Anzeige
Anzeige

Más contenido relacionado

Destacado(20)

Anzeige

Similar a Qsp basel nvan riel 4sharing(20)

Anzeige

Qsp basel nvan riel 4sharing

  1. Roche QSP methodology workshop February 5, 2016 Natal van Riel Eindhoven University of Technology, the Netherlands Department of Biomedical Engineering Systems Biology and Metabolic Diseases n.a.w.v.riel@tue.nl @nvanriel
  2. Outline • Model parameterization / calibration • Prediction Uncertainty Analysis (PUA) • Analysis of Dynamic Adaptations in Parameter Trajectories (ADAPT) • Examples: • modelling of longitudinal data in a cohort of Type 2 Diabetics • effect of liver X receptor activation on HDL metabolism and liver steatosis PAGE 2 SlideShare http://www.slideshare.net/natalvanriel measuring modelling
  3. Systems Biology and Metabolic Diseases Metabolic Syndrome and comorbidities • A multifaceted, multi-scale problem • macro-models • micro-models • Models of metabolism and its regulatory systems • Models for science (understanding) • Computational diagnostics PAGE 3 Rask-Madsen et al. (2012) Arterioscler Thromb Vasc Biol, 32(9):2052-2059
  4. Different views on model parameterization • A reductionistic view: the whole can be understood by adding information of the parts • Building models from existing subcomponents tuning as little parameters as possible • A ‘system identification’ approach: calibrating model to data (PK-PD,…) PAGE 4
  5. / biomedical engineering PAGE 52/13/2016 Disease progression in type 2 diabetes
  6. Disease progression and treatment of T2DM • 1 year follow-up of treatment-naïve T2DM patients (n=2408) • 3 treatment arms: monotherapy with different hypoglycemic agents • Pioglitazone - insulin sensitizer − enhances peripheral glucose uptake − reduces hepatic glucose production • Metformin - insulin sensitizer − decreases hepatic glucose production • Gliclazide - insulin secretogogue − stimulates insulin secretion by the pancreatic beta-cells 6 FPG[mmol/L] Schernthaner et al, Clin. Endocrinol. Metab. 89:6068–6076 (2004) Charbonnel et al, Diabetic Med. 22:399–405 (2004)
  7. Glucose-insulin homeostasis model • Population PD model • 3 ODE’s, 15 structural parameters PAGE 7 hepatic glucose production glucose utilization insulin secretion glucose (FPG) insulin sensitivity (S) insulin (FSI)HbA1c beta-cell function (B) OHA (insulin sensitizer) OHA (insulin secretagogue) 1 2 1 2 1 2 1 2 compensation phase: hyperinsulinemia exhaustion phase: disease onset treatment effects De Winter et al. (2006) J Pharmacokinet Pharmcodyn, 33(3):313-343 FPG: fasting plasma glucose FSI: fasting serum insulin HbA1c: glycosylated hemoglobin A1c
  8. T2DM disease progression model PAGE 8 Assumption for B(t): fraction of remaining beta-cell function Assumption for S(t): fraction of remaining hepatic insulin-sensitivity Room for improvement?
  9. Bias – Variance trade-off PAGE 9 Model complexity / granularity
  10. Room for more flexibility • Given complexity of the model and limited data the bias - variance trade-off is often reached for rather large bias • Typically, we are far away from the asymptotic situation in which Maximum Likelihood Estimation (MLE) provides the best possible estimates PAGE 10
  11. Increasing model size PAGE 11 Do we need a Systems Pharmacology model here?
  12. Time-varying parameters • Instead of increasing model size • Introduce more freedom in model parameters to compensate for bias (‘undermodelling’) in the original model structure •ADAPT Analysis of Dynamic Adaptations in Parameter Trajectories PAGE 12
  13. Adaptive changes in -cell function (B) and insulin sensitivity (S) • Parameter trajectories B(t), S(t) PAGE 13
  14. PAGE 14
  15. / biomedical engineering PAGE 152/13/2016 ADAPT
  16. Time-continuous description of the data PAGE 16 data interpolation: splines yield continuous descriptions Bootstrap: include uncertainty in data raw data: longitudinal data of different phenotypic stages Vanlier et al. Math Biosci. 2013 Mar 25 Vanlier et al. Bioinformatics. 2012, 28(8):1130-5
  17. Modelling phenotype transition treatment disease progression  longitudinal discrete data: different phenotypes
