Mathematics,
Atmiya Institute of Tech. and Science, Rajkot (Guj.)
niravbvyas@gmail.com
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Interpolation
To find the value of y for an x between different x - values
x0, x1, . . . , xn is called problem of interpolation.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Interpolation
To find the value of y for an x between different x - values
x0, x1, . . . , xn is called problem of interpolation.
To find the value of y for an x which falls outside the range of x
(x < x0 or x > xn) is called the problem of extrapolation.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Interpolation
To find the value of y for an x between different x - values
x0, x1, . . . , xn is called problem of interpolation.
To find the value of y for an x which falls outside the range of x
(x < x0 or x > xn) is called the problem of extrapolation.
Theorem by Weierstrass in 1885, “Every continuous
function in an interval (a,b) can be represented in that
interval to any desired accuracy by a polynomial. ”
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Interpolation
To find the value of y for an x between different x - values
x0, x1, . . . , xn is called problem of interpolation.
To find the value of y for an x which falls outside the range of x
(x < x0 or x > xn) is called the problem of extrapolation.
Theorem by Weierstrass in 1885, “Every continuous
function in an interval (a,b) can be represented in that
interval to any desired accuracy by a polynomial. ”
Let us assign polynomial Pn of degree n (or less) that assumes
the given data values
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Interpolation
To find the value of y for an x between different x - values
x0, x1, . . . , xn is called problem of interpolation.
To find the value of y for an x which falls outside the range of x
(x < x0 or x > xn) is called the problem of extrapolation.
Theorem by Weierstrass in 1885, “Every continuous
function in an interval (a,b) can be represented in that
interval to any desired accuracy by a polynomial. ”
Let us assign polynomial Pn of degree n (or less) that assumes
the given data values
Pn(x0) = y0, Pn(x1) = y1, . . ., Pn(xn) = yn
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Interpolation
To find the value of y for an x between different x - values
x0, x1, . . . , xn is called problem of interpolation.
To find the value of y for an x which falls outside the range of x
(x < x0 or x > xn) is called the problem of extrapolation.
Theorem by Weierstrass in 1885, “Every continuous
function in an interval (a,b) can be represented in that
interval to any desired accuracy by a polynomial. ”
Let us assign polynomial Pn of degree n (or less) that assumes
the given data values
Pn(x0) = y0, Pn(x1) = y1, . . ., Pn(xn) = yn
This polynomial Pn is called interpolation polynomial.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Interpolation
To find the value of y for an x between different x - values
x0, x1, . . . , xn is called problem of interpolation.
To find the value of y for an x which falls outside the range of x
(x < x0 or x > xn) is called the problem of extrapolation.
Theorem by Weierstrass in 1885, “Every continuous
function in an interval (a,b) can be represented in that
interval to any desired accuracy by a polynomial. ”
Let us assign polynomial Pn of degree n (or less) that assumes
the given data values
Pn(x0) = y0, Pn(x1) = y1, . . ., Pn(xn) = yn
This polynomial Pn is called interpolation polynomial.
x0, x1, . . . , xn is called the nodes ( tabular points, pivotal
points or arguments).
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Interpolation with unequal intervals
Lagrange’s interpolation formula with unequal intervals:
Let y = f(x) be continuous and differentiable in the interval
(a, b).
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Interpolation with unequal intervals
Lagrange’s interpolation formula with unequal intervals:
Let y = f(x) be continuous and differentiable in the interval
(a, b).
Given the set of n + 1 values (x0, y0), (x1, y1), . . . , (xn, yn) of x
and y, where the values of x need not necessarily be equally
spaced.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Interpolation with unequal intervals
Lagrange’s interpolation formula with unequal intervals:
Let y = f(x) be continuous and differentiable in the interval
(a, b).
Given the set of n + 1 values (x0, y0), (x1, y1), . . . , (xn, yn) of x
and y, where the values of x need not necessarily be equally
spaced.
It is required to find Pn(x), a polynomial of degree n such that y
and Pn(x) agree at the tabulated points.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Interpolation with unequal intervals
Lagrange’s interpolation formula with unequal intervals:
Let y = f(x) be continuous and differentiable in the interval
(a, b).
Given the set of n + 1 values (x0, y0), (x1, y1), . . . , (xn, yn) of x
and y, where the values of x need not necessarily be equally
spaced.
It is required to find Pn(x), a polynomial of degree n such that y
and Pn(x) agree at the tabulated points.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Interpolation
This polynomial is given by the following formula:
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Interpolation
This polynomial is given by the following formula:
y = f(x) ≈ Pn(x) =
(x − x1)(x − x2) . . . (x − xn)
(x0 − x1)(x0 − x2) . . . (x0 − xn)
y0
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Interpolation
This polynomial is given by the following formula:
y = f(x) ≈ Pn(x) =
(x − x1)(x − x2) . . . (x − xn)
(x0 − x1)(x0 − x2) . . . (x0 − xn)
y0
+
(x − x0)(x − x2) . . . (x − xn)
(x1 − x0)(x1 − x2) . . . (x1 − xn)
y1 + . . .
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Interpolation
This polynomial is given by the following formula:
y = f(x) ≈ Pn(x) =
(x − x1)(x − x2) . . . (x − xn)
(x0 − x1)(x0 − x2) . . . (x0 − xn)
y0
+
(x − x0)(x − x2) . . . (x − xn)
(x1 − x0)(x1 − x2) . . . (x1 − xn)
y1 + . . .
+
(x − x0)(x − x1) . . . (x − xn−1)
(xn − x0)(xn − x1) . . . (xn − xn−1)
yn
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Interpolation
This polynomial is given by the following formula:
y = f(x) ≈ Pn(x) =
(x − x1)(x − x2) . . . (x − xn)
(x0 − x1)(x0 − x2) . . . (x0 − xn)
y0
+
(x − x0)(x − x2) . . . (x − xn)
(x1 − x0)(x1 − x2) . . . (x1 − xn)
y1 + . . .
+
(x − x0)(x − x1) . . . (x − xn−1)
(xn − x0)(xn − x1) . . . (xn − xn−1)
yn
NOTE:
The above formula can be used irrespective of whether the values
x0, x1, . . . , xn are equally spaced or not.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Inverse Interpolation
In the Lagrange’s interpolation formula y is treated as dependent
variable and expressed as function of independent variable x.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Inverse Interpolation
In the Lagrange’s interpolation formula y is treated as dependent
variable and expressed as function of independent variable x.
Instead if x is treated as dependent variable and expressed as the
function of independent variable y, then Lagrange’s interpolation
formula becomes
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Inverse Interpolation
In the Lagrange’s interpolation formula y is treated as dependent
variable and expressed as function of independent variable x.
Instead if x is treated as dependent variable and expressed as the
function of independent variable y, then Lagrange’s interpolation
formula becomes
x = g(y) ≈ Pn(y) =
(y − y1)(y − y2) . . . (y − yn)
(y0 − y1)(y0 − y2) . . . (y0 − yn)
x0
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Inverse Interpolation
In the Lagrange’s interpolation formula y is treated as dependent
variable and expressed as function of independent variable x.
Instead if x is treated as dependent variable and expressed as the
function of independent variable y, then Lagrange’s interpolation
formula becomes
x = g(y) ≈ Pn(y) =
(y − y1)(y − y2) . . . (y − yn)
(y0 − y1)(y0 − y2) . . . (y0 − yn)
x0
+
(y − y0)(y − y2) . . . (y − yn)
(y1 − y0)(y1 − y2) . . . (y1 − yn)
x1 + . . .
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Inverse Interpolation
In the Lagrange’s interpolation formula y is treated as dependent
variable and expressed as function of independent variable x.
Instead if x is treated as dependent variable and expressed as the
function of independent variable y, then Lagrange’s interpolation
formula becomes
x = g(y) ≈ Pn(y) =
(y − y1)(y − y2) . . . (y − yn)
(y0 − y1)(y0 − y2) . . . (y0 − yn)
x0
+
(y − y0)(y − y2) . . . (y − yn)
(y1 − y0)(y1 − y2) . . . (y1 − yn)
x1 + . . .
+
(y − y0)(y − y1) . . . (y − yn−1)
(yn − y0)(yn − y1) . . . (yn − yn−1)
xn
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Inverse Interpolation
In the Lagrange’s interpolation formula y is treated as dependent
variable and expressed as function of independent variable x.
Instead if x is treated as dependent variable and expressed as the
function of independent variable y, then Lagrange’s interpolation
formula becomes
x = g(y) ≈ Pn(y) =
(y − y1)(y − y2) . . . (y − yn)
(y0 − y1)(y0 − y2) . . . (y0 − yn)
x0
+
(y − y0)(y − y2) . . . (y − yn)
(y1 − y0)(y1 − y2) . . . (y1 − yn)
x1 + . . .
+
(y − y0)(y − y1) . . . (y − yn−1)
(yn − y0)(yn − y1) . . . (yn − yn−1)
xn
This relation is referred as Lagrange’s inverse interpolation
formula.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Ex. Given the table of values:
x 150 152 154 156
y =
√
x 12.247 12.329 12.410 12.490
Evaluate
√
155 using Lagrange’s interpolation formula.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156
y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156
y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490
By Lagrange’s interpolation formula,
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156
y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490
By Lagrange’s interpolation formula,
f(x) ≈ Pn(x) =
(x − x1)(x − x2)(x − x3)
(x0 − x1)(x0 − x2)(x0 − x3)
y0
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156
y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490
By Lagrange’s interpolation formula,
f(x) ≈ Pn(x) =
(x − x1)(x − x2)(x − x3)
(x0 − x1)(x0 − x2)(x0 − x3)
y0
+
(x − x0)(x − x2)(x − x3)
(x1 − x0)(x1 − x2)(x1 − x3)
y1
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156
y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490
By Lagrange’s interpolation formula,
f(x) ≈ Pn(x) =
(x − x1)(x − x2)(x − x3)
(x0 − x1)(x0 − x2)(x0 − x3)
y0
+
(x − x0)(x − x2)(x − x3)
(x1 − x0)(x1 − x2)(x1 − x3)
y1
+
(x − x0)(x − x1)(x − x3)
(x2 − x0)(x2 − x1)(x2 − x3)
y2
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156
y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490
By Lagrange’s interpolation formula,
f(x) ≈ Pn(x) =
(x − x1)(x − x2)(x − x3)
(x0 − x1)(x0 − x2)(x0 − x3)
y0
+
(x − x0)(x − x2)(x − x3)
(x1 − x0)(x1 − x2)(x1 − x3)
y1
+
(x − x0)(x − x1)(x − x3)
(x2 − x0)(x2 − x1)(x2 − x3)
y2
+
(x − x0)(x − x1)(x − x2)
(x3 − x0)(x3 − x1)(x3 − x2)
y3
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156
y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490
By Lagrange’s interpolation formula,
f(x) ≈ Pn(x) =
(x − x1)(x − x2)(x − x3)
(x0 − x1)(x0 − x2)(x0 − x3)
y0
+
(x − x0)(x − x2)(x − x3)
(x1 − x0)(x1 − x2)(x1 − x3)
y1
+
(x − x0)(x − x1)(x − x3)
(x2 − x0)(x2 − x1)(x2 − x3)
y2
+
(x − x0)(x − x1)(x − x2)
(x3 − x0)(x3 − x1)(x3 − x2)
y3
for x = 155
∴ f(155) =
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Ex. Compute f(0.4) for the table below by the Lagrange’s
interpolation:
x 0.3 0.5 0.6
f(x) 0.61 0.69 0.72
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Ex. Using Lagrange’s formula, find the form of f(x) for the following
data:
x 0 1 2 5
f(x) 2 3 12 147
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Ex. Using Lagrange’s formula, find x for y = 7 for the following data:
x 1 3 4
y 4 12 19
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Ex. Using Lagrange’s formula, express the function
3x2 + x + 1
(x − 1)(x − 2)(x − 3)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3
These values are x0 = 1, x1 = 2 and x2 = 3 and
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3
These values are x0 = 1, x1 = 2 and x2 = 3 and
y0 = 5,
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3
These values are x0 = 1, x1 = 2 and x2 = 3 and
y0 = 5, y1 = 15 and y2 = 31
By Lagrange’s interpolation formula,
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3
These values are x0 = 1, x1 = 2 and x2 = 3 and
y0 = 5, y1 = 15 and y2 = 31
By Lagrange’s interpolation formula,
y =
(x − x1)(x − x2)
(x0 − x1)(x0 − x2)
y0 +
(x − x0)(x − x2)
(x1 − x0)(x1 − x2)
y1
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3
These values are x0 = 1, x1 = 2 and x2 = 3 and
y0 = 5, y1 = 15 and y2 = 31
By Lagrange’s interpolation formula,
y =
(x − x1)(x − x2)
(x0 − x1)(x0 − x2)
y0 +
(x − x0)(x − x2)
(x1 − x0)(x1 − x2)
y1
+
(x − x0)(x − x1)
(x2 − x0)(x2 − x1)
y2
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3
These values are x0 = 1, x1 = 2 and x2 = 3 and
