Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.
Universitatea din Craiova
Facultatea de Economie şi Administrarea Afacerilor
REFERAT
ANALIZA DATELOR
Masterand: …………………………...
Creşterea productivităţii muncii şi scăderea
deficienţelor constatate în urma a două sesiuni de
training cu personalul soc...
Capitolul I
Descrierea temei
Societatea ARTEMISZ SRL, pentru care se efectuează
studiul, are ca obiect de activitate – con...
Capitolul II
Descrierea obiectivelor
Obiectivele urmărite în studiu sunt de a vedea dacă
productivitatea muncii a crescut ...
Capitolul III
Descrierea metodologiei de cercetare
Tipul cercetării utilizate este complexă şi totală, personalul fiind
ev...
Variabila 1 are numele varsta, se trece în coloana Name, şi este
de tip numeric cu 2 numere şi 0 zecimale;
Variabila a dou...
Pentru evaluarea gradului de asociere între cele două variabile,
respectiv creşterea productivităţii în urma sesiunilor de...
Capitolul IV
Utilizarea programului SPSS în realizarea studiului de caz
În fereastra Variabile View se introduc variabile ...
Definirea valorilor pentru etichete la variabila studii:
Variabila val_initiala:
9
După definirea tuturor variabilelor vom avea următoarea fereastră:
Fereastra cu datele după salvare şi denumirea noului fi...
Pentru grafic alegem următoarele setări:
Statistics
Studii
N Valid 42
Missing 0
11
studii
Frequenc
y Percent
Valid
Percent
Cumulative
Percent
Valid 10 clase 9 21.4 21.4 21.4
liceu 27 64.3 64.3 85.7
superio...
Statistics
Varsta
N Valid 42
Missing 0
13
varsta
Frequency Percent
Valid
Percent
Cumulative
Percent
Valid 20 1 2.4 2.4 2.4
21 2 4.8 4.8 7.1
22 1 2.4 2.4 9.5
23 1 2....
Meniul Analyze – Descriptive Statistics – Frequencies pentru
variabilele val_initiala, val_1, val_2
Pentru grafic
15
Frequency Table
val_initiala
Frequen
cy Percent
Valid
Percent
Cumulative
Percent
Valid 1 4 9.5 9.5 9.5
2 4 9.5 9.5 19.0
3 ...
val_1
Frequency Percent
Valid
Percent
Cumulative
Percent
Valid 1 2 4.8 4.8 4.8
2 6 14.3 14.3 19.0
3 12 28.6 28.6 47.6
4 9 ...
18
Analyze – Comparare Means – Paired Sample T Test …
Vom crea cele perechi de câte două variabile:
 val_initiala şi val_1
...
Paired Variables. Butonul Options permite stabilirea pragului de
semnificaţie, rularea procedurii generând următoarele rez...
Dacă în primul grup de variabile sig (2-tailed) este de
0,822>0,05=p (pragul alfa) rezultatul testului t permite acceptare...
Paired Samples Test
Paired Differences
Mea
n
Std.
Deviat
ion
Std.
Error
Mean
95%
Confidence
Interval of the
Difference
t d...
Capitolul V
Concluzii
Folosind programul SPPS vedem că la un număr de 42 de cazuri
valide 100% avem:
- 9 cazuri care au st...
Nächste SlideShare
Wird geladen in …5
×

Exemplu de referat

10.217 Aufrufe

Veröffentlicht am

Analiza datelor

Veröffentlicht in: Wirtschaft & Finanzen
  • Dating direct: ♥♥♥ http://bit.ly/2F90ZZC ♥♥♥
       Antworten 
    Sind Sie sicher, dass Sie …  Ja  Nein
    Ihre Nachricht erscheint hier
  • Follow the link, new dating source: ♥♥♥ http://bit.ly/2F90ZZC ♥♥♥
       Antworten 
    Sind Sie sicher, dass Sie …  Ja  Nein
    Ihre Nachricht erscheint hier
  • Gehören Sie zu den Ersten, denen das gefällt!

