(1) If random variable X follows the Binomial distribution X~Binomi.pdf

(1) If random variable X follows the Binomial distribution: X~Binomial(8,0.7), which among the following statements is/are correct? P(X<6)=p(x=0)+p(x=1)+p(x=2)+p(x=3)+p(x=4)+p(x=5)+p(x=6) False P(X<6) = P(0) + P(1) + ... + P(5) ** You do NOT include 6. P(X<=20)=1 True Since n = 8, X can\'t be 9 or larger, so P(9 < = X < = 20) = 0. P(X< = 8) + P(9 < = X < = 20) = 1 + 0 = 1 X can take 8 different values. False X can take on 9 values: 0, 1, 2, 3, 4, 5, 6, 7 and 8 P(X>=3)+P(X<=3)=1 False P(X > = 3) + P(X < = 2) = 1 P(X>6)=1-P(X<7) True P(X > 6) = P(X > = 7) = 1 - P(X < = 6) = 1 - P(X < 7) P(2 Unknown - this statement is incomplete --------------- Note: The following notation varies from book-to-book. Given: n = 12 and p = .5 P(X) = nCx * p^x * (1-p)^(n-x) P(X = 5) = 12C5 * .5^5 * .5^7 P(X = 5) = 0.19336 (b) P(X > 4) = P(5) + P(6) + ... + P(12) <-- 8 probabilities to find = 1 - [P(4) + P(3) + ... + P(0)] <-- 5 probabilities to find = 8C4 * 0.5^4 * 0.5^8 = 0.12085 + 8C3 * 0.5^3 * 0.5^9 = 0.05371 + 8C2 * 0.5^2 * 0.5^10 = 0.01611 + 8C1 * 0.5^1 * 0.5^11 = 0.00293 + 8C0 * 0.5^0 * 0.5^12 = 0.00024 = 1 - [0.12085 + 0.05371 + ... + 0.00024] = 0.806 --------------- (1) Given: n = 20 and p = .01 (a) P(X = 0) = 20C0 * 0.01^0 * 0.99^20 = 0.818 (b) P(at most 1) = P(1) + P(0) = 20C1 * 0.01^1 * 0.99^19 = 0.16523 + 20C0 * 0.01^0 * 0.99^20 = 0.81791 = 0.983 (c) P(more than 1) = P(2) + P(3) + ... + P(20) = 1 - [P(1) + P(0)] = 1 - 0.983 = 0.017 --------------- (1) Given: n = 20 and p = .01 P(X = 0) = 20C0 * 0.01^0 * 0.99^20 = 0.818 Given: n = 20 and p = .02 P(X = 0) = 20C0 * 0.02^0 * 0.98^20 = 0.668 Given: n = 20 and p = .05 P(X = 0) = 20C0 * 0.05^0 * 0.95^20 = 0.358 --------------- (1) (a) mean = (6+2)/2 = 4 (b) P(X > 4) = P(4 < X < 6) = (6-4)/(6-2) = 1/2 = .5 Note: P(a < X < b) = (b - a)/(Max - Min) (c) = P(3 < X < 5) = (5-3)/(6-2) = 1/2 = .5 --------------- I hope this helped. If you have any questions, please ask them in the comment section. :) Solution (1) If random variable X follows the Binomial distribution: X~Binomial(8,0.7), which among the following statements is/are correct? P(X<6)=p(x=0)+p(x=1)+p(x=2)+p(x=3)+p(x=4)+p(x=5)+p(x=6) False P(X<6) = P(0) + P(1) + ... + P(5) ** You do NOT include 6. P(X<=20)=1 True Since n = 8, X can\'t be 9 or larger, so P(9 < = X < = 20) = 0. P(X< = 8) + P(9 < = X < = 20) = 1 + 0 = 1 X can take 8 different values. False X can take on 9 values: 0, 1, 2, 3, 4, 5, 6, 7 and 8 P(X>=3)+P(X<=3)=1 False P(X > = 3) + P(X < = 2) = 1 P(X>6)=1-P(X<7) True P(X > 6) = P(X > = 7) = 1 - P(X < = 6) = 1 - P(X < 7) P(2 Unknown - this statement is incomplete --------------- Note: The following notation varies from book-to-book. Given: n = 12 and p = .5 P(X) = nCx * p^x * (1-p)^(n-x) P(X = 5) = 12C5 * .5^5 * .5^7 P(X = 5) = 0.19336 (b) P(X > 4) = P(5) + P(6) + ... + P(12) <-- 8 probabilities to find = 1 - [P(4) + P(3) + ... + P(0)] <-- 5 probabilities to find = 8C4 * 0.5^4 * 0.5^8 = 0.12085 + 8C3 * 0.5^3 * 0.5^9 = 0.05371 + 8C2 * 0.5^2 * 0.5^10 .