y0 = 5, y1 = 15 and y2 = 31
By Lagrange’s interpolation formula,
y =
(x − x1)(x − x2)
(x0 − x1)(x0 − x2)
y0 +
(x − x0)(x − x2)
(x1 − x0)(x1 − x2)
y1
+
(x − x0)(x − x1)
(x2 − x0)(x2 − x1)
y2
substituting above values, we get
y = 2.5(x − 2)(x − 3) − 15(x − 1)(x − 3) + 15.5(x − 1)(x − 2)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3
These values are x0 = 1, x1 = 2 and x2 = 3 and
y0 = 5, y1 = 15 and y2 = 31
By Lagrange’s interpolation formula,
y =
(x − x1)(x − x2)
(x0 − x1)(x0 − x2)
y0 +
(x − x0)(x − x2)
(x1 − x0)(x1 − x2)
y1
+
(x − x0)(x − x1)
(x2 − x0)(x2 − x1)
y2
substituting above values, we get
y = 2.5(x − 2)(x − 3) − 15(x − 1)(x − 3) + 15.5(x − 1)(x − 2)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Thus
3x2 + x + 1
(x − 1)(x − 2)(x − 3)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Thus
3x2 + x + 1
(x − 1)(x − 2)(x − 3)
=
2.5(x − 2)(x − 3) − 15(x − 1)(x − 3) + 15.5(x − 1)(x − 2)
(x − 1)(x − 2)(x − 3)
=
2.5
(x − 1)
-
15
(x − 2)
+
15.5
(x − 3)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Error in Interpolation
Error in Interpolation:
We assume that f(x) has continuous derivatives of order upto
n + 1 for all x ∈ (a, b). Since, f(x) is approximated by Pn(x), the
results contains errors. We define the error of interpolation or
truncation error as
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Error in Interpolation
Error in Interpolation:
We assume that f(x) has continuous derivatives of order upto
n + 1 for all x ∈ (a, b). Since, f(x) is approximated by Pn(x), the
results contains errors. We define the error of interpolation or
truncation error as
E(f, x) = f(x) − Pn(x) =
(x − x0)(x − x1) . . . (x − xn)
(n + 1)!
f(n+1)(ξ)
where min(x0, x1, . . . , xn, x) < ξ < min(x0, x1, . . . , xn, x)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Error in Interpolation
Error in Interpolation:
We assume that f(x) has continuous derivatives of order upto
n + 1 for all x ∈ (a, b). Since, f(x) is approximated by Pn(x), the
results contains errors. We define the error of interpolation or
truncation error as
E(f, x) = f(x) − Pn(x) =
(x − x0)(x − x1) . . . (x − xn)
(n + 1)!
f(n+1)(ξ)
where min(x0, x1, . . . , xn, x) < ξ < min(x0, x1, . . . , xn, x)
since, ξ is an unknown, it is difficult to find the value of error.
However, we can find a bound of the error. The bound of the
error is obtained as
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Error in Interpolation
Error in Interpolation:
We assume that f(x) has continuous derivatives of order upto
n + 1 for all x ∈ (a, b). Since, f(x) is approximated by Pn(x), the
results contains errors. We define the error of interpolation or
truncation error as
E(f, x) = f(x) − Pn(x) =
(x − x0)(x − x1) . . . (x − xn)
(n + 1)!
f(n+1)(ξ)
where min(x0, x1, . . . , xn, x) < ξ < min(x0, x1, . . . , xn, x)
since, ξ is an unknown, it is difficult to find the value of error.
However, we can find a bound of the error. The bound of the
error is obtained as
|E(f, x)| ≤
|(x − x0)(x − x1) . . . (x − xn)|
(n + 1)!
max
a≤ξ≤b
|f(n+1)(ξ)|
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Ex. Using the data sin(0.1) = 0.09983 and sin(0.2) = 0.19867, find
an approximate value of sin(0.15) by Lagrange interpolation.
Obtain a bound on the error at x = 0.15.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Interpolation
Disadvantages:
In practice, we often do not know the degree of the interpolation
polynomial that will give the required accuracy, so we should be
prepared to increase the degree if necessary.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Interpolation
Disadvantages:
In practice, we often do not know the degree of the interpolation
polynomial that will give the required accuracy, so we should be
prepared to increase the degree if necessary.
To increase the degree the addition of another interpolation point
leads to re-computation.
i.e. no previous work is useful.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Interpolation
Disadvantages:
In practice, we often do not know the degree of the interpolation
polynomial that will give the required accuracy, so we should be
prepared to increase the degree if necessary.
To increase the degree the addition of another interpolation point
leads to re-computation.
i.e. no previous work is useful.
E.g: In calculating Pk(x), no obvious advantage can be taken of
the fact that one already has calculated Pk−1(x).
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Lagrange’s Interpolation
Disadvantages:
In practice, we often do not know the degree of the interpolation
polynomial that will give the required accuracy, so we should be
prepared to increase the degree if necessary.
To increase the degree the addition of another interpolation point
leads to re-computation.
i.e. no previous work is useful.
E.g: In calculating Pk(x), no obvious advantage can be taken of
the fact that one already has calculated Pk−1(x).
That means we need to calculate entirely new polynomial.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Divided Difference
Let f(x0), f(x1), . . . , f(xn) be the values of a function f
corresponding to the arguments x0, x1, . . . , xn where the intervals
x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Divided Difference
Let f(x0), f(x1), . . . , f(xn) be the values of a function f
corresponding to the arguments x0, x1, . . . , xn where the intervals
x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced.
Then the first divided difference of f for the arguments
x0, x1, . . . , xn are defined by ,
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Divided Difference
Let f(x0), f(x1), . . . , f(xn) be the values of a function f
corresponding to the arguments x0, x1, . . . , xn where the intervals
x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced.
Then the first divided difference of f for the arguments
x0, x1, . . . , xn are defined by ,
f(x0, x1) =
f(x1) − f(x0)
x1 − x0
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Divided Difference
Let f(x0), f(x1), . . . , f(xn) be the values of a function f
corresponding to the arguments x0, x1, . . . , xn where the intervals
x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced.
Then the first divided difference of f for the arguments
x0, x1, . . . , xn are defined by ,
f(x0, x1) =
f(x1) − f(x0)
x1 − x0
f(x1, x2) =
f(x2) − f(x1)
x2 − x1
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Divided Difference
The second divided difference of f for three arguments
x0, x1, x2 is defined by
f(x0, x1, x2) =
f(x1, x2) − f(x0, x1)
x2 − x0
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Divided Difference
The second divided difference of f for three arguments
x0, x1, x2 is defined by
f(x0, x1, x2) =
f(x1, x2) − f(x0, x1)
x2 − x0
and similarly the divided difference of order n is defined by
f(x0, x1, . . . , xn) =
f(x1, x2, . . . , xn) − f(x0, x1, . . . , xn−1)
xn − x0
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Divided Difference
Properties:
The divided differences are symmetrical in all their arguments;
that is, the value of any divided difference is independent of the
order of the arguments.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Divided Difference
Properties:
The divided differences are symmetrical in all their arguments;
that is, the value of any divided difference is independent of the
order of the arguments.
The divided difference operator is linear.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Divided Difference
Properties:
The divided differences are symmetrical in all their arguments;
that is, the value of any divided difference is independent of the
order of the arguments.
The divided difference operator is linear.
The nth order divided differences of a polynomial of degree n are
constant, equal to the coefficient of xn.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
An interpolation formula which has the property that a
polynomial of higher degree may be derived from it by simply
adding new terms.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
An interpolation formula which has the property that a
polynomial of higher degree may be derived from it by simply
adding new terms.
Newton’s general interpolation formula is one such formula and
terms in it are called divided differences.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
An interpolation formula which has the property that a
polynomial of higher degree may be derived from it by simply
adding new terms.
Newton’s general interpolation formula is one such formula and
terms in it are called divided differences.
Let f(x0), f(x1), . . . , f(xn) be the values of a function f
corresponding to the arguments x0, x1, . . . , xn where the intervals
x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced.
By the definition of divided difference,
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
An interpolation formula which has the property that a
polynomial of higher degree may be derived from it by simply
adding new terms.
Newton’s general interpolation formula is one such formula and
terms in it are called divided differences.
Let f(x0), f(x1), . . . , f(xn) be the values of a function f
corresponding to the arguments x0, x1, . . . , xn where the intervals
x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced.
By the definition of divided difference,
f(x, x0) =
f(x) − f(x0)
x − x0
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
An interpolation formula which has the property that a
polynomial of higher degree may be derived from it by simply
adding new terms.
Newton’s general interpolation formula is one such formula and
terms in it are called divided differences.
Let f(x0), f(x1), . . . , f(xn) be the values of a function f
corresponding to the arguments x0, x1, . . . , xn where the intervals
x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced.
By the definition of divided difference,
f(x, x0) =
f(x) − f(x0)
x − x0
∴
f(x) = f(x0) + (x − x0)f(x, x0) − −(1)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
Further
f(x, x0, x1) =
f(x, x0) − f(x0, x1)
x − x1
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
Further
f(x, x0, x1) =
f(x, x0) − f(x0, x1)
x − x1
which yields
f(x, x0) = f(x0, x1) + (x − x1)f(x, x0, x1) − −(2)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
Further
f(x, x0, x1) =
f(x, x0) − f(x0, x1)
x − x1
which yields
f(x, x0) = f(x0, x1) + (x − x1)f(x, x0, x1) − −(2)
Similarly
f(x, x0, x1) = f(x0, x1, x2) + (x − x2)f(x, x0, x1, x2) − −(3)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
Further
f(x, x0, x1) =
f(x, x0) − f(x0, x1)
x − x1
which yields
f(x, x0) = f(x0, x1) + (x − x1)f(x, x0, x1) − −(2)
Similarly
f(x, x0, x1) = f(x0, x1, x2) + (x − x2)f(x, x0, x1, x2) − −(3)
and in general
f(x, x0, ..., xn−1) = f(x0, x1, ..., xn) + (x − xn)f(x, x0, x1, ..., xn) − −(4)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
multiplying equation (2) by (x − x0)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
multiplying equation (2) by (x − x0) , (3) by (x − x0) (x − x1)
and so on,
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
multiplying equation (2) by (x − x0) , (3) by (x − x0) (x − x1)
and so on, and finally the last term (4) by
(x − x0) (x − x1) ... (x − xn−1) and
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
multiplying equation (2) by (x − x0) , (3) by (x − x0) (x − x1)
and so on, and finally the last term (4) by
(x − x0) (x − x1) ... (x − xn−1) and adding (1), (2) , (3) up to (4)
we obtain
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
multiplying equation (2) by (x − x0) , (3) by (x − x0) (x − x1)
and so on, and finally the last term (4) by
(x − x0) (x − x1) ... (x − xn−1) and adding (1), (2) , (3) up to (4)
we obtain
f(x) =
f (x0) + (x − x0) f (x0, x1) + (x − x0) (x − x1) f (x0, x1, x2) + ... +
(x − x0) (x − x1) ... (x − xn−1) f (x0, x1, ..., xn)
This formula is called Newton’s divided difference formula.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Newton’s Divided Difference Interpolation
The divided difference upto third order
x y 1stdiv.diff. 2nddiv.diff. 3rddiv.diff.
x0 y0
[x0, x1]
x1 y1 [x0, x1, x2]
[x1, x2] [x0, x1, x2, x3]
x2 y2 [x1, x2, x3]
[x2, x3]
x3 y3
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Ex. Obtain the divided difference table for the data:
x -1 0 2 3
y -8 3 1 12
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. We have the following divided difference table for the data:
x y First d.d Second d.d Third d.d
-1 -8
3 + 8
0 + 1
= 11
0 3
−1 − 11
2 + 1
= −4
1 − 3
2 − 0
= −1
4 + 4
3 + 1
= 2
2 1
11 + 1
3 − 0
= 4
12 − 1
3 − 2
= 11
3 12
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Ex. Find f(x) as a polynomial in x for the following data by Newtons
divided difference formula:
x -4 -1 0 2 5
f(x) 1245 33 5 9 1335
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. We have the following divided difference table for the data:
x y 1st d.d 2nd d.d 3rd d.d 4th d.d
-4 1245
−404
-1 33 94
−28 −14
0 5 10 3
2 13
2 9 88
442
5 1335
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
