Analysis of indeterminate beam by slopeand deflection method

Analysis of indeterminate beam by slopeand deflection method
• Slope Deflection Method was presented by George A
Money in 1815.
• Use to Analyse Statically Indeterminate Beams and
Frames.
• Slope Deflection method is a Displacement method i.e.
Equation Method.
• This Method mainly involves slope and Deflection of
the member at it’s joint and hence the named as Slope
deflection method.
• The Basic unknown in slope Deflection method are the
non zero joint displacement of a structure. i.e.., Degree
of Kinematic Indeterminacy (Degree of freedom).
Slope and Deflection Equation for member AB
F
AB AB A B 2
F
BA BA A B 2
4EI 2EI 6EI
M = M + Θ + Θ ± Δ
L L L
2EI 4EI 6EI
M = M + Θ + Θ ± Δ
L L L
FixedEndmomentduetoTransverseLoad.
NearEndRotatio
F FM =M =
AB BA
4EIΘ= ncontri
L
bution.
2EIΘ=
L
6EI
Far EndRotationcontribution.
Relative TranslationContributΔ=
2L
ion.
• ΘA= End slope at A or the rotation of the joint A.
• ΘB= End slope at B or the rotation of the joint B.
• ΔA=End deflection at A or the translation of Joint A.
• ΔB=End deflection at B or the translation of Joint B.
• ΔB/A=Relative Deflection or Translation of Joint B
with respect to A.
• MF
AB=Fixed end Moment at A for member AB.
• MF
BA=Fixed End moment at B for member BA.
Clockwise moments are
Negative, Anticlockwise moments are Positive.
Clockwise moments are
Negative, Anticlockwise moments are Positive.
1)Analyse the Two span continuous beam shown in Fig.No.1 by slope
and Deflection method ,draw bending moment and shear force
Diagram.
Solution:- Fixed End Moment
2 2
F
AB
2 2
F
BA
F F
BC CB
CD
WL 20X6
M = = = 60KNm.
12 12
WL 20X6
M = - = - = -60KNm.
12 12
WL 80X4
M = -M = = = 40KNm.
8 8
M = 40X2 = 80KNm.
TotalRestrainedmoment at C = -40 + 80 = 40KNm.
Sign Convention: Clockwise
moments are Negative,
Anticlockwise moments are
Positive.
Application of slope and Deflection equation to
member AB
F
AB AB A B 2
AB B
A
AB B
F
BA BA A B 2
BA B
BA B
4EI 2EI 6EI
M = M + Θ + Θ ± Δ
L L L
2E(2I)
M = 60+ Θ
6
(Astheiris fixedsupportat A,soΘ = 0&noSinking of support,so Δ = 0)
2EI
M = 60+ Θ ------(I).
3
2EI 4EI 6EI
M = M + Θ + Θ ± Δ
L L L
4E(2I)
M = -60+ Θ .
6
4EI
M = -60+ Θ -
3
-----(II)
Application of slope and Deflection equation to
member BC
F
BC BC B C 2
BC B C
BC B C
F
CB CB B C 2
CB B C
CB B C
4EI 2EI 6EI
M = M + Θ + Θ ± Δ.
L L L
4EI 2EI
M = 40 + Θ + Θ .
4 4
M = 40 + EIΘ + 0.5EIΘ .- - - - - - - (III)
2EI 4EI 6EI
M = M + Θ + Θ ± Δ.
L L L
2EI 4EI
M = -40 + Θ + Θ .
4 4
M = -40 + 0.5EIΘ + EIΘ .- - - - - - - - - (IV).
 C
CB CD
B C
B C
M = 0.
M + M = 0.
-40 + 0.5EIΘ + EIΘ + 80 = 0
0.5EIΘ + EIΘ = -40 - - - - - - (2)
M = 0.B
M +M = 0.BA BC
4EI
-60+ Θ + 40+EIΘ + 0.5EIΘ = 0B B C3
2.34EIΘ + 0.5EIΘ = 20 - - - - - (1)B C
solving Equation1 and2
we get,
19.14Θ =B EI
-49.56Θ =
C EI
Substituting the values of in slope deflection equation
2EIM = 60 + ΘAB B3
2M = 60 + 19.14.AB 3
M = 72.76 KNm.AB