(1) If random variable X follows the Binomial distribution: X~Binomial(8,0.7), which among the
following statements is/are correct?
P(X<6)=p(x=0)+p(x=1)+p(x=2)+p(x=3)+p(x=4)+p(x=5)+p(x=6)
False
P(X<6) = P(0) + P(1) + ... + P(5)
** You do NOT include 6.
P(X<=20)=1
True
Since n = 8, X can't be 9 or larger, so P(9 < = X < = 20) = 0.
P(X< = 8) + P(9 < = X < = 20)
= 1 + 0
= 1
X can take 8 different values.
False
X can take on 9 values: 0, 1, 2, 3, 4, 5, 6, 7 and 8
P(X>=3)+P(X<=3)=1
False
P(X > = 3) + P(X < = 2) = 1
P(X>6)=1-P(X<7)
True
P(X > 6)
= P(X > = 7)
= 1 - P(X < = 6)
= 1 - P(X < 7)
P(2
Unknown - this statement is incomplete
---------------
Note: The following notation varies from book-to-book.
Given: n = 12 and p = .5
P(X) = nCx * p^x * (1-p)^(n-x)
P(X = 5) = 12C5 * .5^5 * .5^7
P(X = 5) = 0.19336
(b)
P(X > 4)
= P(5) + P(6) + ... + P(12) <-- 8 probabilities to find
= 1 - [P(4) + P(3) + ... + P(0)] <-- 5 probabilities to find
= 8C4 * 0.5^4 * 0.5^8 = 0.12085
+ 8C3 * 0.5^3 * 0.5^9 = 0.05371
+ 8C2 * 0.5^2 * 0.5^10 = 0.01611
+ 8C1 * 0.5^1 * 0.5^11 = 0.00293
+ 8C0 * 0.5^0 * 0.5^12 = 0.00024
= 1 - [0.12085 + 0.05371 + ... + 0.00024]
= 0.806
---------------
(1)
Given: n = 20 and p = .01
(a)
P(X = 0)
= 20C0 * 0.01^0 * 0.99^20 = 0.818
(b)
P(at most 1) = P(1) + P(0)
= 20C1 * 0.01^1 * 0.99^19 = 0.16523
+ 20C0 * 0.01^0 * 0.99^20 = 0.81791
= 0.983
(c)
P(more than 1) = P(2) + P(3) + ... + P(20)
= 1 - [P(1) + P(0)]
= 1 - 0.983
= 0.017
---------------
(1)
Given: n = 20 and p = .01
P(X = 0)
= 20C0 * 0.01^0 * 0.99^20 = 0.818
Given: n = 20 and p = .02
P(X = 0)
= 20C0 * 0.02^0 * 0.98^20 = 0.668
Given: n = 20 and p = .05
P(X = 0)
= 20C0 * 0.05^0 * 0.95^20 = 0.358
---------------
(1)
(a) mean = (6+2)/2 = 4
(b)
P(X > 4)
= P(4 < X < 6)
= (6-4)/(6-2)
= 1/2
= .5
Note: P(a < X < b) = (b - a)/(Max - Min)
(c)
= P(3 < X < 5)
= (5-3)/(6-2)
= 1/2
= .5
---------------
I hope this helped. If you have any questions, please ask them in the comment section. :)
Solution
(1) If random variable X follows the Binomial distribution: X~Binomial(8,0.7), which among the
following statements is/are correct?
P(X<6)=p(x=0)+p(x=1)+p(x=2)+p(x=3)+p(x=4)+p(x=5)+p(x=6)
False
P(X<6) = P(0) + P(1) + ... + P(5)
** You do NOT include 6.
P(X<=20)=1
True
Since n = 8, X can't be 9 or larger, so P(9 < = X < = 20) = 0.
P(X< = 8) + P(9 < = X < = 20)
= 1 + 0
= 1
X can take 8 different values.
False
X can take on 9 values: 0, 1, 2, 3, 4, 5, 6, 7 and 8
P(X>=3)+P(X<=3)=1
False
P(X > = 3) + P(X < = 2) = 1
P(X>6)=1-P(X<7)
True
P(X > 6)
= P(X > = 7)
= 1 - P(X < = 6)
= 1 - P(X < 7)
P(2
Unknown - this statement is incomplete
---------------
Note: The following notation varies from book-to-book.
Given: n = 12 and p = .5
P(X) = nCx * p^x * (1-p)^(n-x)
P(X = 5) = 12C5 * .5^5 * .5^7
P(X = 5) = 0.19336
(b)
P(X > 4)
= P(5) + P(6) + ... + P(12) <-- 8 probabilities to find
= 1 - [P(4) + P(3) + ... + P(0)] <-- 5 probabilities to find
= 8C4 * 0.5^4 * 0.5^8 = 0.12085
+ 8C3 * 0.5^3 * 0.5^9 = 0.05371
+ 8C2 * 0.5^2 * 0.5^10 = 0.01611
+ 8C1 * 0.5^1 * 0.5^11 = 0.00293
+ 8C0 * 0.5^0 * 0.5^12 = 0.00024
= 1 - [0.12085 + 0.05371 + ... + 0.00024]
= 0.806
---------------
(1)
Given: n = 20 and p = .01
(a)
P(X = 0)
= 20C0 * 0.01^0 * 0.99^20 = 0.818
(b)
P(at most 1) = P(1) + P(0)
= 20C1 * 0.01^1 * 0.99^19 = 0.16523
+ 20C0 * 0.01^0 * 0.99^20 = 0.81791
= 0.983
(c)
P(more than 1) = P(2) + P(3) + ... + P(20)
= 1 - [P(1) + P(0)]
= 1 - 0.983
= 0.017
---------------
(1)
Given: n = 20 and p = .01
P(X = 0)
= 20C0 * 0.01^0 * 0.99^20 = 0.818
Given: n = 20 and p = .02
P(X = 0)
= 20C0 * 0.02^0 * 0.98^20 = 0.668
Given: n = 20 and p = .05
P(X = 0)
= 20C0 * 0.05^0 * 0.95^20 = 0.358
---------------
(1)
(a) mean = (6+2)/2 = 4
(b)
P(X > 4)
= P(4 < X < 6)
= (6-4)/(6-2)
= 1/2
= .5
Note: P(a < X < b) = (b - a)/(Max - Min)
(c)
= P(3 < X < 5)
= (5-3)/(6-2)
= 1/2
= .5
---------------
I hope this helped. If you have any questions, please ask them in the comment section. :)