The Newtons divided difference formula gives:
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
The Newtons divided difference formula gives:
f(x) = f(x0) +
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
The Newtons divided difference formula gives:
f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2]
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
The Newtons divided difference formula gives:
f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2]
+
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
The Newtons divided difference formula gives:
f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2]
+ (x − x0)(x − x1)(x − x2)f[x0, x1, x2, x3]
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
The Newtons divided difference formula gives:
f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2]
+ (x − x0)(x − x1)(x − x2)f[x0, x1, x2, x3]
+
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
The Newtons divided difference formula gives:
f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2]
+ (x − x0)(x − x1)(x − x2)f[x0, x1, x2, x3]
+ (x − x0)(x − x1)(x − x2)(x − x3)f[x0, x1, x2, x3, x4]
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
The Newtons divided difference formula gives:
f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2]
+ (x − x0)(x − x1)(x − x2)f[x0, x1, x2, x3]
+ (x − x0)(x − x1)(x − x2)(x − x3)f[x0, x1, x2, x3, x4]
= ...
= 3x4 − 5x3 + 6x2 − 14x + 5
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Ex. Find f(x) as a polynomial in x for the following data by Newtons
divided difference formula:
x -2 -1 0 1 3 4
f(x) 9 16 17 18 44 81
Hence, interpolate at x = 0.5 and x = 3.1.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. We form the divided difference table for the given data.
x f(x) 1st d.d 2nd d.d 3rd d.d 4th d.d
−2 9
7
−1 16 −3
1 1
0 17 0 0
1 1
1 18 4 0
13 1
3 44 8
37
4 81
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Since, the fourth order differences are zeros, the data represents a
third degree polynomial. Newtons divided difference formula
gives the polynomial as
f(x) = f(x0) +
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Since, the fourth order differences are zeros, the data represents a
third degree polynomial. Newtons divided difference formula
gives the polynomial as
f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2]
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Since, the fourth order differences are zeros, the data represents a
third degree polynomial. Newtons divided difference formula
gives the polynomial as
f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2]
+
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Since, the fourth order differences are zeros, the data represents a
third degree polynomial. Newtons divided difference formula
gives the polynomial as
f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2]
+ (x − x0)(x − x1)(x − x2)f[x0, x1, x2, x3]
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Since, the fourth order differences are zeros, the data represents a
third degree polynomial. Newtons divided difference formula
gives the polynomial as
f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2]
+ (x − x0)(x − x1)(x − x2)f[x0, x1, x2, x3]
= ...
= x3 + 17
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Ex. Find the missing term in the following table:
x 0 1 2 3 4
y 1 3 9 - 81
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Divided difference table:
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Divided difference table:
By Newton’s divided difference formula
f(x) =
f (x0) + (x − x0) f (x0, x1) + (x − x0) (x − x1) f (x0, x1, x2) + ...
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Spline Interpolation
Spline interpolation is a form of interpolation where the
interpolant is a special type of piecewise polynomial called a
spline
Consider the problem of interpolating between the data points
(x0, y0), (x1, y1), . . . , (xn, yn) by means of spline fitting.
Then the cubic spline f(x) is such that
(i) f(x) is a linear polynomial outside the interval (x0, xn)
(ii) f(x) is a cubic polynomial in each of the subintervals,
(iii) f (x) and f (x) are continuous at each point.
Since f(x) is cubic in each of the subintervals f (x) shall be
linear.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Spline Interpolation
f(x) =
(xi+1 − x)3Mi
6h
+
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Spline Interpolation
f(x) =
(xi+1 − x)3Mi
6h
+
(x − xi)3Mi+1
6h
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Spline Interpolation
f(x) =
(xi+1 − x)3Mi
6h
+
(x − xi)3Mi+1
6h
+
(xi+1 − x)
h
yi −
h2
6
Mi +
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Spline Interpolation
f(x) =
(xi+1 − x)3Mi
6h
+
(x − xi)3Mi+1
6h
+
(xi+1 − x)
h
yi −
h2
6
Mi +
(x − xi)
h
yi+1 −
h2
6
Mi+1
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Spline Interpolation
f(x) =
(xi+1 − x)3Mi
6h
+
(x − xi)3Mi+1
6h
+
(xi+1 − x)
h
yi −
h2
6
Mi +
(x − xi)
h
yi+1 −
h2
6
Mi+1
where Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1),
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Spline Interpolation
f(x) =
(xi+1 − x)3Mi
6h
+
(x − xi)3Mi+1
6h
+
(xi+1 − x)
h
yi −
h2
6
Mi +
(x − xi)
h
yi+1 −
h2
6
Mi+1
where Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1),
i = 1, 2, 3, ..., (n − 1)
and M0 = 0, Mn = 0, xi+1 − xi = h.
which gives n + 1 equations in n + 1 unknowns Mi(i = 0, 1, ..., n)
which can be solved. Substituting the value of Mi gives the
concerned cubic spline.
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Ex. Obtain cubic spline for the following data:
x 0 1 2 3
y 2 -6 -8 2
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3,
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1,
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
for i = 2,
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 72 —(2)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 72 —(2)
solving these, we get
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 72 —(2)
solving these, we get M1 =
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 72 —(2)
solving these, we get M1 =4.8 and M2 =
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 72 —(2)
solving these, we get M1 =4.8 and M2 =16.8
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 72 —(2)
solving these, we get M1 =4.8 and M2 =16.8
Now the cubic spline in (xi ≤ x ≤ xi+1) is
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 72 —(2)
solving these, we get M1 =4.8 and M2 =16.8
Now the cubic spline in (xi ≤ x ≤ xi+1) is
f(x) =
(xi+1 − x)3Mi
6h
+
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 72 —(2)
solving these, we get M1 =4.8 and M2 =16.8
Now the cubic spline in (xi ≤ x ≤ xi+1) is
f(x) =
(xi+1 − x)3Mi
6h
+
(x − xi)3Mi+1
6h
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 72 —(2)
solving these, we get M1 =4.8 and M2 =16.8
Now the cubic spline in (xi ≤ x ≤ xi+1) is
f(x) =
(xi+1 − x)3Mi
6h
+
(x − xi)3Mi+1
6h
+
(xi+1 − x)
h
yi −
h2
6
Mi +
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 72 —(2)
solving these, we get M1 =4.8 and M2 =16.8
Now the cubic spline in (xi ≤ x ≤ xi+1) is
f(x) =
(xi+1 − x)3Mi
6h
+
(x − xi)3Mi+1
6h
+
(xi+1 − x)
h
yi −
h2
6
Mi +
(x − xi)
h
yi+1 −
h2
6
Mi+1 —(3)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 36; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 72 —(2)
solving these, we get M1 =4.8 and M2 =16.8
Now the cubic spline in (xi ≤ x ≤ xi+1) is
f(x) =
(xi+1 − x)3Mi
6h
+
(x − xi)3Mi+1
6h
+
(xi+1 − x)
h
yi −
h2
6
Mi +
(x − xi)
h
yi+1 −
h2
6
Mi+1 —(3)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Ex. The following values of x and y are given:
x 1 2 3 4
y 1 2 5 11
Find the cubic splines and evaluate y(1.5) and y (3)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3,
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1,
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
for i = 2,
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 18 —(2)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 18 —(2)
solving these, we get
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 18 —(2)
solving these, we get M1 =
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 18 —(2)
solving these, we get M1 =2 and M2 =
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 18 —(2)
solving these, we get M1 =2 and M2 =4
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 18 —(2)
solving these, we get M1 =2 and M2 =4
Now the cubic spline in (xi ≤ x ≤ xi+1) is
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 18 —(2)
solving these, we get M1 =2 and M2 =4
Now the cubic spline in (xi ≤ x ≤ xi+1) is
f(x) =
(xi+1 − x)3Mi
6h
+
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 18 —(2)
solving these, we get M1 =2 and M2 =4
Now the cubic spline in (xi ≤ x ≤ xi+1) is
f(x) =
(xi+1 − x)3Mi
6h
+
(x − xi)3Mi+1
6h
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 18 —(2)
solving these, we get M1 =2 and M2 =4
Now the cubic spline in (xi ≤ x ≤ xi+1) is
f(x) =
(xi+1 − x)3Mi
6h
+
(x − xi)3Mi+1
6h
+
(xi+1 − x)
h
yi −
h2
6
Mi +
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 18 —(2)
solving these, we get M1 =2 and M2 =4
Now the cubic spline in (xi ≤ x ≤ xi+1) is
f(x) =
(xi+1 − x)3Mi
6h
+
(x − xi)3Mi+1
6h
+
(xi+1 − x)
h
yi −
h2
6
Mi +
(x − xi)
h
yi+1 −
h2
6
Mi+1 —(3)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. Since points are equispaced with h = 1 and n = 3, the cubic
spline can be determined from
Mi−1 + 4Mi + Mi+1 =
6
h2
(yi−1 − 2yi + yi+1), i = 1, 2
also M0 = 0 , M3 = 0
∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2)
therefore, 4M1 + M2 = 12; —(1)
for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)
M1 + 4M2 = 18 —(2)
solving these, we get M1 =2 and M2 =4
Now the cubic spline in (xi ≤ x ≤ xi+1) is
f(x) =
(xi+1 − x)3Mi
6h
+
(x − xi)3Mi+1
6h
+
(xi+1 − x)
h
yi −
h2
6
Mi +
(x − xi)
h
yi+1 −
h2
6
Mi+1 —(3)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Ex. Find whether the following functions are cubic splines ?
1.
f(x) = 5x3 − 3x2, −1 ≤ x ≤ 0
= −5x3 − 3x2, 0 ≤ x ≤ 1
2.
f(x) = −2x3 − x2, −1 ≤ x ≤ 0
= 2x3 + 3x2, 0 ≤ x ≤ 1
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. In both the examples, f(x) is a cubic polynomial in both
intervals (1, 0) and (0, 1).
1. We have
lim
x→0+
f(x)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. In both the examples, f(x) is a cubic polynomial in both
intervals (1, 0) and (0, 1).
1. We have
lim
x→0+
f(x) = 0
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. In both the examples, f(x) is a cubic polynomial in both
intervals (1, 0) and (0, 1).
1. We have
lim
x→0+
f(x) = 0 = lim
x→0−
f(x)
therefore, given function f(x) is continuous on (−1, 1).
Now
f (x)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. In both the examples, f(x) is a cubic polynomial in both
intervals (1, 0) and (0, 1).
1. We have
lim
x→0+
f(x) = 0 = lim
x→0−
f(x)
therefore, given function f(x) is continuous on (−1, 1).
Now
f (x) = 15x2 − 6x, −1 ≤ x ≤ 0
= −15x2 − 6x, 0 ≤ x ≤ 1
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. In both the examples, f(x) is a cubic polynomial in both
intervals (1, 0) and (0, 1).
1. We have
lim
x→0+
f(x) = 0 = lim
x→0−
f(x)
therefore, given function f(x) is continuous on (−1, 1).
Now
f (x) = 15x2 − 6x, −1 ≤ x ≤ 0
= −15x2 − 6x, 0 ≤ x ≤ 1
we have,
lim
x→0+
f (x)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. In both the examples, f(x) is a cubic polynomial in both
intervals (1, 0) and (0, 1).
1. We have
lim
x→0+
f(x) = 0 = lim
x→0−
f(x)
therefore, given function f(x) is continuous on (−1, 1).
Now
f (x) = 15x2 − 6x, −1 ≤ x ≤ 0
= −15x2 − 6x, 0 ≤ x ≤ 1
we have,
lim
x→0+
f (x) = 0
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. In both the examples, f(x) is a cubic polynomial in both
intervals (1, 0) and (0, 1).
1. We have
lim
x→0+
f(x) = 0 = lim
x→0−
f(x)
therefore, given function f(x) is continuous on (−1, 1).
Now
f (x) = 15x2 − 6x, −1 ≤ x ≤ 0
= −15x2 − 6x, 0 ≤ x ≤ 1
we have,
lim
x→0+
f (x) = 0 = lim
x→0−
f (x)
therefore, the function f (x) is continuous on (−1, 1).
f (x)
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. In both the examples, f(x) is a cubic polynomial in both
intervals (1, 0) and (0, 1).
1. We have
lim
x→0+
f(x) = 0 = lim
x→0−
f(x)
therefore, given function f(x) is continuous on (−1, 1).
Now
f (x) = 15x2 − 6x, −1 ≤ x ≤ 0
= −15x2 − 6x, 0 ≤ x ≤ 1
we have,
lim
x→0+
f (x) = 0 = lim
x→0−
f (x)
therefore, the function f (x) is continuous on (−1, 1).
f (x) = 30x−6, −1 ≤ x ≤ 0
= −30x − 6, 0 ≤ x ≤ 1
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
Example
Sol. In both the examples, f(x) is a cubic polynomial in both
intervals (1, 0) and (0, 1).
1. We have
lim
x→0+
f(x) = 0 = lim
x→0−
f(x)
therefore, given function f(x) is continuous on (−1, 1).
Now
f (x) = 15x2 − 6x, −1 ≤ x ≤ 0
= −15x2 − 6x, 0 ≤ x ≤ 1
we have,
lim
x→0+
f (x) = 0 = lim
x→0−
f (x)
therefore, the function f (x) is continuous on (−1, 1).
f (x) = 30x−6, −1 ≤ x ≤ 0
= −30x − 6, 0 ≤ x ≤ 1
Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals

Weitere ähnliche Inhalte

Was ist angesagt?

Complex form fourier series
Complex form fourier seriesComplex form fourier series
Complex form fourier seriesderry92
 
NUMERICAL METHODS MULTIPLE CHOICE QUESTIONS
NUMERICAL METHODS MULTIPLE CHOICE QUESTIONSNUMERICAL METHODS MULTIPLE CHOICE QUESTIONS
NUMERICAL METHODS MULTIPLE CHOICE QUESTIONSnaveen kumar
 
First Order Differential Equations
First Order Differential EquationsFirst Order Differential Equations
First Order Differential EquationsItishree Dash
 
Newton divided difference interpolation
Newton divided difference interpolationNewton divided difference interpolation
Newton divided difference interpolationVISHAL DONGA
 
4.3 The Definite Integral
4.3 The Definite Integral4.3 The Definite Integral
4.3 The Definite IntegralSharon Henry
 
Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl VishalVishwakarma59
 
Newton's forward & backward interpolation
Newton's forward & backward interpolationNewton's forward & backward interpolation
Newton's forward & backward interpolationHarshad Koshti
 
1st order differential equations
1st order differential equations1st order differential equations
1st order differential equationsNisarg Amin
 
Laplace transform
Laplace  transform   Laplace  transform
Laplace transform 001Abhishek1
 
introduction to differential equations
introduction to differential equationsintroduction to differential equations
introduction to differential equationsEmdadul Haque Milon
 
Linear differential equation
Linear differential equationLinear differential equation
Linear differential equationPratik Sudra
 
Lesson02 Vectors And Matrices Slides
Lesson02   Vectors And Matrices SlidesLesson02   Vectors And Matrices Slides
Lesson02 Vectors And Matrices SlidesMatthew Leingang
 
Complex analysis
Complex analysisComplex analysis
Complex analysissujathavvv
 
The Definite Integral
The Definite IntegralThe Definite Integral
The Definite IntegralSilvius
 
Lesson 11: Limits and Continuity
Lesson 11: Limits and ContinuityLesson 11: Limits and Continuity
Lesson 11: Limits and ContinuityMatthew Leingang
 
Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Viraj Patel
 

Was ist angesagt? (20)

Analytic function
Analytic functionAnalytic function
Analytic function
 
Complex form fourier series
Complex form fourier seriesComplex form fourier series
Complex form fourier series
 
NUMERICAL METHODS MULTIPLE CHOICE QUESTIONS
NUMERICAL METHODS MULTIPLE CHOICE QUESTIONSNUMERICAL METHODS MULTIPLE CHOICE QUESTIONS
NUMERICAL METHODS MULTIPLE CHOICE QUESTIONS
 
First Order Differential Equations
First Order Differential EquationsFirst Order Differential Equations
First Order Differential Equations
 
Power series
Power series Power series
Power series
 
Newton divided difference interpolation
Newton divided difference interpolationNewton divided difference interpolation
Newton divided difference interpolation
 
4.3 The Definite Integral
4.3 The Definite Integral4.3 The Definite Integral
4.3 The Definite Integral
 
Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl
 
Newton's forward & backward interpolation
Newton's forward & backward interpolationNewton's forward & backward interpolation
Newton's forward & backward interpolation
 
1st order differential equations
1st order differential equations1st order differential equations
1st order differential equations
 
Laplace transform
Laplace  transform   Laplace  transform
Laplace transform
 
Euler’s Theorem Homogeneous Function Of Two Variables
Euler’s Theorem Homogeneous Function Of  Two VariablesEuler’s Theorem Homogeneous Function Of  Two Variables
Euler’s Theorem Homogeneous Function Of Two Variables
 
introduction to differential equations
introduction to differential equationsintroduction to differential equations
introduction to differential equations
 
Linear differential equation
Linear differential equationLinear differential equation
Linear differential equation
 
Taylor series in 1 and 2 variable
Taylor series in 1 and 2 variableTaylor series in 1 and 2 variable
Taylor series in 1 and 2 variable
 
Lesson02 Vectors And Matrices Slides
Lesson02   Vectors And Matrices SlidesLesson02   Vectors And Matrices Slides
Lesson02 Vectors And Matrices Slides
 
Complex analysis
Complex analysisComplex analysis
Complex analysis
 
The Definite Integral
The Definite IntegralThe Definite Integral
The Definite Integral
 
Lesson 11: Limits and Continuity
Lesson 11: Limits and ContinuityLesson 11: Limits and Continuity
Lesson 11: Limits and Continuity
 
Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Second order homogeneous linear differential equations
Second order homogeneous linear differential equations
 

Ähnlich wie Interpolation with unequal interval

Interpolation techniques - Background and implementation
Interpolation techniques - Background and implementationInterpolation techniques - Background and implementation
Interpolation techniques - Background and implementationQuasar Chunawala
 
Interpolation with Finite differences
Interpolation with Finite differencesInterpolation with Finite differences
Interpolation with Finite differencesDr. Nirav Vyas
 
13 graphs of factorable polynomials x
13 graphs of factorable polynomials x13 graphs of factorable polynomials x
13 graphs of factorable polynomials xmath260
 
Basics of probability in statistical simulation and stochastic programming
Basics of probability in statistical simulation and stochastic programmingBasics of probability in statistical simulation and stochastic programming
Basics of probability in statistical simulation and stochastic programmingSSA KPI
 
Lecture 2 predicates quantifiers and rules of inference
Lecture 2 predicates quantifiers and rules of inferenceLecture 2 predicates quantifiers and rules of inference
Lecture 2 predicates quantifiers and rules of inferenceasimnawaz54
 
Basics of quantum mechanics
Basics of quantum mechanicsBasics of quantum mechanics
Basics of quantum mechanicsMirzaMusmanBaig
 
Probability distribution
Probability distributionProbability distribution
Probability distributionManoj Bhambu
 
this materials is useful for the students who studying masters level in elect...
this materials is useful for the students who studying masters level in elect...this materials is useful for the students who studying masters level in elect...
this materials is useful for the students who studying masters level in elect...BhojRajAdhikari5
 
Module 2 Lesson 2 Notes
Module 2 Lesson 2 NotesModule 2 Lesson 2 Notes
Module 2 Lesson 2 Notestoni dimella
 
Radial Basis Function Interpolation
Radial Basis Function InterpolationRadial Basis Function Interpolation
Radial Basis Function InterpolationJesse Bettencourt
 
Algebric Functions.pdf
Algebric Functions.pdfAlgebric Functions.pdf
Algebric Functions.pdfMamadArip
 
2.9 graphs of factorable polynomials
2.9 graphs of factorable polynomials2.9 graphs of factorable polynomials
2.9 graphs of factorable polynomialsmath260
 
04 random-variables-probability-distributionsrv
04 random-variables-probability-distributionsrv04 random-variables-probability-distributionsrv
04 random-variables-probability-distributionsrvPooja Sakhla
 
Numerical Analysis (Solution of Non-Linear Equations) part 2
Numerical Analysis (Solution of Non-Linear Equations) part 2Numerical Analysis (Solution of Non-Linear Equations) part 2
Numerical Analysis (Solution of Non-Linear Equations) part 2Asad Ali
 
Shannon’s Information Measures and Markov Structures
Shannon’s Information Measures and Markov StructuresShannon’s Information Measures and Markov Structures
Shannon’s Information Measures and Markov StructuresInfoEngg CUHK
 
COMPLEX PROJECT-3.pptx
COMPLEX PROJECT-3.pptxCOMPLEX PROJECT-3.pptx
COMPLEX PROJECT-3.pptxJayabiGaming
 

Ähnlich wie Interpolation with unequal interval (20)

Interpolation techniques - Background and implementation
Interpolation techniques - Background and implementationInterpolation techniques - Background and implementation
Interpolation techniques - Background and implementation
 
Chs4
Chs4Chs4
Chs4
 
Interpolation with Finite differences
Interpolation with Finite differencesInterpolation with Finite differences
Interpolation with Finite differences
 
Paper06
Paper06Paper06
Paper06
 
13 graphs of factorable polynomials x
13 graphs of factorable polynomials x13 graphs of factorable polynomials x
13 graphs of factorable polynomials x
 
Basics of probability in statistical simulation and stochastic programming
Basics of probability in statistical simulation and stochastic programmingBasics of probability in statistical simulation and stochastic programming
Basics of probability in statistical simulation and stochastic programming
 
Lecture 2 predicates quantifiers and rules of inference
Lecture 2 predicates quantifiers and rules of inferenceLecture 2 predicates quantifiers and rules of inference
Lecture 2 predicates quantifiers and rules of inference
 
2 vectors notes
2 vectors notes2 vectors notes
2 vectors notes
 
Basics of quantum mechanics
Basics of quantum mechanicsBasics of quantum mechanics
Basics of quantum mechanics
 
Probability distribution
Probability distributionProbability distribution
Probability distribution
 
this materials is useful for the students who studying masters level in elect...
this materials is useful for the students who studying masters level in elect...this materials is useful for the students who studying masters level in elect...
this materials is useful for the students who studying masters level in elect...
 