4EIM = -60 + ΘBA B3
4M = -60 + X19.14BA 3
M = -34.4 KNm.BA
M = 40+EIΘ +0.5EIΘBBC C
M = 40+19.14+0.5X(-49.56)
BC
M =34.36KNm.
BC
Substituting the values of in slope deflection equation
M =-40+0.5EIΘ +EIΘ .
BCB C
M =-40+0.5(19.14)+(-49.56)
CB
M =-80KNm.
CB
M =80KNm.
CD
Analysis of indeterminate beam by slopeand deflection method
Analysis of indeterminate beam by slopeand deflection method
Analysis of indeterminate beam by slopeand deflection method
Analyse the continuous beam shown in Fig.No.2 by
slope and Deflection method if Joint B Sinks by 10mm
,Given EI=4000KM-m2.Draw bending moment and shear
force Diagram.
Solution:-1) Fixed End Moment:-
2 2WL 20X8F FM =-M = = =106.67KNm.AB BA 12 12
WL 60X4F FM =-M = = =30KNm.
BC CB 8 8
Sign Convention:
Clockwise moments are
Negative, Anticlockwise
moments are Positive.
4EI 2EI 6EIFM =M + Θ + Θ ± ΔAB AB A B 2L L L
2E(2I) 6X4000X2 10M =106.67+ Θ + XAB B 28 10008
(As their is fixedsupport at A,so Θ = 0)A
M =106.67+0.5EIΘ +7.5AB B
M =114.17+0.5EIΘ ------ (I).AB B
2EI 4EI 6EIFM =M + Θ + Θ ± ΔBA BA A B 2L L L
M = -106.67+BA
4E(2I) 6X4000X2 10Θ + X .B 28 10008
M = -99.17+EIΘ ------ (II)BA B
Application of slope and Deflection equation to member AB
Application of slope and Deflection equation to member BC
4EI 2EI 6EIFM =M + Θ + Θ ± Δ.
BBC BC CL L 2L
4EI 2EI 6X4000 10M =30+ Θ + Θ - X .
BBC C4 4 2 10008
M =15+EIΘ +0.5EIΘ .-------(III)
BBC C
2EI 4EI 6EIFM =M + Θ + Θ ± Δ.
BCB CB CL L 2L
2EI 4EI 6X4000 10M =-30+ Θ + Θ - X .
BCB C4 4 2 10008
M =-45+0.5EIΘ +EIΘ .---------
BCB C
(IV).
M = 0.
B
M +M = 0.
BA BC
-99.17+EIΘ +15+EIΘ +0.5EIΘ = 0
B B C
2EIΘ +0.5EIΘ = 84.17 ----- (1)
B C
M =0.
C
M =0.
CB
0.5EIΘ +EIΘ = 45 ------ (2)
B C
Solving Equation1 and2
we get,
EIΘ =35.24
B
EIΘ =27.38
C
M =114.17+0.5EIΘ
AB B
M =114.17+0.5 X 35.24
AB
M =131.79KNm.
AB
M = -99.17+EIΘ
BA B
M = -99.17+35.24
BA
M = -63.93KNm.
BA
M = 15+EIΘ +0.5EIΘ .
BBC C
M = 15+35.24+0.5X27.38.
BC
M = 63.93KNm.
BC
M = -45+0.5EIΘ +EIΘ .
BCB C
M = -45+0.5X35.24+27.38
CB
M = 0
CB
Analysis of indeterminate beam by slopeand deflection method
Analysis of indeterminate beam by slopeand deflection method
Analysis of indeterminate beam by slopeand deflection method
Analysis of indeterminate beam by slopeand deflection method
1 von 24