Exemplu de referat

  1. 1. Universitatea din Craiova Facultatea de Economie şi Administrarea Afacerilor REFERAT ANALIZA DATELOR Masterand: ………………………………. Craiova 2010 1
  2. 2. Creşterea productivităţii muncii şi scăderea deficienţelor constatate în urma a două sesiuni de training cu personalul societăţii ARTEMISZ SRL 2
  3. 3. Capitolul I Descrierea temei Societatea ARTEMISZ SRL, pentru care se efectuează studiul, are ca obiect de activitate – construcţia de drumuri şi poduri, reabilitari căi ferate, lucrări hidrotehnice şi hidroelectrice, aeroporturi şi porturi, complexe de clădiri civile şi industriale, cuprinzând lucrări de terasamente, fundaţii, structuri, îmbracaminţi rutiere, lucrări de consolidare, linii de cale ferată, şi alte lucrări de acest gen. Executarea acestor lucrări cu un înalt grad de responsabilitate, implică o continuă şi multiplă specializare a personalului, precum şi respectarea anumitor proceduri din Manualul de Calitate, fapt ce duce la depistarea a cât mai putine deficienţe în sistem. Conştientizând faptul că numai cu un personal calificat se pot atinge obiectivele stabilite, societatea şi-a propus să învestească în personal - organizând sesiuni de training cu specialişti din domeniu, şi în maşini şi utilaje moderne a căror folosire presupune o specializare continuă a angajaţilor, urmând ca rezultatele acestor investiţii să se reflecte in creşterea productivităţii muncii. De asemenea, pentru o motivare pozitivă a colectivului, în urma sesiunilor de training şi a rezultatelor obţinute, se vor acorda personalului angajat recompense constând în măriri salariale, premieri şi alte beneficii materiale. Într-o primă fază se face o evaluare complexă a personalului, după care, din 6 în 6 luni, va avea loc câte o sesiune de training. 3
  4. 4. Capitolul II Descrierea obiectivelor Obiectivele urmărite în studiu sunt de a vedea dacă productivitatea muncii a crescut şi dacă au scăzut deficienţele constatate conform Manualului Calităţii ca urmare a calificării şi a reevaluării personalului. Un alt scop al studiului este acela de a vedea dacă metoda aleasă – de a investi în personalul societăţii – aduce profit firmei şi astfel se justifică investiţia în calificarea personalului. Se urmăreşte de asemenea să se vadă dacă rezultatele obţinute sunt bune şi se merită generalizarea sesiunile de training la nivelul întregului colectiv al societăţii, ţinând cont de faptul că, la cele două sesiuni de training luate în calcul, a participat un procent de 10 % din personalul societăţii. Putem vedea ce influenţă are vârsta sau studiile în obţinerea unor rezultate mai bune de către angajaţi. Se vor lua în considerare numai cazurile în care personalul a urmat toate etapele de evaluare: evaluarea iniţială, evaluarea după prima sesiune de training, evaluarea după a doua sesiune de training. Pregătirea angajaţilor este continuă în timp şi un alt obiectiv este crearea unei baze de date cu activitatea şi performanţele personalului angajat. 4
  5. 5. Capitolul III Descrierea metodologiei de cercetare Tipul cercetării utilizate este complexă şi totală, personalul fiind evaluat din toate punctele de vedere – psihic, fizic, al nivelului cunoştinţelor generale şi de specialitate. Cercetarea şi trainingul sunt efectuate de către o firmă specializată, care la la iniţiere studiului precum şi la finalul fiecărei sesiuni de specializare va acorda o notă finală, pe o scară de la 1 la 10, fiecărui om în parte în urma testelor şi probelor la care au fost supuşi. Nota nu trebuie să fie mai mare de 5, de exemplu, şi reprezintă o anumită valoare a individului în contextul stabilit de firma de training. Această evaluare presupune o creştere sau scădere a productivităţii muncii şi implicit o scădere sau o creştere a deficienţelor constatate în procesul tehnologic. Datele vor fi culese atât pe baza pe baza chestionarelor completate de participanţii la începutul sesiunii de training cât şi a chestionarelor completate şi a interviurilor date de angajaţi după fiecare sesiune de training. Considerăm că evaluatorul ia în considerare mai mulţi parametri pentru fiecare caz în parte, inclusiv productivitatea muncii şi scăderea deficienţelor în îndeplinirea sarcinilor de către angajaţi, valoarea numerică rezultată reliefând un total al tuturor coeficienţilor psihici, fizici, intelectuali, nivelul cunoştinţelor, stadiul indicatorilor - productivităţii muncii şi scăderea deficienţelor -, la notarea personalului evaluat. Cei evaluaţi au vârste între 20 şi 55 de ani şi diverse studii şi nivele de cunoştinţe şi calificare. Variabilele luate în considerare vor fi: - vârsta - studiile – care pot fi : -10 clase -liceul -studii superioare - evaluarea iniţială - înainte de prima sesiune de training - evaluarea I - după prima sesiune de training - evaluarea II - după a doua sesiune de training Datele vor fi prezentate atât sub formă tabelară cât şi sub formă grafică. Se deschide programul SPSS şi în fereastra variabilelor alegem următoarele caracteristici pentru acestea: 5