Module 2 Lesson 2 Notes
Module 2 Lesson 2 NotesModule 2 Lesson 2 Notes
Module 2 Lesson 2 Notes
 
Radial Basis Function Interpolation
Radial Basis Function InterpolationRadial Basis Function Interpolation
Radial Basis Function Interpolation
 
Algebric Functions.pdf
Algebric Functions.pdfAlgebric Functions.pdf
Algebric Functions.pdf
 
2.9 graphs of factorable polynomials
2.9 graphs of factorable polynomials2.9 graphs of factorable polynomials
2.9 graphs of factorable polynomials
 
04 random-variables-probability-distributionsrv
04 random-variables-probability-distributionsrv04 random-variables-probability-distributionsrv
04 random-variables-probability-distributionsrv
 
Es272 ch5b
Es272 ch5bEs272 ch5b
Es272 ch5b
 
Numerical Analysis (Solution of Non-Linear Equations) part 2
Numerical Analysis (Solution of Non-Linear Equations) part 2Numerical Analysis (Solution of Non-Linear Equations) part 2
Numerical Analysis (Solution of Non-Linear Equations) part 2
 
Shannon’s Information Measures and Markov Structures
Shannon’s Information Measures and Markov StructuresShannon’s Information Measures and Markov Structures
Shannon’s Information Measures and Markov Structures
 
COMPLEX PROJECT-3.pptx
COMPLEX PROJECT-3.pptxCOMPLEX PROJECT-3.pptx
COMPLEX PROJECT-3.pptx
 

Mehr von Dr. Nirav Vyas

Arithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic MeanArithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic MeanDr. Nirav Vyas
 
Geometric progressions
Geometric progressionsGeometric progressions
Geometric progressionsDr. Nirav Vyas
 
Arithmetic progressions
Arithmetic progressionsArithmetic progressions
Arithmetic progressionsDr. Nirav Vyas
 
Curve fitting - Lecture Notes
Curve fitting - Lecture NotesCurve fitting - Lecture Notes
Curve fitting - Lecture NotesDr. Nirav Vyas
 
Trend analysis - Lecture Notes
Trend analysis - Lecture NotesTrend analysis - Lecture Notes
Trend analysis - Lecture NotesDr. Nirav Vyas
 
Basic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture NotesBasic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture NotesDr. Nirav Vyas
 
Numerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen valuesNumerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen valuesDr. Nirav Vyas
 
Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3Dr. Nirav Vyas
 
Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2Dr. Nirav Vyas
 
Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1Dr. Nirav Vyas
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - NotesDr. Nirav Vyas
 

Mehr von Dr. Nirav Vyas (20)

Reduction forumla
Reduction forumlaReduction forumla
Reduction forumla
 
Arithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic MeanArithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic Mean
 
Geometric progressions
Geometric progressionsGeometric progressions
Geometric progressions
 
Arithmetic progressions
Arithmetic progressionsArithmetic progressions
Arithmetic progressions
 
Combinations
CombinationsCombinations
Combinations
 
Permutation
PermutationPermutation
Permutation
 
Curve fitting - Lecture Notes
Curve fitting - Lecture NotesCurve fitting - Lecture Notes
Curve fitting - Lecture Notes
 
Trend analysis - Lecture Notes
Trend analysis - Lecture NotesTrend analysis - Lecture Notes
Trend analysis - Lecture Notes
 
Basic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture NotesBasic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture Notes
 
Numerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen valuesNumerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen values
 
Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3
 
Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2
 
Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - Notes
 
Special functions
Special functionsSpecial functions
Special functions
 
Legendre Function
Legendre FunctionLegendre Function
Legendre Function
 
Laplace Transforms
Laplace TransformsLaplace Transforms
Laplace Transforms
 
Fourier series 3
Fourier series 3Fourier series 3
Fourier series 3
 
Fourier series 2
Fourier series 2Fourier series 2
Fourier series 2
 
Fourier series 1
Fourier series 1Fourier series 1
Fourier series 1
 

Kürzlich hochgeladen

4.9.24 Social Capital and Social Exclusion.pptx
4.9.24 Social Capital and Social Exclusion.pptx4.9.24 Social Capital and Social Exclusion.pptx
4.9.24 Social Capital and Social Exclusion.pptxmary850239
 
The role of Geography in climate education: science and active citizenship
The role of Geography in climate education: science and active citizenshipThe role of Geography in climate education: science and active citizenship
The role of Geography in climate education: science and active citizenshipKarl Donert
 
Shark introduction Morphology and its behaviour characteristics
Shark introduction Morphology and its behaviour characteristicsShark introduction Morphology and its behaviour characteristics
Shark introduction Morphology and its behaviour characteristicsArubSultan
 
Indexing Structures in Database Management system.pdf
Indexing Structures in Database Management system.pdfIndexing Structures in Database Management system.pdf
Indexing Structures in Database Management system.pdfChristalin Nelson
 
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptx
Unraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptxUnraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptx
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptxDhatriParmar
 
4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptxmary850239
 
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptxBIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptxSayali Powar
 
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Association for Project Management
 
Mythology Quiz-4th April 2024, Quiz Club NITW
Mythology Quiz-4th April 2024, Quiz Club NITWMythology Quiz-4th April 2024, Quiz Club NITW
Mythology Quiz-4th April 2024, Quiz Club NITWQuiz Club NITW
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (GLOB...
BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (GLOB...BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (GLOB...
BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (GLOB...Nguyen Thanh Tu Collection
 
Narcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdfNarcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdfPrerana Jadhav
 
Tree View Decoration Attribute in the Odoo 17
Tree View Decoration Attribute in the Odoo 17Tree View Decoration Attribute in the Odoo 17
Tree View Decoration Attribute in the Odoo 17Celine George
 
Sulphonamides, mechanisms and their uses
Sulphonamides, mechanisms and their usesSulphonamides, mechanisms and their uses
Sulphonamides, mechanisms and their usesVijayaLaxmi84
 
PART 1 - CHAPTER 1 - CELL THE FUNDAMENTAL UNIT OF LIFE
PART 1 - CHAPTER 1 - CELL THE FUNDAMENTAL UNIT OF LIFEPART 1 - CHAPTER 1 - CELL THE FUNDAMENTAL UNIT OF LIFE
PART 1 - CHAPTER 1 - CELL THE FUNDAMENTAL UNIT OF LIFEMISSRITIMABIOLOGYEXP
 
An Overview of the Calendar App in Odoo 17 ERP
An Overview of the Calendar App in Odoo 17 ERPAn Overview of the Calendar App in Odoo 17 ERP
An Overview of the Calendar App in Odoo 17 ERPCeline George
 
6 ways Samsung’s Interactive Display powered by Android changes the classroom
6 ways Samsung’s Interactive Display powered by Android changes the classroom6 ways Samsung’s Interactive Display powered by Android changes the classroom
6 ways Samsung’s Interactive Display powered by Android changes the classroomSamsung Business USA
 
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...Nguyen Thanh Tu Collection
 

Kürzlich hochgeladen (20)

4.9.24 Social Capital and Social Exclusion.pptx
4.9.24 Social Capital and Social Exclusion.pptx4.9.24 Social Capital and Social Exclusion.pptx
4.9.24 Social Capital and Social Exclusion.pptx
 
The role of Geography in climate education: science and active citizenship
The role of Geography in climate education: science and active citizenshipThe role of Geography in climate education: science and active citizenship
The role of Geography in climate education: science and active citizenship
 
Shark introduction Morphology and its behaviour characteristics
Shark introduction Morphology and its behaviour characteristicsShark introduction Morphology and its behaviour characteristics
Shark introduction Morphology and its behaviour characteristics
 
Indexing Structures in Database Management system.pdf
Indexing Structures in Database Management system.pdfIndexing Structures in Database Management system.pdf
Indexing Structures in Database Management system.pdf
 
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptx
Unraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptxUnraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptx
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptx
 
4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx
 
Plagiarism,forms,understand about plagiarism,avoid plagiarism,key significanc...
Plagiarism,forms,understand about plagiarism,avoid plagiarism,key significanc...Plagiarism,forms,understand about plagiarism,avoid plagiarism,key significanc...
Plagiarism,forms,understand about plagiarism,avoid plagiarism,key significanc...
 
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptxBIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
 
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
 
Mythology Quiz-4th April 2024, Quiz Club NITW
Mythology Quiz-4th April 2024, Quiz Club NITWMythology Quiz-4th April 2024, Quiz Club NITW
Mythology Quiz-4th April 2024, Quiz Club NITW
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (GLOB...
BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (GLOB...BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (GLOB...
BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (GLOB...
 
Narcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdfNarcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdf
 
Tree View Decoration Attribute in the Odoo 17
Tree View Decoration Attribute in the Odoo 17Tree View Decoration Attribute in the Odoo 17
Tree View Decoration Attribute in the Odoo 17
 
Sulphonamides, mechanisms and their uses
Sulphonamides, mechanisms and their usesSulphonamides, mechanisms and their uses
Sulphonamides, mechanisms and their uses
 
PART 1 - CHAPTER 1 - CELL THE FUNDAMENTAL UNIT OF LIFE
PART 1 - CHAPTER 1 - CELL THE FUNDAMENTAL UNIT OF LIFEPART 1 - CHAPTER 1 - CELL THE FUNDAMENTAL UNIT OF LIFE
PART 1 - CHAPTER 1 - CELL THE FUNDAMENTAL UNIT OF LIFE
 
Chi-Square Test Non Parametric Test Categorical Variable
Chi-Square Test Non Parametric Test Categorical VariableChi-Square Test Non Parametric Test Categorical Variable
Chi-Square Test Non Parametric Test Categorical Variable
 
An Overview of the Calendar App in Odoo 17 ERP
An Overview of the Calendar App in Odoo 17 ERPAn Overview of the Calendar App in Odoo 17 ERP
An Overview of the Calendar App in Odoo 17 ERP
 
6 ways Samsung’s Interactive Display powered by Android changes the classroom
6 ways Samsung’s Interactive Display powered by Android changes the classroom6 ways Samsung’s Interactive Display powered by Android changes the classroom
6 ways Samsung’s Interactive Display powered by Android changes the classroom
 
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
 
Introduction to Research ,Need for research, Need for design of Experiments, ...
Introduction to Research ,Need for research, Need for design of Experiments, ...Introduction to Research ,Need for research, Need for design of Experiments, ...
Introduction to Research ,Need for research, Need for design of Experiments, ...
 