Recomendados

Slope deflection method for structure analysis in civil engineering von
Slope deflection method for structure analysis in civil engineeringSlope deflection method for structure analysis in civil engineering
Slope deflection method for structure analysis in civil engineeringNagma Modi
3.2K views19 Folien
easy step on how to solve slope deflection von
easy step on how to solve slope deflectioneasy step on how to solve slope deflection
easy step on how to solve slope deflectionAlmasdan Alih
11K views87 Folien
Analysis of non sway frame portal frames by slopeand deflection method von
Analysis of non sway frame portal frames by slopeand deflection methodAnalysis of non sway frame portal frames by slopeand deflection method
Analysis of non sway frame portal frames by slopeand deflection methodnawalesantosh35
2.1K views21 Folien
L18 analysis of indeterminate beams by moment distribution method von
L18 analysis of indeterminate beams by moment distribution methodL18 analysis of indeterminate beams by moment distribution method
L18 analysis of indeterminate beams by moment distribution methodDr. OmPrakash
674 views11 Folien
aaaa von
aaaaaaaa
aaaaPriyabrata Behera
2K views34 Folien
analysis of simple portal frame with sway von
analysis of simple portal frame with swayanalysis of simple portal frame with sway
analysis of simple portal frame with swayShahIshani1996
21.1K views29 Folien

Más contenido relacionado

Was ist angesagt?

Slope deflection method von
Slope deflection methodSlope deflection method
Slope deflection methodAbhishek Kansara
7.6K views22 Folien
Analysis of statically indeterminate structures von
Analysis of statically indeterminate structuresAnalysis of statically indeterminate structures
Analysis of statically indeterminate structuresAhmed zubydan
3.5K views112 Folien
ANALYSIS OF FRAMES USING SLOPE DEFLECTION METHOD von
ANALYSIS OF FRAMES USING SLOPE DEFLECTION METHODANALYSIS OF FRAMES USING SLOPE DEFLECTION METHOD
ANALYSIS OF FRAMES USING SLOPE DEFLECTION METHODSagar Kaptan
8K views25 Folien
L15: Analysis of Indeterminate Beams by Slope Deflection Method von
L15: Analysis of Indeterminate Beams by Slope Deflection Method L15: Analysis of Indeterminate Beams by Slope Deflection Method
L15: Analysis of Indeterminate Beams by Slope Deflection Method Dr. OmPrakash
251 views11 Folien
Statics and Strength of Materials Formula Sheet von
Statics and Strength of Materials Formula SheetStatics and Strength of Materials Formula Sheet
Statics and Strength of Materials Formula Sheetyasinabolfate
7.1K views1 Folie
Structur e very helpfull von
Structur e very helpfullStructur e very helpfull
Structur e very helpfullPrionath Roy
7.3K views48 Folien

Was ist angesagt?(20)