Más contenido relacionado

Similar a (1) If random variable X follows the Binomial distribution X~Binomi.pdf

Examens mathExamens math
Examens mathChennoufi Med
332 views30 Folien
BS1501 tutorial 2BS1501 tutorial 2
BS1501 tutorial 2Champ Pairach
799 views28 Folien
Estadistica U4Estadistica U4
Estadistica U4FacundoOrtiz18
74 views51 Folien

Similar a (1) If random variable X follows the Binomial distribution X~Binomi.pdf(20)

Sbma 4603 numerical methods AssignmentSbma 4603 numerical methods Assignment
Sbma 4603 numerical methods Assignment
Saidatina Khadijah320 views
Examens mathExamens math
Examens math
Chennoufi Med332 views
Interpolation functionsInterpolation functions
Interpolation functions
Tarun Gehlot2K views
BS1501 tutorial 2BS1501 tutorial 2
BS1501 tutorial 2
Champ Pairach799 views
Estadistica U4Estadistica U4
Estadistica U4
FacundoOrtiz1874 views
Identidades TrignometricasIdentidades Trignometricas
Identidades Trignometricas
ryyis cabezas108 views
Tablas trigonometricasTablas trigonometricas
Tablas trigonometricas
Dagoberto de la Fuente443 views
IdentidadesIdentidades
Identidades
Isra Carrillo96 views
Section1 stochasticSection1 stochastic
Section1 stochastic
cairo university16 views
Fismat chapter 4Fismat chapter 4
Fismat chapter 4
MAY NURHAYATI4.2K views
2014 st josephs geelong spec maths2014 st josephs geelong spec maths
2014 st josephs geelong spec maths
Andrew Smith312 views
AppendexAppendex
Appendex
swavicky1.3K views
Exam1 101Exam1 101
Exam1 101
MuhannadSaleh404 views
InterpolationInterpolation
Interpolation
Brijesh Padhiyar152 views
Inecuaciones - matematicasInecuaciones - matematicas
Inecuaciones - matematicas
ana yulissa cordoba perez236 views
A/B Testing for Game DesignA/B Testing for Game Design
A/B Testing for Game Design
Trieu Nguyen2.2K views