  18. Introducing time-dependent parameters  steady state model
  19. Parameter trajectory estimation  steady state model  iteratively calibrate model to data: estimate parameters over time minimize difference between data and model simulation
  20. Parameter trajectory estimation  steady state model  iteratively calibrate model to data: estimate parameters over time
  21. Parameter trajectory estimation  steady state model  iteratively calibrate model to data: estimate parameters over time
  22. ADAPT – time-varying parameters  longitudinal discrete data: different phenotypes  estimate continuous data: cubic smooth spline  population modelling: ensemble of describing functions  can also be applied to individual data PAGE 22
  23. Estimating time-dependent parameters Dividing the simulation of the system in Nt steps of Dt time period Fit model to the data for each time interval (weighted nonlinear least-squares) PAGE 23 • State variables • Outputs • Initial conditions
  24. Estimated parameter trajectories PAGE 24 Flexibility in parameters not constrained by model+data might be abused for overfitting
  25. Regularization of parameter trajectories • Identifying minimal adaptations that are necessary to describe the change in phenotype PAGE 25 changing a parameter is “costly”  2 [ ] ˆ [ ] arg min ( [ ]) ( [ ])d r r n n n n        r r r r 2 2 1 [ ] ( ) ( [ ]) ( ) yN i i d i i Y n d n t n n t      D    D   r 1 [ ] [ 1] 1 ( [ ]) [0] pN i r i i n n n t         D  r
  26. Regularization of parameter trajectories • Tune regularization strength  PAGE 26 Tiemann et al, 2011 BMC Syst. Biol. 2 d r =0.1
  27. Regularization of parameter trajectories PAGE 27
  28. ADAPT vs regularization approaches in statistics • Lasso (least absolute shrinkage and selection operator) solves the l1-penalized regression problem of finding the parameters to minimize • l1-penalty in ADAPT accomplishes: • Shrinkage of changes in parameters values • Selection of parameters that change • It enforces sparsity in models that have too many degrees of freedom PAGE 28 2 1 1 pN i ij j j i j j y x                1 [ ] [ 1] 1 ( [ ]) [0] pN i r i i n n n t         D  r
  29. / biomedical engineering PAGE 292/13/2016 Progressive changes in lipoprotein metabolism after pharmacological intervention
  30. Mouse models of Metabolic Syndrome • dynamics of whole body energy metabolism • organ specific metabolism PAGE 30 Time span of weeks/months • High fat diet • Genetic manipulation • Pharmacological compounds …
  31. PAGE 31 experiments phenotype A experiments phenotype B Identify adaptations Time span of weeks/months
  32. Organ specific metabolism in MetSyn • Glucose metabolism – Lipid / lipoprotein metabolism PAGE 32
  33. Where it went wrong… • ‘easy to get readouts’ PAGE 33 Metabolic cages for indirect calorimetry Omics from different tissues
  34. • Specific research question • Data • Domain expert • Bit of ‘technology push’ • And scientific serendipity PAGE 34
  35. Liver X Receptor • Liver X Receptor (LXR, nuclear receptor), induces transcription of multiple genes modulating metabolism of fatty acids, triglycerides, and lipoproteins • LXR agonists increase plasma high density lipoprotein cholesterol (HDLc) • LXR as target for anti- atherosclerotic therapy? PAGE 35 Levin et al, (2005) Arterioscler Thromb Vasc Biol. 25(1):135-42 LDLR-/- RXR: retinoid X receptor Calkin & Tontonoz 2012
  36. Multi-scale model of lipid and lipoprotein metabolism • Metabolism and its multi-scale regulation • Coarse-grained when possible, detailed when necessary PAGE 36
  37. Iterative process PAGE 37 • 1.0 Tiemann et al, 2011 BMC Syst Biol • 2.0 Tiemann et al, 2013 PLOS Comput Biol • 3.0 Tiemann et al, 2014