Analysis of statically indeterminate structures von Ahmed zubydan
Analysis of statically indeterminate structuresAnalysis of statically indeterminate structures
Analysis of statically indeterminate structures
Ahmed zubydan3.5K views
ANALYSIS OF FRAMES USING SLOPE DEFLECTION METHOD von Sagar Kaptan
ANALYSIS OF FRAMES USING SLOPE DEFLECTION METHODANALYSIS OF FRAMES USING SLOPE DEFLECTION METHOD
ANALYSIS OF FRAMES USING SLOPE DEFLECTION METHOD
Sagar Kaptan8K views
L15: Analysis of Indeterminate Beams by Slope Deflection Method von Dr. OmPrakash
L15: Analysis of Indeterminate Beams by Slope Deflection Method L15: Analysis of Indeterminate Beams by Slope Deflection Method
L15: Analysis of Indeterminate Beams by Slope Deflection Method
Dr. OmPrakash251 views
Statics and Strength of Materials Formula Sheet von yasinabolfate
Statics and Strength of Materials Formula SheetStatics and Strength of Materials Formula Sheet
Statics and Strength of Materials Formula Sheet
yasinabolfate7.1K views
Structur e very helpfull von Prionath Roy
Structur e very helpfullStructur e very helpfull
Structur e very helpfull
Prionath Roy7.3K views
Solving statically indeterminate structure slope deflection 10.01.03.019 von Faris Imam
Solving statically indeterminate structure slope deflection   10.01.03.019Solving statically indeterminate structure slope deflection   10.01.03.019
Solving statically indeterminate structure slope deflection 10.01.03.019
Faris Imam4.4K views
Moment Distribution Method SA-2 von Kaizer Dave
Moment Distribution Method SA-2Moment Distribution Method SA-2
Moment Distribution Method SA-2
Kaizer Dave17.3K views
L20 moment distribution method von Dr. OmPrakash
L20 moment distribution methodL20 moment distribution method
L20 moment distribution method
Dr. OmPrakash1.1K views
13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad) von Hossam Shafiq II
13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)
13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)
Hossam Shafiq II1.6K views
Chapter 5-cables and arches von ISET NABEUL
Chapter 5-cables and archesChapter 5-cables and arches
Chapter 5-cables and arches
ISET NABEUL8.1K views
Chapter 4-internal loadings developed in structural members von ISET NABEUL
Chapter 4-internal loadings developed in structural membersChapter 4-internal loadings developed in structural members
Chapter 4-internal loadings developed in structural members
ISET NABEUL3.6K views
18-Beam Column Strength (Steel Structural Design & Prof. Shehab Mourad) von Hossam Shafiq II
18-Beam Column Strength (Steel Structural Design & Prof. Shehab Mourad)18-Beam Column Strength (Steel Structural Design & Prof. Shehab Mourad)
18-Beam Column Strength (Steel Structural Design & Prof. Shehab Mourad)
Hossam Shafiq II483 views

Similar a Analysis of indeterminate beam by slopeand deflection method

Slope deflection equation structure analysis - civil engineering von
Slope deflection equation   structure analysis - civil engineeringSlope deflection equation   structure analysis - civil engineering
Slope deflection equation structure analysis - civil engineeringAshu Kushwaha
86 views30 Folien
Mba admission in india von
Mba admission in indiaMba admission in india
Mba admission in indiaEdhole.com
276 views26 Folien
Influence linebeams (ce 311) von
Influence linebeams (ce 311)Influence linebeams (ce 311)
Influence linebeams (ce 311)Prionath Roy
427 views59 Folien
Influence linebeams (ce 311) von
Influence linebeams (ce 311)Influence linebeams (ce 311)
Influence linebeams (ce 311)Prionath Roy
680 views59 Folien
Solución al ejercicio 2 von
Solución al ejercicio 2Solución al ejercicio 2
Solución al ejercicio 2Jesthiger Cohil
289 views2 Folien
Ejercicio dos von
Ejercicio dosEjercicio dos
Ejercicio dosnickjeorly
156 views2 Folien

Similar a Analysis of indeterminate beam by slopeand deflection method(20)