Interpolation with unequal interval

  • 1. Numerical Methods - Interpolation Unequal Intervals Dr. N. B. Vyas Department of Mathematics, Atmiya Institute of Tech. and Science, Rajkot (Guj.) niravbvyas@gmail.com Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 2. Interpolation To find the value of y for an x between different x - values x0, x1, . . . , xn is called problem of interpolation. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 3. Interpolation To find the value of y for an x between different x - values x0, x1, . . . , xn is called problem of interpolation. To find the value of y for an x which falls outside the range of x (x < x0 or x > xn) is called the problem of extrapolation. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 4. Interpolation To find the value of y for an x between different x - values x0, x1, . . . , xn is called problem of interpolation. To find the value of y for an x which falls outside the range of x (x < x0 or x > xn) is called the problem of extrapolation. Theorem by Weierstrass in 1885, “Every continuous function in an interval (a,b) can be represented in that interval to any desired accuracy by a polynomial. ” Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 5. Interpolation To find the value of y for an x between different x - values x0, x1, . . . , xn is called problem of interpolation. To find the value of y for an x which falls outside the range of x (x < x0 or x > xn) is called the problem of extrapolation. Theorem by Weierstrass in 1885, “Every continuous function in an interval (a,b) can be represented in that interval to any desired accuracy by a polynomial. ” Let us assign polynomial Pn of degree n (or less) that assumes the given data values Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 6. Interpolation To find the value of y for an x between different x - values x0, x1, . . . , xn is called problem of interpolation. To find the value of y for an x which falls outside the range of x (x < x0 or x > xn) is called the problem of extrapolation. Theorem by Weierstrass in 1885, “Every continuous function in an interval (a,b) can be represented in that interval to any desired accuracy by a polynomial. ” Let us assign polynomial Pn of degree n (or less) that assumes the given data values Pn(x0) = y0, Pn(x1) = y1, . . ., Pn(xn) = yn Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 7. Interpolation To find the value of y for an x between different x - values x0, x1, . . . , xn is called problem of interpolation. To find the value of y for an x which falls outside the range of x (x < x0 or x > xn) is called the problem of extrapolation. Theorem by Weierstrass in 1885, “Every continuous function in an interval (a,b) can be represented in that interval to any desired accuracy by a polynomial. ” Let us assign polynomial Pn of degree n (or less) that assumes the given data values Pn(x0) = y0, Pn(x1) = y1, . . ., Pn(xn) = yn This polynomial Pn is called interpolation polynomial. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 8. Interpolation To find the value of y for an x between different x - values x0, x1, . . . , xn is called problem of interpolation. To find the value of y for an x which falls outside the range of x (x < x0 or x > xn) is called the problem of extrapolation. Theorem by Weierstrass in 1885, “Every continuous function in an interval (a,b) can be represented in that interval to any desired accuracy by a polynomial. ” Let us assign polynomial Pn of degree n (or less) that assumes the given data values Pn(x0) = y0, Pn(x1) = y1, . . ., Pn(xn) = yn This polynomial Pn is called interpolation polynomial. x0, x1, . . . , xn is called the nodes ( tabular points, pivotal points or arguments). Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 9. Interpolation with unequal intervals Lagrange’s interpolation formula with unequal intervals: Let y = f(x) be continuous and differentiable in the interval (a, b). Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 10. Interpolation with unequal intervals Lagrange’s interpolation formula with unequal intervals: Let y = f(x) be continuous and differentiable in the interval (a, b). Given the set of n + 1 values (x0, y0), (x1, y1), . . . , (xn, yn) of x and y, where the values of x need not necessarily be equally spaced. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 11. Interpolation with unequal intervals Lagrange’s interpolation formula with unequal intervals: Let y = f(x) be continuous and differentiable in the interval (a, b). Given the set of n + 1 values (x0, y0), (x1, y1), . . . , (xn, yn) of x and y, where the values of x need not necessarily be equally spaced. It is required to find Pn(x), a polynomial of degree n such that y and Pn(x) agree at the tabulated points. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 12. Interpolation with unequal intervals Lagrange’s interpolation formula with unequal intervals: Let y = f(x) be continuous and differentiable in the interval (a, b). Given the set of n + 1 values (x0, y0), (x1, y1), . . . , (xn, yn) of x and y, where the values of x need not necessarily be equally spaced. It is required to find Pn(x), a polynomial of degree n such that y and Pn(x) agree at the tabulated points. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 13. Lagrange’s Interpolation This polynomial is given by the following formula: Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 14. Lagrange’s Interpolation This polynomial is given by the following formula: y = f(x) ≈ Pn(x) = (x − x1)(x − x2) . . . (x − xn) (x0 − x1)(x0 − x2) . . . (x0 − xn) y0 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 15. Lagrange’s Interpolation This polynomial is given by the following formula: y = f(x) ≈ Pn(x) = (x − x1)(x − x2) . . . (x − xn) (x0 − x1)(x0 − x2) . . . (x0 − xn) y0 + (x − x0)(x − x2) . . . (x − xn) (x1 − x0)(x1 − x2) . . . (x1 − xn) y1 + . . . Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 16. Lagrange’s Interpolation This polynomial is given by the following formula: y = f(x) ≈ Pn(x) = (x − x1)(x − x2) . . . (x − xn) (x0 − x1)(x0 − x2) . . . (x0 − xn) y0 + (x − x0)(x − x2) . . . (x − xn) (x1 − x0)(x1 − x2) . . . (x1 − xn) y1 + . . . + (x − x0)(x − x1) . . . (x − xn−1) (xn − x0)(xn − x1) . . . (xn − xn−1) yn Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 17. Lagrange’s Interpolation This polynomial is given by the following formula: y = f(x) ≈ Pn(x) = (x − x1)(x − x2) . . . (x − xn) (x0 − x1)(x0 − x2) . . . (x0 − xn) y0 + (x − x0)(x − x2) . . . (x − xn) (x1 − x0)(x1 − x2) . . . (x1 − xn) y1 + . . . + (x − x0)(x − x1) . . . (x − xn−1) (xn − x0)(xn − x1) . . . (xn − xn−1) yn NOTE: The above formula can be used irrespective of whether the values x0, x1, . . . , xn are equally spaced or not. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 18. Lagrange’s Inverse Interpolation In the Lagrange’s interpolation formula y is treated as dependent variable and expressed as function of independent variable x. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 19. Lagrange’s Inverse Interpolation In the Lagrange’s interpolation formula y is treated as dependent variable and expressed as function of independent variable x. Instead if x is treated as dependent variable and expressed as the function of independent variable y, then Lagrange’s interpolation formula becomes Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 20. Lagrange’s Inverse Interpolation In the Lagrange’s interpolation formula y is treated as dependent variable and expressed as function of independent variable x. Instead if x is treated as dependent variable and expressed as the function of independent variable y, then Lagrange’s interpolation formula becomes x = g(y) ≈ Pn(y) = (y − y1)(y − y2) . . . (y − yn) (y0 − y1)(y0 − y2) . . . (y0 − yn) x0 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 21. Lagrange’s Inverse Interpolation In the Lagrange’s interpolation formula y is treated as dependent variable and expressed as function of independent variable x. Instead if x is treated as dependent variable and expressed as the function of independent variable y, then Lagrange’s interpolation formula becomes x = g(y) ≈ Pn(y) = (y − y1)(y − y2) . . . (y − yn) (y0 − y1)(y0 − y2) . . . (y0 − yn) x0 + (y − y0)(y − y2) . . . (y − yn) (y1 − y0)(y1 − y2) . . . (y1 − yn) x1 + . . . Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 22. Lagrange’s Inverse Interpolation In the Lagrange’s interpolation formula y is treated as dependent variable and expressed as function of independent variable x. Instead if x is treated as dependent variable and expressed as the function of independent variable y, then Lagrange’s interpolation formula becomes x = g(y) ≈ Pn(y) = (y − y1)(y − y2) . . . (y − yn) (y0 − y1)(y0 − y2) . . . (y0 − yn) x0 + (y − y0)(y − y2) . . . (y − yn) (y1 − y0)(y1 − y2) . . . (y1 − yn) x1 + . . . + (y − y0)(y − y1) . . . (y − yn−1) (yn − y0)(yn − y1) . . . (yn − yn−1) xn Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 23. Lagrange’s Inverse Interpolation In the Lagrange’s interpolation formula y is treated as dependent variable and expressed as function of independent variable x. Instead if x is treated as dependent variable and expressed as the function of independent variable y, then Lagrange’s interpolation formula becomes x = g(y) ≈ Pn(y) = (y − y1)(y − y2) . . . (y − yn) (y0 − y1)(y0 − y2) . . . (y0 − yn) x0 + (y − y0)(y − y2) . . . (y − yn) (y1 − y0)(y1 − y2) . . . (y1 − yn) x1 + . . . + (y − y0)(y − y1) . . . (y − yn−1) (yn − y0)(yn − y1) . . . (yn − yn−1) xn This relation is referred as Lagrange’s inverse interpolation formula. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 24. Example Ex. Given the table of values: x 150 152 154 156 y = √ x 12.247 12.329 12.410 12.490 Evaluate √ 155 using Lagrange’s interpolation formula. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 25. Example Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 26. Example Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156 y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 27. Example Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156 y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490 By Lagrange’s interpolation formula, Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 28. Example Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156 y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490 By Lagrange’s interpolation formula, f(x) ≈ Pn(x) = (x − x1)(x − x2)(x − x3) (x0 − x1)(x0 − x2)(x0 − x3) y0 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 29. Example Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156 y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490 By Lagrange’s interpolation formula, f(x) ≈ Pn(x) = (x − x1)(x − x2)(x − x3) (x0 − x1)(x0 − x2)(x0 − x3) y0 + (x − x0)(x − x2)(x − x3) (x1 − x0)(x1 − x2)(x1 − x3) y1 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 30. Example Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156 y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490 By Lagrange’s interpolation formula, f(x) ≈ Pn(x) = (x − x1)(x − x2)(x − x3) (x0 − x1)(x0 − x2)(x0 − x3) y0 + (x − x0)(x − x2)(x − x3) (x1 − x0)(x1 − x2)(x1 − x3) y1 + (x − x0)(x − x1)(x − x3) (x2 − x0)(x2 − x1)(x2 − x3) y2 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 31. Example Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156 y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490 By Lagrange’s interpolation formula, f(x) ≈ Pn(x) = (x − x1)(x − x2)(x − x3) (x0 − x1)(x0 − x2)(x0 − x3) y0 + (x − x0)(x − x2)(x − x3) (x1 − x0)(x1 − x2)(x1 − x3) y1 + (x − x0)(x − x1)(x − x3) (x2 − x0)(x2 − x1)(x2 − x3) y2 + (x − x0)(x − x1)(x − x2) (x3 − x0)(x3 − x1)(x3 − x2) y3 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 32. Example Sol.: Here x0 = 150, x1 = 152, x2 = 154 and x3 = 156 y0 = 12.247, y1 = 12.329, y2 = 12.410 and y3 = 12.490 By Lagrange’s interpolation formula, f(x) ≈ Pn(x) = (x − x1)(x − x2)(x − x3) (x0 − x1)(x0 − x2)(x0 − x3) y0 + (x − x0)(x − x2)(x − x3) (x1 − x0)(x1 − x2)(x1 − x3) y1 + (x − x0)(x − x1)(x − x3) (x2 − x0)(x2 − x1)(x2 − x3) y2 + (x − x0)(x − x1)(x − x2) (x3 − x0)(x3 − x1)(x3 − x2) y3 for x = 155 ∴ f(155) = Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 33. Example Ex. Compute f(0.4) for the table below by the Lagrange’s interpolation: x 0.3 0.5 0.6 f(x) 0.61 0.69 0.72 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 34. Example Ex. Using Lagrange’s formula, find the form of f(x) for the following data: x 0 1 2 5 f(x) 2 3 12 147 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 35. Example Ex. Using Lagrange’s formula, find x for y = 7 for the following data: x 1 3 4 y 4 12 19 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 36. Example Ex. Using Lagrange’s formula, express the function 3x2 + x + 1 (x − 1)(x − 2)(x − 3) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 37. Example Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 38. Example Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3 These values are x0 = 1, x1 = 2 and x2 = 3 and Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 39. Example Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3 These values are x0 = 1, x1 = 2 and x2 = 3 and y0 = 5, Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 40. Example Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3 These values are x0 = 1, x1 = 2 and x2 = 3 and y0 = 5, y1 = 15 and y2 = 31 By Lagrange’s interpolation formula, Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 41. Example Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3 These values are x0 = 1, x1 = 2 and x2 = 3 and y0 = 5, y1 = 15 and y2 = 31 By Lagrange’s interpolation formula, y = (x − x1)(x − x2) (x0 − x1)(x0 − x2) y0 + (x − x0)(x − x2) (x1 − x0)(x1 − x2) y1 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 42. Example Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3 These values are x0 = 1, x1 = 2 and x2 = 3 and y0 = 5, y1 = 15 and y2 = 31 By Lagrange’s interpolation formula, y = (x − x1)(x − x2) (x0 − x1)(x0 − x2) y0 + (x − x0)(x − x2) (x1 − x0)(x1 − x2) y1 + (x − x0)(x − x1) (x2 − x0)(x2 − x1) y2 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 43. Example Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3 These values are x0 = 1, x1 = 2 and x2 = 3 and y0 = 5, y1 = 15 and y2 = 31 By Lagrange’s interpolation formula, y = (x − x1)(x − x2) (x0 − x1)(x0 − x2) y0 + (x − x0)(x − x2) (x1 − x0)(x1 − x2) y1 + (x − x0)(x − x1) (x2 − x0)(x2 − x1) y2 substituting above values, we get y = 2.5(x − 2)(x − 3) − 15(x − 1)(x − 3) + 15.5(x − 1)(x − 2) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 44. Example Sol.: Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3 These values are x0 = 1, x1 = 2 and x2 = 3 and y0 = 5, y1 = 15 and y2 = 31 By Lagrange’s interpolation formula, y = (x − x1)(x − x2) (x0 − x1)(x0 − x2) y0 + (x − x0)(x − x2) (x1 − x0)(x1 − x2) y1 + (x − x0)(x − x1) (x2 − x0)(x2 − x1) y2 substituting above values, we get y = 2.5(x − 2)(x − 3) − 15(x − 1)(x − 3) + 15.5(x − 1)(x − 2) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 45. Example Thus 3x2 + x + 1 (x − 1)(x − 2)(x − 3) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 46. Example Thus 3x2 + x + 1 (x − 1)(x − 2)(x − 3) = 2.5(x − 2)(x − 3) − 15(x − 1)(x − 3) + 15.5(x − 1)(x − 2) (x − 1)(x − 2)(x − 3) = 2.5 (x − 1) - 15 (x − 2) + 15.5 (x − 3) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 47. Error in Interpolation Error in Interpolation: We assume that f(x) has continuous derivatives of order upto n + 1 for all x ∈ (a, b). Since, f(x) is approximated by Pn(x), the results contains errors. We define the error of interpolation or truncation error as Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 48. Error in Interpolation Error in Interpolation: We assume that f(x) has continuous derivatives of order upto n + 1 for all x ∈ (a, b). Since, f(x) is approximated by Pn(x), the results contains errors. We define the error of interpolation or truncation error as E(f, x) = f(x) − Pn(x) = (x − x0)(x − x1) . . . (x − xn) (n + 1)! f(n+1)(ξ) where min(x0, x1, . . . , xn, x) < ξ < min(x0, x1, . . . , xn, x) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 49. Error in Interpolation Error in Interpolation: We assume that f(x) has continuous derivatives of order upto n + 1 for all x ∈ (a, b). Since, f(x) is approximated by Pn(x), the results contains errors. We define the error of interpolation or truncation error as E(f, x) = f(x) − Pn(x) = (x − x0)(x − x1) . . . (x − xn) (n + 1)! f(n+1)(ξ) where min(x0, x1, . . . , xn, x) < ξ < min(x0, x1, . . . , xn, x) since, ξ is an unknown, it is difficult to find the value of error. However, we can find a bound of the error. The bound of the error is obtained as Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 50. Error in Interpolation Error in Interpolation: We assume that f(x) has continuous derivatives of order upto n + 1 for all x ∈ (a, b). Since, f(x) is approximated by Pn(x), the results contains errors. We define the error of interpolation or truncation error as E(f, x) = f(x) − Pn(x) = (x − x0)(x − x1) . . . (x − xn) (n + 1)! f(n+1)(ξ) where min(x0, x1, . . . , xn, x) < ξ < min(x0, x1, . . . , xn, x) since, ξ is an unknown, it is difficult to find the value of error. However, we can find a bound of the error. The bound of the error is obtained as |E(f, x)| ≤ |(x − x0)(x − x1) . . . (x − xn)| (n + 1)! max a≤ξ≤b |f(n+1)(ξ)| Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 51. Example Ex. Using the data sin(0.1) = 0.09983 and sin(0.2) = 0.19867, find an approximate value of sin(0.15) by Lagrange interpolation. Obtain a bound on the error at x = 0.15. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 52. Lagrange’s Interpolation Disadvantages: In practice, we often do not know the degree of the interpolation polynomial that will give the required accuracy, so we should be prepared to increase the degree if necessary. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 53. Lagrange’s Interpolation Disadvantages: In practice, we often do not know the degree of the interpolation polynomial that will give the required accuracy, so we should be prepared to increase the degree if necessary. To increase the degree the addition of another interpolation point leads to re-computation. i.e. no previous work is useful. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 54. Lagrange’s Interpolation Disadvantages: In practice, we often do not know the degree of the interpolation polynomial that will give the required accuracy, so we should be prepared to increase the degree if necessary. To increase the degree the addition of another interpolation point leads to re-computation. i.e. no previous work is useful. E.g: In calculating Pk(x), no obvious advantage can be taken of the fact that one already has calculated Pk−1(x). Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 55. Lagrange’s Interpolation Disadvantages: In practice, we often do not know the degree of the interpolation polynomial that will give the required accuracy, so we should be prepared to increase the degree if necessary. To increase the degree the addition of another interpolation point leads to re-computation. i.e. no previous work is useful. E.g: In calculating Pk(x), no obvious advantage can be taken of the fact that one already has calculated Pk−1(x). That means we need to calculate entirely new polynomial. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 56. Divided Difference Let f(x0), f(x1), . . . , f(xn) be the values of a function f corresponding to the arguments x0, x1, . . . , xn where the intervals x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 57. Divided Difference Let f(x0), f(x1), . . . , f(xn) be the values of a function f corresponding to the arguments x0, x1, . . . , xn where the intervals x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced. Then the first divided difference of f for the arguments x0, x1, . . . , xn are defined by , Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 58. Divided Difference Let f(x0), f(x1), . . . , f(xn) be the values of a function f corresponding to the arguments x0, x1, . . . , xn where the intervals x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced. Then the first divided difference of f for the arguments x0, x1, . . . , xn are defined by , f(x0, x1) = f(x1) − f(x0) x1 − x0 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 59. Divided Difference Let f(x0), f(x1), . . . , f(xn) be the values of a function f corresponding to the arguments x0, x1, . . . , xn where the intervals x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced. Then the first divided difference of f for the arguments x0, x1, . . . , xn are defined by , f(x0, x1) = f(x1) − f(x0) x1 − x0 f(x1, x2) = f(x2) − f(x1) x2 − x1 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 60. Divided Difference The second divided difference of f for three arguments x0, x1, x2 is defined by f(x0, x1, x2) = f(x1, x2) − f(x0, x1) x2 − x0 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 61. Divided Difference The second divided difference of f for three arguments x0, x1, x2 is defined by f(x0, x1, x2) = f(x1, x2) − f(x0, x1) x2 − x0 and similarly the divided difference of order n is defined by f(x0, x1, . . . , xn) = f(x1, x2, . . . , xn) − f(x0, x1, . . . , xn−1) xn − x0 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 62. Divided Difference Properties: The divided differences are symmetrical in all their arguments; that is, the value of any divided difference is independent of the order of the arguments. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 63. Divided Difference Properties: The divided differences are symmetrical in all their arguments; that is, the value of any divided difference is independent of the order of the arguments. The divided difference operator is linear. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 64. Divided Difference Properties: The divided differences are symmetrical in all their arguments; that is, the value of any divided difference is independent of the order of the arguments. The divided difference operator is linear. The nth order divided differences of a polynomial of degree n are constant, equal to the coefficient of xn. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 65. Newton’s Divided Difference Interpolation An interpolation formula which has the property that a polynomial of higher degree may be derived from it by simply adding new terms. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 66. Newton’s Divided Difference Interpolation An interpolation formula which has the property that a polynomial of higher degree may be derived from it by simply adding new terms. Newton’s general interpolation formula is one such formula and terms in it are called divided differences. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 67. Newton’s Divided Difference Interpolation An interpolation formula which has the property that a polynomial of higher degree may be derived from it by simply adding new terms. Newton’s general interpolation formula is one such formula and terms in it are called divided differences. Let f(x0), f(x1), . . . , f(xn) be the values of a function f corresponding to the arguments x0, x1, . . . , xn where the intervals x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced. By the definition of divided difference, Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 68. Newton’s Divided Difference Interpolation An interpolation formula which has the property that a polynomial of higher degree may be derived from it by simply adding new terms. Newton’s general interpolation formula is one such formula and terms in it are called divided differences. Let f(x0), f(x1), . . . , f(xn) be the values of a function f corresponding to the arguments x0, x1, . . . , xn where the intervals x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced. By the definition of divided difference, f(x, x0) = f(x) − f(x0) x − x0 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 69. Newton’s Divided Difference Interpolation An interpolation formula which has the property that a polynomial of higher degree may be derived from it by simply adding new terms. Newton’s general interpolation formula is one such formula and terms in it are called divided differences. Let f(x0), f(x1), . . . , f(xn) be the values of a function f corresponding to the arguments x0, x1, . . . , xn where the intervals x1 − x0, x2 − x1, . . . , xn − xn−1 are not necessarily equally spaced. By the definition of divided difference, f(x, x0) = f(x) − f(x0) x − x0 ∴ f(x) = f(x0) + (x − x0)f(x, x0) − −(1) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 70. Newton’s Divided Difference Interpolation Further f(x, x0, x1) = f(x, x0) − f(x0, x1) x − x1 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 71. Newton’s Divided Difference Interpolation Further f(x, x0, x1) = f(x, x0) − f(x0, x1) x − x1 which yields f(x, x0) = f(x0, x1) + (x − x1)f(x, x0, x1) − −(2) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 72. Newton’s Divided Difference Interpolation Further f(x, x0, x1) = f(x, x0) − f(x0, x1) x − x1 which yields f(x, x0) = f(x0, x1) + (x − x1)f(x, x0, x1) − −(2) Similarly f(x, x0, x1) = f(x0, x1, x2) + (x − x2)f(x, x0, x1, x2) − −(3) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 73. Newton’s Divided Difference Interpolation Further f(x, x0, x1) = f(x, x0) − f(x0, x1) x − x1 which yields f(x, x0) = f(x0, x1) + (x − x1)f(x, x0, x1) − −(2) Similarly f(x, x0, x1) = f(x0, x1, x2) + (x − x2)f(x, x0, x1, x2) − −(3) and in general f(x, x0, ..., xn−1) = f(x0, x1, ..., xn) + (x − xn)f(x, x0, x1, ..., xn) − −(4) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 74. Newton’s Divided Difference Interpolation multiplying equation (2) by (x − x0) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 75. Newton’s Divided Difference Interpolation multiplying equation (2) by (x − x0) , (3) by (x − x0) (x − x1) and so on, Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 76. Newton’s Divided Difference Interpolation multiplying equation (2) by (x − x0) , (3) by (x − x0) (x − x1) and so on, and finally the last term (4) by (x − x0) (x − x1) ... (x − xn−1) and Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 77. Newton’s Divided Difference Interpolation multiplying equation (2) by (x − x0) , (3) by (x − x0) (x − x1) and so on, and finally the last term (4) by (x − x0) (x − x1) ... (x − xn−1) and adding (1), (2) , (3) up to (4) we obtain Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 78. Newton’s Divided Difference Interpolation multiplying equation (2) by (x − x0) , (3) by (x − x0) (x − x1) and so on, and finally the last term (4) by (x − x0) (x − x1) ... (x − xn−1) and adding (1), (2) , (3) up to (4) we obtain f(x) = f (x0) + (x − x0) f (x0, x1) + (x − x0) (x − x1) f (x0, x1, x2) + ... + (x − x0) (x − x1) ... (x − xn−1) f (x0, x1, ..., xn) This formula is called Newton’s divided difference formula. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 79. Newton’s Divided Difference Interpolation The divided difference upto third order x y 1stdiv.diff. 2nddiv.diff. 3rddiv.diff. x0 y0 [x0, x1] x1 y1 [x0, x1, x2] [x1, x2] [x0, x1, x2, x3] x2 y2 [x1, x2, x3] [x2, x3] x3 y3 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 80. Example Ex. Obtain the divided difference table for the data: x -1 0 2 3 y -8 3 1 12 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 81. Example Sol. We have the following divided difference table for the data: x y First d.d Second d.d Third d.d -1 -8 3 + 8 0 + 1 = 11 0 3 −1 − 11 2 + 1 = −4 1 − 3 2 − 0 = −1 4 + 4 3 + 1 = 2 2 1 11 + 1 3 − 0 = 4 12 − 1 3 − 2 = 11 3 12 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 82. Example Ex. Find f(x) as a polynomial in x for the following data by Newtons divided difference formula: x -4 -1 0 2 5 f(x) 1245 33 5 9 1335 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 83. Example Sol. We have the following divided difference table for the data: x y 1st d.d 2nd d.d 3rd d.d 4th d.d -4 1245 −404 -1 33 94 −28 −14 0 5 10 3 2 13 2 9 88 442 5 1335 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 84. Example The Newtons divided difference formula gives: Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 85. Example The Newtons divided difference formula gives: f(x) = f(x0) + Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 86. Example The Newtons divided difference formula gives: f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2] Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 87. Example The Newtons divided difference formula gives: f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2] + Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 88. Example The Newtons divided difference formula gives: f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2] + (x − x0)(x − x1)(x − x2)f[x0, x1, x2, x3] Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 89. Example The Newtons divided difference formula gives: f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2] + (x − x0)(x − x1)(x − x2)f[x0, x1, x2, x3] + Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 90. Example The Newtons divided difference formula gives: f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2] + (x − x0)(x − x1)(x − x2)f[x0, x1, x2, x3] + (x − x0)(x − x1)(x − x2)(x − x3)f[x0, x1, x2, x3, x4] Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 91. Example The Newtons divided difference formula gives: f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2] + (x − x0)(x − x1)(x − x2)f[x0, x1, x2, x3] + (x − x0)(x − x1)(x − x2)(x − x3)f[x0, x1, x2, x3, x4] = ... = 3x4 − 5x3 + 6x2 − 14x + 5 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 92. Example Ex. Find f(x) as a polynomial in x for the following data by Newtons divided difference formula: x -2 -1 0 1 3 4 f(x) 9 16 17 18 44 81 Hence, interpolate at x = 0.5 and x = 3.1. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 93. Example Sol. We form the divided difference table for the given data. x f(x) 1st d.d 2nd d.d 3rd d.d 4th d.d −2 9 7 −1 16 −3 1 1 0 17 0 0 1 1 1 18 4 0 13 1 3 44 8 37 4 81 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 94. Example Since, the fourth order differences are zeros, the data represents a third degree polynomial. Newtons divided difference formula gives the polynomial as f(x) = f(x0) + Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 95. Example Since, the fourth order differences are zeros, the data represents a third degree polynomial. Newtons divided difference formula gives the polynomial as f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2] Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 96. Example Since, the fourth order differences are zeros, the data represents a third degree polynomial. Newtons divided difference formula gives the polynomial as f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2] + Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 97. Example Since, the fourth order differences are zeros, the data represents a third degree polynomial. Newtons divided difference formula gives the polynomial as f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2] + (x − x0)(x − x1)(x − x2)f[x0, x1, x2, x3] Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 98. Example Since, the fourth order differences are zeros, the data represents a third degree polynomial. Newtons divided difference formula gives the polynomial as f(x) = f(x0) + (x − x0)f[x0, x1] + (x − x0)(x − x1)f[x0, x1, x2] + (x − x0)(x − x1)(x − x2)f[x0, x1, x2, x3] = ... = x3 + 17 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 99. Example Ex. Find the missing term in the following table: x 0 1 2 3 4 y 1 3 9 - 81 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 100. Example Sol. Divided difference table: Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 101. Example Sol. Divided difference table: By Newton’s divided difference formula f(x) = f (x0) + (x − x0) f (x0, x1) + (x − x0) (x − x1) f (x0, x1, x2) + ... Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 102. Spline Interpolation Spline interpolation is a form of interpolation where the interpolant is a special type of piecewise polynomial called a spline Consider the problem of interpolating between the data points (x0, y0), (x1, y1), . . . , (xn, yn) by means of spline fitting. Then the cubic spline f(x) is such that (i) f(x) is a linear polynomial outside the interval (x0, xn) (ii) f(x) is a cubic polynomial in each of the subintervals, (iii) f (x) and f (x) are continuous at each point. Since f(x) is cubic in each of the subintervals f (x) shall be linear. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 103. Spline Interpolation f(x) = (xi+1 − x)3Mi 6h + Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 104. Spline Interpolation f(x) = (xi+1 − x)3Mi 6h + (x − xi)3Mi+1 6h Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 105. Spline Interpolation f(x) = (xi+1 − x)3Mi 6h + (x − xi)3Mi+1 6h + (xi+1 − x) h yi − h2 6 Mi + Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 106. Spline Interpolation f(x) = (xi+1 − x)3Mi 6h + (x − xi)3Mi+1 6h + (xi+1 − x) h yi − h2 6 Mi + (x − xi) h yi+1 − h2 6 Mi+1 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 107. Spline Interpolation f(x) = (xi+1 − x)3Mi 6h + (x − xi)3Mi+1 6h + (xi+1 − x) h yi − h2 6 Mi + (x − xi) h yi+1 − h2 6 Mi+1 where Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 108. Spline Interpolation f(x) = (xi+1 − x)3Mi 6h + (x − xi)3Mi+1 6h + (xi+1 − x) h yi − h2 6 Mi + (x − xi) h yi+1 − h2 6 Mi+1 where Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2, 3, ..., (n − 1) and M0 = 0, Mn = 0, xi+1 − xi = h. which gives n + 1 equations in n + 1 unknowns Mi(i = 0, 1, ..., n) which can be solved. Substituting the value of Mi gives the concerned cubic spline. Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 109. Example Ex. Obtain cubic spline for the following data: x 0 1 2 3 y 2 -6 -8 2 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 110. Example Sol. Since points are equispaced with h = 1 and n = 3, Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 111. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 112. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 113. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 114. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 115. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) for i = 2, Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 116. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 117. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 72 —(2) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 118. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 72 —(2) solving these, we get Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 119. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 72 —(2) solving these, we get M1 = Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 120. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 72 —(2) solving these, we get M1 =4.8 and M2 = Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 121. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 72 —(2) solving these, we get M1 =4.8 and M2 =16.8 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 122. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 72 —(2) solving these, we get M1 =4.8 and M2 =16.8 Now the cubic spline in (xi ≤ x ≤ xi+1) is Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 123. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 72 —(2) solving these, we get M1 =4.8 and M2 =16.8 Now the cubic spline in (xi ≤ x ≤ xi+1) is f(x) = (xi+1 − x)3Mi 6h + Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 124. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 72 —(2) solving these, we get M1 =4.8 and M2 =16.8 Now the cubic spline in (xi ≤ x ≤ xi+1) is f(x) = (xi+1 − x)3Mi 6h + (x − xi)3Mi+1 6h Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 125. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 72 —(2) solving these, we get M1 =4.8 and M2 =16.8 Now the cubic spline in (xi ≤ x ≤ xi+1) is f(x) = (xi+1 − x)3Mi 6h + (x − xi)3Mi+1 6h + (xi+1 − x) h yi − h2 6 Mi + Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 126. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 72 —(2) solving these, we get M1 =4.8 and M2 =16.8 Now the cubic spline in (xi ≤ x ≤ xi+1) is f(x) = (xi+1 − x)3Mi 6h + (x − xi)3Mi+1 6h + (xi+1 − x) h yi − h2 6 Mi + (x − xi) h yi+1 − h2 6 Mi+1 —(3) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 127. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 36; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 72 —(2) solving these, we get M1 =4.8 and M2 =16.8 Now the cubic spline in (xi ≤ x ≤ xi+1) is f(x) = (xi+1 − x)3Mi 6h + (x − xi)3Mi+1 6h + (xi+1 − x) h yi − h2 6 Mi + (x − xi) h yi+1 − h2 6 Mi+1 —(3) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 128. Example Ex. The following values of x and y are given: x 1 2 3 4 y 1 2 5 11 Find the cubic splines and evaluate y(1.5) and y (3) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 129. Example Sol. Since points are equispaced with h = 1 and n = 3, Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 130. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 131. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 132. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 133. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 134. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) for i = 2, Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 135. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 136. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 18 —(2) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 137. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 18 —(2) solving these, we get Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 138. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 18 —(2) solving these, we get M1 = Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 139. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 18 —(2) solving these, we get M1 =2 and M2 = Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 140. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 18 —(2) solving these, we get M1 =2 and M2 =4 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 141. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 18 —(2) solving these, we get M1 =2 and M2 =4 Now the cubic spline in (xi ≤ x ≤ xi+1) is Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 142. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 18 —(2) solving these, we get M1 =2 and M2 =4 Now the cubic spline in (xi ≤ x ≤ xi+1) is f(x) = (xi+1 − x)3Mi 6h + Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 143. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 18 —(2) solving these, we get M1 =2 and M2 =4 Now the cubic spline in (xi ≤ x ≤ xi+1) is f(x) = (xi+1 − x)3Mi 6h + (x − xi)3Mi+1 6h Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 144. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 18 —(2) solving these, we get M1 =2 and M2 =4 Now the cubic spline in (xi ≤ x ≤ xi+1) is f(x) = (xi+1 − x)3Mi 6h + (x − xi)3Mi+1 6h + (xi+1 − x) h yi − h2 6 Mi + Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 145. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 18 —(2) solving these, we get M1 =2 and M2 =4 Now the cubic spline in (xi ≤ x ≤ xi+1) is f(x) = (xi+1 − x)3Mi 6h + (x − xi)3Mi+1 6h + (xi+1 − x) h yi − h2 6 Mi + (x − xi) h yi+1 − h2 6 Mi+1 —(3) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 146. Example Sol. Since points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi−1 + 4Mi + Mi+1 = 6 h2 (yi−1 − 2yi + yi+1), i = 1, 2 also M0 = 0 , M3 = 0 ∴ for i = 1, M0 + 4M1 + M2 = 6(y0 − 2y1 + y2) therefore, 4M1 + M2 = 12; —(1) for i = 2, M1 + 4M2 + M3 = 6(y1 − 2y2 + y3) M1 + 4M2 = 18 —(2) solving these, we get M1 =2 and M2 =4 Now the cubic spline in (xi ≤ x ≤ xi+1) is f(x) = (xi+1 − x)3Mi 6h + (x − xi)3Mi+1 6h + (xi+1 − x) h yi − h2 6 Mi + (x − xi) h yi+1 − h2 6 Mi+1 —(3) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 147. Example Ex. Find whether the following functions are cubic splines ? 1. f(x) = 5x3 − 3x2, −1 ≤ x ≤ 0 = −5x3 − 3x2, 0 ≤ x ≤ 1 2. f(x) = −2x3 − x2, −1 ≤ x ≤ 0 = 2x3 + 3x2, 0 ≤ x ≤ 1 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 148. Example Sol. In both the examples, f(x) is a cubic polynomial in both intervals (1, 0) and (0, 1). 1. We have lim x→0+ f(x) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 149. Example Sol. In both the examples, f(x) is a cubic polynomial in both intervals (1, 0) and (0, 1). 1. We have lim x→0+ f(x) = 0 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 150. Example Sol. In both the examples, f(x) is a cubic polynomial in both intervals (1, 0) and (0, 1). 1. We have lim x→0+ f(x) = 0 = lim x→0− f(x) therefore, given function f(x) is continuous on (−1, 1). Now f (x) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 151. Example Sol. In both the examples, f(x) is a cubic polynomial in both intervals (1, 0) and (0, 1). 1. We have lim x→0+ f(x) = 0 = lim x→0− f(x) therefore, given function f(x) is continuous on (−1, 1). Now f (x) = 15x2 − 6x, −1 ≤ x ≤ 0 = −15x2 − 6x, 0 ≤ x ≤ 1 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 152. Example Sol. In both the examples, f(x) is a cubic polynomial in both intervals (1, 0) and (0, 1). 1. We have lim x→0+ f(x) = 0 = lim x→0− f(x) therefore, given function f(x) is continuous on (−1, 1). Now f (x) = 15x2 − 6x, −1 ≤ x ≤ 0 = −15x2 − 6x, 0 ≤ x ≤ 1 we have, lim x→0+ f (x) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 153. Example Sol. In both the examples, f(x) is a cubic polynomial in both intervals (1, 0) and (0, 1). 1. We have lim x→0+ f(x) = 0 = lim x→0− f(x) therefore, given function f(x) is continuous on (−1, 1). Now f (x) = 15x2 − 6x, −1 ≤ x ≤ 0 = −15x2 − 6x, 0 ≤ x ≤ 1 we have, lim x→0+ f (x) = 0 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 154. Example Sol. In both the examples, f(x) is a cubic polynomial in both intervals (1, 0) and (0, 1). 1. We have lim x→0+ f(x) = 0 = lim x→0− f(x) therefore, given function f(x) is continuous on (−1, 1). Now f (x) = 15x2 − 6x, −1 ≤ x ≤ 0 = −15x2 − 6x, 0 ≤ x ≤ 1 we have, lim x→0+ f (x) = 0 = lim x→0− f (x) therefore, the function f (x) is continuous on (−1, 1). f (x) Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 155. Example Sol. In both the examples, f(x) is a cubic polynomial in both intervals (1, 0) and (0, 1). 1. We have lim x→0+ f(x) = 0 = lim x→0− f(x) therefore, given function f(x) is continuous on (−1, 1). Now f (x) = 15x2 − 6x, −1 ≤ x ≤ 0 = −15x2 − 6x, 0 ≤ x ≤ 1 we have, lim x→0+ f (x) = 0 = lim x→0− f (x) therefore, the function f (x) is continuous on (−1, 1). f (x) = 30x−6, −1 ≤ x ≤ 0 = −30x − 6, 0 ≤ x ≤ 1 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals
  • 156. Example Sol. In both the examples, f(x) is a cubic polynomial in both intervals (1, 0) and (0, 1). 1. We have lim x→0+ f(x) = 0 = lim x→0− f(x) therefore, given function f(x) is continuous on (−1, 1). Now f (x) = 15x2 − 6x, −1 ≤ x ≤ 0 = −15x2 − 6x, 0 ≤ x ≤ 1 we have, lim x→0+ f (x) = 0 = lim x→0− f (x) therefore, the function f (x) is continuous on (−1, 1). f (x) = 30x−6, −1 ≤ x ≤ 0 = −30x − 6, 0 ≤ x ≤ 1 Dr. N. B. Vyas Numerical Methods - Interpolation Unequal Intervals