  38. Hypothesis 1: increase in HDLc is the result of increased peripheral cholesterol efflux to HDL • C57Bl/6J mice • control, treated with T0901317 for 1, 2, 4, 7, 14, and 21 days / biomedical engineering PAGE 3813-2-2016Grefhorst et al. Atherosclerosis, 2012, 222: 382– 389 0 10 20 0 100 200 Hepatic TG Time [days] [umol/g] 0 10 20 0 1 2 3 Hepatic CE Time [days] [umol/g] 0 10 20 0 2 4 6 Hepatic FC Time [days] [umol/g] 0 10 20 0 50 100 Hepatic TG Time [days] [umol] 0 10 20 0 0.5 1 1.5 Hepatic CE Time [days] [umol] 0 10 20 0 2 4 Hepatic FC Time [days] [umol] 0 10 20 0 1000 2000 3000 Plasma CE Time [days] [umol/L] 0 10 20 0 1000 2000 3000 HDL-CE Time [days] [umol/L] 0 10 20 0 500 1000 1500 Plasma TG Time [days] [umol/L] 0 10 20 6 8 10 12 VLDL clearance Time [days] [-] 0 10 20 100 200 300 400 ratio TG/CE Time [days] [-] 0 10 20 0 5 10 15 VLDL diameter Time [days] [nm] 0 10 20 0 1 2 3 VLDL-TG production Time [days] [umol/h] 0 10 20 1 2 3 Hepatic mass Time [days] [gram] 0 10 20 0 0.2 0.4 DNL Time [days] [-]
  39. ADAPT: Metabolic trajectories ‘Connecting’ the data in time, and with each other PAGE 39 Data: black bars and white dots Model: the darker the more likely variability in data differences in accuracy of mathematical parameters quantification of uncertainty in predictions
  40. • Calculating unobserved quantities • Does LXR agonist improve lipid/lipoprotein profile? Flux Distribution Analysis PAGE 40 white lines enclose the central 67% of the densities
  41. Analysis: HDL cholesterol PAGE 41 Analysis: increased excretion of cholesterol Observation: increased concentration of HDLc
  42. • SR-B1 (Scavenger Receptor-B1) • Protein expression/ activity: Experimental testing of model prediction • HDL excretion and uptake flux are increased • Transcription: PAGE 42 Transcription of cholesterol efflux transporters SR-B1 protein content is decreased in hepatic membranes Srb1 mRNA expression not changed model: decreased hepatic capacity to clear cholesterol
  43. / biomedical engineering PAGE 432/13/2016 Conclusions / Take home messages
  44. Propagation of uncertainty Parameter identification and identifiability • Data uncertainty • Parameter uncertainty • Prediction uncertainty / biomedical engineering PAGE 442/13/2016 Computational model Parameter space Solution / prediction space forward Data space inverse Vanlier et al, Bioinformatics. 2012; 28(8):1130-5 Vanlier et al, Math Biosci. 2013; 246(2):305-14 Some predictions can be constrained although not all parameters are precisely known (‘sloppy’)
  45. • MLE as "the best estimates", with optimal asymptotic properties • But in Systems Pharmacology, we are far from the asymptotics and model quality is determined more by a well balance bias- variance trade-off • Complement the estimation tools for dynamical systems with well tuned methods for regularization PAGE 45
  46. ADAPT • Analysis of Dynamic Adaptations in Parameter Trajectories • Dynamical modelling framework: • time-dependent parameters (parameters are updated during a simulation run) • time-series data integration • extract information of unobserved species • extract information at unobserved time points • Identify underlying adaptations in network • Identify missing regulation / interactions
  47. Acknowledgements • Peter Hilbers • Christian Tiemann • Joep Vanlier • Yvonne Rozendaal • Fianne Sips • Bert Groen • Maaike Oosterveer • Brenda Hijmans • Ko Willems-van Dijk Systems Biology of Disease Progression - ADAPT modeling http://www.youtube.com/watch?v=x54ysJDS7i8 • Gunnar Cedersund • Elin Nyman
  48. PAGE 48

Hinweis der Redaktion

  1. Roche Quantitative Systems Pharmacology methodology workshop February 4th-5th, Basel, Switzerland Bringing multi-level systems pharmacology models to life   Natal van Riel   Abstract Computational modelling in Systems Medicine and Systems Pharmacology addresses biological processes at different levels and scales. The quantification of model parameters from experimental data is a complicated task. It will be addressed how variance in data propagates into parameter estimates and, more importantly, model predictions. The Analysis of Dynamic Adaptations in Parameter Trajectories (ADAPT) approach is discussed as method to model dynamics at multiple time-scales. Two examples will be provided: 1) modelling of longitudinal data in a cohort of Type 2 Diabetics using different medication, and 2) the application in preclinical research studying the effect of liver X receptor activation on HDL metabolism and liver steatosis.
  2. Systems Biology of Disease Progression and Intervention - ADAPT modeling http://www.youtube.com/watch?v=x54ysJDS7i8
Anzeige