Slope deflection equation structure analysis - civil engineering von Ashu Kushwaha
Slope deflection equation   structure analysis - civil engineeringSlope deflection equation   structure analysis - civil engineering
Slope deflection equation structure analysis - civil engineering
Ashu Kushwaha86 views
Mba admission in india von Edhole.com
Mba admission in indiaMba admission in india
Mba admission in india
Edhole.com276 views
Influence linebeams (ce 311) von Prionath Roy
Influence linebeams (ce 311)Influence linebeams (ce 311)
Influence linebeams (ce 311)
Prionath Roy427 views
Influence linebeams (ce 311) von Prionath Roy
Influence linebeams (ce 311)Influence linebeams (ce 311)
Influence linebeams (ce 311)
Prionath Roy680 views
Strength of materials_by_r_s_khurmi-601-700 von kkkgn007
Strength of materials_by_r_s_khurmi-601-700Strength of materials_by_r_s_khurmi-601-700
Strength of materials_by_r_s_khurmi-601-700
kkkgn007284 views
'Documents.mx dynamics solucionario-riley.pdf' von jhameschiqui
'Documents.mx dynamics solucionario-riley.pdf''Documents.mx dynamics solucionario-riley.pdf'
'Documents.mx dynamics solucionario-riley.pdf'
jhameschiqui5.7K views
L15 analysis of indeterminate beams by moment distribution method von Dr. OmPrakash
L15 analysis of indeterminate beams by moment distribution methodL15 analysis of indeterminate beams by moment distribution method
L15 analysis of indeterminate beams by moment distribution method
Dr. OmPrakash457 views
Shear force and bending moment diagram for simply supported beam _1P von sushma chinta
Shear force and bending moment diagram for simply supported beam _1PShear force and bending moment diagram for simply supported beam _1P
Shear force and bending moment diagram for simply supported beam _1P
sushma chinta611 views
3 bending stress-asgn von KingJyeWong
3 bending stress-asgn3 bending stress-asgn
3 bending stress-asgn
KingJyeWong461 views

Último

SWM L15-L28_drhasan (Part 2).pdf von
SWM L15-L28_drhasan (Part 2).pdfSWM L15-L28_drhasan (Part 2).pdf
SWM L15-L28_drhasan (Part 2).pdfMahmudHasan747870
28 views93 Folien
SWM L1-L14_drhasan (Part 1).pdf von
SWM L1-L14_drhasan (Part 1).pdfSWM L1-L14_drhasan (Part 1).pdf
SWM L1-L14_drhasan (Part 1).pdfMahmudHasan747870
48 views150 Folien
SEMI CONDUCTORS von
SEMI CONDUCTORSSEMI CONDUCTORS
SEMI CONDUCTORSpavaniaalla2005
20 views8 Folien
Saikat Chakraborty Java Oracle Certificate.pdf von
Saikat Chakraborty Java Oracle Certificate.pdfSaikat Chakraborty Java Oracle Certificate.pdf
Saikat Chakraborty Java Oracle Certificate.pdfSaikatChakraborty787148
14 views1 Folie
Design and analysis of a new undergraduate Computer Engineering degree – a me... von
Design and analysis of a new undergraduate Computer Engineering degree – a me...Design and analysis of a new undergraduate Computer Engineering degree – a me...
Design and analysis of a new undergraduate Computer Engineering degree – a me...WaelBadawy6
53 views4 Folien
Solar PV von
Solar PVSolar PV
Solar PVIwiss Tools Co.,Ltd
13 views4 Folien

Último(20)

Design and analysis of a new undergraduate Computer Engineering degree – a me... von WaelBadawy6
Design and analysis of a new undergraduate Computer Engineering degree – a me...Design and analysis of a new undergraduate Computer Engineering degree – a me...
Design and analysis of a new undergraduate Computer Engineering degree – a me...
WaelBadawy653 views
9_DVD_Dynamic_logic_circuits.pdf von Usha Mehta
9_DVD_Dynamic_logic_circuits.pdf9_DVD_Dynamic_logic_circuits.pdf
9_DVD_Dynamic_logic_circuits.pdf
Usha Mehta28 views
MSA Website Slideshow (16).pdf von msaucla
MSA Website Slideshow (16).pdfMSA Website Slideshow (16).pdf
MSA Website Slideshow (16).pdf
msaucla46 views
CHI-SQUARE ( χ2) TESTS.pptx von ssusera597c5
CHI-SQUARE ( χ2) TESTS.pptxCHI-SQUARE ( χ2) TESTS.pptx
CHI-SQUARE ( χ2) TESTS.pptx
ssusera597c529 views
Machine Element II Course outline.pdf von odatadese1
Machine Element II Course outline.pdfMachine Element II Course outline.pdf
Machine Element II Course outline.pdf
odatadese17 views
2_DVD_ASIC_Design_FLow.pdf von Usha Mehta
2_DVD_ASIC_Design_FLow.pdf2_DVD_ASIC_Design_FLow.pdf
2_DVD_ASIC_Design_FLow.pdf
Usha Mehta19 views
7_DVD_Combinational_MOS_Logic_Circuits.pdf von Usha Mehta
7_DVD_Combinational_MOS_Logic_Circuits.pdf7_DVD_Combinational_MOS_Logic_Circuits.pdf
7_DVD_Combinational_MOS_Logic_Circuits.pdf
Usha Mehta59 views