Más de navyugenterprisesdoo(20)

  NaCN                                      Solution  NaCN        .pdf  NaCN                                      Solution  NaCN        .pdf
NaCN Solution NaCN .pdf
navyugenterprisesdoo2 views
                     the element is phosphorus (P)  Solution      .pdf                     the element is phosphorus (P)  Solution      .pdf
the element is phosphorus (P) Solution .pdf
navyugenterprisesdoo3 views

Último(20)

Chemistry of sex hormones.pptxChemistry of sex hormones.pptx
Chemistry of sex hormones.pptx
RAJ K. MAURYA97 views
Lecture: Open InnovationLecture: Open Innovation
Lecture: Open Innovation
Michal Hron82 views
Dance KS5 BreakdownDance KS5 Breakdown
Dance KS5 Breakdown
WestHatch52 views
STERILITY TEST.pptxSTERILITY TEST.pptx
STERILITY TEST.pptx
Anupkumar Sharma102 views
Industry4wrd.pptxIndustry4wrd.pptx
Industry4wrd.pptx
BC Chew153 views
ACTIVITY BOOK key water sports.pptxACTIVITY BOOK key water sports.pptx
ACTIVITY BOOK key water sports.pptx
Mar Caston Palacio132 views
Psychology KS5Psychology KS5
Psychology KS5
WestHatch53 views
SIMPLE PRESENT TENSE_new.pptxSIMPLE PRESENT TENSE_new.pptx
SIMPLE PRESENT TENSE_new.pptx
nisrinamadani2146 views
Psychology KS4Psychology KS4
Psychology KS4
WestHatch52 views
Structure and Functions of Cell.pdfStructure and Functions of Cell.pdf
Structure and Functions of Cell.pdf
Nithya Murugan142 views
231112 (WR) v1  ChatGPT OEB 2023.pdf231112 (WR) v1  ChatGPT OEB 2023.pdf
231112 (WR) v1 ChatGPT OEB 2023.pdf
WilfredRubens.com100 views
STYP infopack.pdfSTYP infopack.pdf
STYP infopack.pdf
Fundacja Rozwoju Społeczeństwa Przedsiębiorczego143 views
2022 CAPE Merit List 2023 2022 CAPE Merit List 2023
2022 CAPE Merit List 2023
Caribbean Examinations Council3K views