Analysis of indeterminate beam by slopeand deflection method

  • 2. • Slope Deflection Method was presented by George A Money in 1815. • Use to Analyse Statically Indeterminate Beams and Frames. • Slope Deflection method is a Displacement method i.e. Equation Method. • This Method mainly involves slope and Deflection of the member at it’s joint and hence the named as Slope deflection method. • The Basic unknown in slope Deflection method are the non zero joint displacement of a structure. i.e.., Degree of Kinematic Indeterminacy (Degree of freedom).
  • 3. Slope and Deflection Equation for member AB F AB AB A B 2 F BA BA A B 2 4EI 2EI 6EI M = M + Θ + Θ ± Δ L L L 2EI 4EI 6EI M = M + Θ + Θ ± Δ L L L FixedEndmomentduetoTransverseLoad. NearEndRotatio F FM =M = AB BA 4EIΘ= ncontri L bution. 2EIΘ= L 6EI Far EndRotationcontribution. Relative TranslationContributΔ= 2L ion.
  • 4. • ΘA= End slope at A or the rotation of the joint A. • ΘB= End slope at B or the rotation of the joint B. • ΔA=End deflection at A or the translation of Joint A. • ΔB=End deflection at B or the translation of Joint B. • ΔB/A=Relative Deflection or Translation of Joint B with respect to A. • MF AB=Fixed end Moment at A for member AB. • MF BA=Fixed End moment at B for member BA.
  • 5. Clockwise moments are Negative, Anticlockwise moments are Positive.
  • 6. Clockwise moments are Negative, Anticlockwise moments are Positive.
  • 7. 1)Analyse the Two span continuous beam shown in Fig.No.1 by slope and Deflection method ,draw bending moment and shear force Diagram. Solution:- Fixed End Moment 2 2 F AB 2 2 F BA F F BC CB CD WL 20X6 M = = = 60KNm. 12 12 WL 20X6 M = - = - = -60KNm. 12 12 WL 80X4 M = -M = = = 40KNm. 8 8 M = 40X2 = 80KNm. TotalRestrainedmoment at C = -40 + 80 = 40KNm. Sign Convention: Clockwise moments are Negative, Anticlockwise moments are Positive.
  • 8. Application of slope and Deflection equation to member AB F AB AB A B 2 AB B A AB B F BA BA A B 2 BA B BA B 4EI 2EI 6EI M = M + Θ + Θ ± Δ L L L 2E(2I) M = 60+ Θ 6 (Astheiris fixedsupportat A,soΘ = 0&noSinking of support,so Δ = 0) 2EI M = 60+ Θ ------(I). 3 2EI 4EI 6EI M = M + Θ + Θ ± Δ L L L 4E(2I) M = -60+ Θ . 6 4EI M = -60+ Θ - 3 -----(II)
  • 9. Application of slope and Deflection equation to member BC F BC BC B C 2 BC B C BC B C F CB CB B C 2 CB B C CB B C 4EI 2EI 6EI M = M + Θ + Θ ± Δ. L L L 4EI 2EI M = 40 + Θ + Θ . 4 4 M = 40 + EIΘ + 0.5EIΘ .- - - - - - - (III) 2EI 4EI 6EI M = M + Θ + Θ ± Δ. L L L 2EI 4EI M = -40 + Θ + Θ . 4 4 M = -40 + 0.5EIΘ + EIΘ .- - - - - - - - - (IV).
  • 10.  C CB CD B C B C M = 0. M + M = 0. -40 + 0.5EIΘ + EIΘ + 80 = 0 0.5EIΘ + EIΘ = -40 - - - - - - (2) M = 0.B M +M = 0.BA BC 4EI -60+ Θ + 40+EIΘ + 0.5EIΘ = 0B B C3 2.34EIΘ + 0.5EIΘ = 20 - - - - - (1)B C solving Equation1 and2 we get, 19.14Θ =B EI -49.56Θ = C EI
  • 11. Substituting the values of in slope deflection equation 2EIM = 60 + ΘAB B3 2M = 60 + 19.14.AB 3 M = 72.76 KNm.AB  4EIM = -60 + ΘBA B3 4M = -60 + X19.14BA 3 M = -34.4 KNm.BA
  • 12. M = 40+EIΘ +0.5EIΘBBC C M = 40+19.14+0.5X(-49.56) BC M =34.36KNm. BC Substituting the values of in slope deflection equation M =-40+0.5EIΘ +EIΘ . BCB C M =-40+0.5(19.14)+(-49.56) CB M =-80KNm. CB M =80KNm. CD
  • 16. Analyse the continuous beam shown in Fig.No.2 by slope and Deflection method if Joint B Sinks by 10mm ,Given EI=4000KM-m2.Draw bending moment and shear force Diagram. Solution:-1) Fixed End Moment:- 2 2WL 20X8F FM =-M = = =106.67KNm.AB BA 12 12 WL 60X4F FM =-M = = =30KNm. BC CB 8 8 Sign Convention: Clockwise moments are Negative, Anticlockwise moments are Positive.
  • 17. 4EI 2EI 6EIFM =M + Θ + Θ ± ΔAB AB A B 2L L L 2E(2I) 6X4000X2 10M =106.67+ Θ + XAB B 28 10008 (As their is fixedsupport at A,so Θ = 0)A M =106.67+0.5EIΘ +7.5AB B M =114.17+0.5EIΘ ------ (I).AB B 2EI 4EI 6EIFM =M + Θ + Θ ± ΔBA BA A B 2L L L M = -106.67+BA 4E(2I) 6X4000X2 10Θ + X .B 28 10008 M = -99.17+EIΘ ------ (II)BA B Application of slope and Deflection equation to member AB
  • 18. Application of slope and Deflection equation to member BC 4EI 2EI 6EIFM =M + Θ + Θ ± Δ. BBC BC CL L 2L 4EI 2EI 6X4000 10M =30+ Θ + Θ - X . BBC C4 4 2 10008 M =15+EIΘ +0.5EIΘ .-------(III) BBC C 2EI 4EI 6EIFM =M + Θ + Θ ± Δ. BCB CB CL L 2L 2EI 4EI 6X4000 10M =-30+ Θ + Θ - X . BCB C4 4 2 10008 M =-45+0.5EIΘ +EIΘ .--------- BCB C (IV).
  • 19. M = 0. B M +M = 0. BA BC -99.17+EIΘ +15+EIΘ +0.5EIΘ = 0 B B C 2EIΘ +0.5EIΘ = 84.17 ----- (1) B C M =0. C M =0. CB 0.5EIΘ +EIΘ = 45 ------ (2) B C Solving Equation1 and2 we get, EIΘ =35.24 B EIΘ =27.38 C
  • 20. M =114.17+0.5EIΘ AB B M =114.17+0.5 X 35.24 AB M =131.79KNm. AB M = -99.17+EIΘ BA B M = -99.17+35.24 BA M = -63.93KNm. BA M = 15+EIΘ +0.5EIΘ . BBC C M = 15+35.24+0.5X27.38. BC M = 63.93KNm. BC M = -45+0.5EIΘ +EIΘ . BCB C M = -45+0.5X35.24+27.38 CB M = 0 CB