(1) If random variable X follows the Binomial distribution X~Binomi.pdf

  • 1. (1) If random variable X follows the Binomial distribution: X~Binomial(8,0.7), which among the following statements is/are correct? P(X<6)=p(x=0)+p(x=1)+p(x=2)+p(x=3)+p(x=4)+p(x=5)+p(x=6) False P(X<6) = P(0) + P(1) + ... + P(5) ** You do NOT include 6. P(X<=20)=1 True Since n = 8, X can't be 9 or larger, so P(9 < = X < = 20) = 0. P(X< = 8) + P(9 < = X < = 20) = 1 + 0 = 1 X can take 8 different values. False X can take on 9 values: 0, 1, 2, 3, 4, 5, 6, 7 and 8 P(X>=3)+P(X<=3)=1 False P(X > = 3) + P(X < = 2) = 1 P(X>6)=1-P(X<7) True P(X > 6) = P(X > = 7) = 1 - P(X < = 6) = 1 - P(X < 7) P(2 Unknown - this statement is incomplete ---------------
  • 2. Note: The following notation varies from book-to-book. Given: n = 12 and p = .5 P(X) = nCx * p^x * (1-p)^(n-x) P(X = 5) = 12C5 * .5^5 * .5^7 P(X = 5) = 0.19336 (b) P(X > 4) = P(5) + P(6) + ... + P(12) <-- 8 probabilities to find = 1 - [P(4) + P(3) + ... + P(0)] <-- 5 probabilities to find = 8C4 * 0.5^4 * 0.5^8 = 0.12085 + 8C3 * 0.5^3 * 0.5^9 = 0.05371 + 8C2 * 0.5^2 * 0.5^10 = 0.01611 + 8C1 * 0.5^1 * 0.5^11 = 0.00293 + 8C0 * 0.5^0 * 0.5^12 = 0.00024 = 1 - [0.12085 + 0.05371 + ... + 0.00024] = 0.806 --------------- (1) Given: n = 20 and p = .01 (a) P(X = 0) = 20C0 * 0.01^0 * 0.99^20 = 0.818 (b) P(at most 1) = P(1) + P(0) = 20C1 * 0.01^1 * 0.99^19 = 0.16523 + 20C0 * 0.01^0 * 0.99^20 = 0.81791 = 0.983
  • 3. (c) P(more than 1) = P(2) + P(3) + ... + P(20) = 1 - [P(1) + P(0)] = 1 - 0.983 = 0.017 --------------- (1) Given: n = 20 and p = .01 P(X = 0) = 20C0 * 0.01^0 * 0.99^20 = 0.818 Given: n = 20 and p = .02 P(X = 0) = 20C0 * 0.02^0 * 0.98^20 = 0.668 Given: n = 20 and p = .05 P(X = 0) = 20C0 * 0.05^0 * 0.95^20 = 0.358 --------------- (1) (a) mean = (6+2)/2 = 4 (b) P(X > 4) = P(4 < X < 6) = (6-4)/(6-2) = 1/2 = .5
  • 4. Note: P(a < X < b) = (b - a)/(Max - Min) (c) = P(3 < X < 5) = (5-3)/(6-2) = 1/2 = .5 --------------- I hope this helped. If you have any questions, please ask them in the comment section. :) Solution (1) If random variable X follows the Binomial distribution: X~Binomial(8,0.7), which among the following statements is/are correct? P(X<6)=p(x=0)+p(x=1)+p(x=2)+p(x=3)+p(x=4)+p(x=5)+p(x=6) False P(X<6) = P(0) + P(1) + ... + P(5) ** You do NOT include 6. P(X<=20)=1 True Since n = 8, X can't be 9 or larger, so P(9 < = X < = 20) = 0. P(X< = 8) + P(9 < = X < = 20) = 1 + 0 = 1 X can take 8 different values. False X can take on 9 values: 0, 1, 2, 3, 4, 5, 6, 7 and 8 P(X>=3)+P(X<=3)=1 False
  • 5. P(X > = 3) + P(X < = 2) = 1 P(X>6)=1-P(X<7) True P(X > 6) = P(X > = 7) = 1 - P(X < = 6) = 1 - P(X < 7) P(2 Unknown - this statement is incomplete --------------- Note: The following notation varies from book-to-book. Given: n = 12 and p = .5 P(X) = nCx * p^x * (1-p)^(n-x) P(X = 5) = 12C5 * .5^5 * .5^7 P(X = 5) = 0.19336 (b) P(X > 4) = P(5) + P(6) + ... + P(12) <-- 8 probabilities to find = 1 - [P(4) + P(3) + ... + P(0)] <-- 5 probabilities to find = 8C4 * 0.5^4 * 0.5^8 = 0.12085 + 8C3 * 0.5^3 * 0.5^9 = 0.05371 + 8C2 * 0.5^2 * 0.5^10 = 0.01611 + 8C1 * 0.5^1 * 0.5^11 = 0.00293 + 8C0 * 0.5^0 * 0.5^12 = 0.00024 = 1 - [0.12085 + 0.05371 + ... + 0.00024] = 0.806 ---------------
  • 6. (1) Given: n = 20 and p = .01 (a) P(X = 0) = 20C0 * 0.01^0 * 0.99^20 = 0.818 (b) P(at most 1) = P(1) + P(0) = 20C1 * 0.01^1 * 0.99^19 = 0.16523 + 20C0 * 0.01^0 * 0.99^20 = 0.81791 = 0.983 (c) P(more than 1) = P(2) + P(3) + ... + P(20) = 1 - [P(1) + P(0)] = 1 - 0.983 = 0.017 --------------- (1) Given: n = 20 and p = .01 P(X = 0) = 20C0 * 0.01^0 * 0.99^20 = 0.818 Given: n = 20 and p = .02 P(X = 0) = 20C0 * 0.02^0 * 0.98^20 = 0.668 Given: n = 20 and p = .05 P(X = 0) = 20C0 * 0.05^0 * 0.95^20 = 0.358
  • 7. --------------- (1) (a) mean = (6+2)/2 = 4 (b) P(X > 4) = P(4 < X < 6) = (6-4)/(6-2) = 1/2 = .5 Note: P(a < X < b) = (b - a)/(Max - Min) (c) = P(3 < X < 5) = (5-3)/(6-2) = 1/2 = .5 --------------- I hope this helped. If you have any questions, please ask them in the comment section. :)