  6. 6. Variabila 1 are numele varsta, se trece în coloana Name, şi este de tip numeric cu 2 numere şi 0 zecimale; Variabila a doua are numele studii şi este de tip numeric cu o cifră şi fără zecimale, iar la Value Labels alege: - 1 pentru cei cu 10 clase; - 2 pentru cei cu liceu: - 3 pentru cei cu studii superioare; Variabila evaluare iniţială o notăm în programul SPPS cu val_initiala este de tip numeric cu 2 cifre şi fără zecimale şi va avea valori de la 1 la 10. Variabila după prima sesiune de training o notăm cu val_1 şi are aceleaşi caracteristici ca variabila val_initiala. Variabila după cea de a doua sesiune de training o notăm cu val_2 şi este de aceiaşi categorie ca şi variabilele val_initiala şi val_1. După definirea variabilelor, vom intra în fereastra Data View în stânga jos unde vom introduce datele necesare studiului, pentru 42 de angajaţi. Vom înregistra numai datelor angajaţilor care au fost evaluaţi iniţial şi au efectuat cele două sesiuni de training fiind totodată evaluaţi după fiecare sesiune de pregătire. După introducerea datelor intrăm în meniul File – save as şi introducem numele de training şi salvăm fişierul în programul SPPS. Folosind o procedură de prelucrare a datelor: din meniul Analyze – Descriptive Statistics – Frequencies vom aplica pentru variabila studii şi apoi pentru variabila varsta pentru a vedea frecvenţa acestora în studiul nostru atât tabelară cât şi grafică.Procedura Frequencies este singura procedură care permite analiza de frecvenţe. De asemenea vom folosi aceiaşi procedură de prelucrare a datelor pentru variabilele val_initiala, val_1 şi val_2 din meniul Analyze – Descriptive Statistics – Frequencies. Pentru o analiză mai bună a evoluţiei calificativelor vom aplica o procedură de prelucrare a datelor, care să facă o medie între variabilele de evaluare. Se aplică o procedură de testare a ipotezelor statistice în care se urmăreşte observarea faptului dacă există o diferenţă semnificativă între cele două medii obţinute după fiecare evaluare - val_initiala, val_1, val_2 – şi se va aplica testul t pentru diferenţa dintre mediile a două eşantioane dependente (perechi). În meniul Analiyze – Compare Means – Paired Sample T Test … vom aplica această procedură pentru a evidenţia creşterea productivităţii într-o primă etapă între prima evaluare val_initiala şi după prima sesiune de training val_1 şi o a doua etapă între variabila val_1 şi după cea de a doua sesiune de training – adică variabila val_2. Valorile medii foarte apropiate între evaluarea iniţială – val_initiala şi valoare după prima sesiune de training – val_1 şi pentru o relevanţă mai mare vom aplica procedura de prelucrare a datelor între evaluarea după cea de-a doua sesiune de training val_2 şi cea iniţială val_initiala. 6
  7. 7. Pentru evaluarea gradului de asociere între cele două variabile, respectiv creşterea productivităţii în urma sesiunilor de training, vom folosi corelaţia liniara.Caracterizarea corelaţiei rezultatelor obţinute va fi facută folosind coeficientul de corelaţie al lui Pearson (r ).Tipul implicit de testare a ipotezei este bilateral(two-tailed) şi vom afla nivelul p Sig. 2.tailed, respectiv probabilitatea cu care valoarea calculată a lui r apare pe distribuţia de nul. 7
  8. 8. Capitolul IV Utilizarea programului SPSS în realizarea studiului de caz În fereastra Variabile View se introduc variabile definite în capitolul III: Variabila varsta definirea tipului de variabilă: Reprezentarea variabilei în fereastra Variabile View: Variabila studii definirea tipului în SPPS: 8
  9. 9. Definirea valorilor pentru etichete la variabila studii: Variabila val_initiala: 9
  10. 10. După definirea tuturor variabilelor vom avea următoarea fereastră: Fereastra cu datele după salvare şi denumirea noului fişier – training în programul SPPS Analyze – Descriptive Statistics – Frequencies 10
  11. 11. Pentru grafic alegem următoarele setări: Statistics Studii N Valid 42 Missing 0 11
  12. 12. studii Frequenc y Percent Valid Percent Cumulative Percent Valid 10 clase 9 21.4 21.4 21.4 liceu 27 64.3 64.3 85.7 superioare 6 14.3 14.3 100.0 Total 42 100.0 100.0 Pentru variabila varsta – Meniul Analyze – Descriptive Statistics – Frequencies 12
  13. 13. Statistics Varsta N Valid 42 Missing 0 13
  14. 14. varsta Frequency Percent Valid Percent Cumulative Percent Valid 20 1 2.4 2.4 2.4 21 2 4.8 4.8 7.1 22 1 2.4 2.4 9.5 23 1 2.4 2.4 11.9 25 3 7.1 7.1 19.0 26 1 2.4 2.4 21.4 27 1 2.4 2.4 23.8 28 2 4.8 4.8 28.6 29 3 7.1 7.1 35.7 30 4 9.5 9.5 45.2 32 1 2.4 2.4 47.6 33 1 2.4 2.4 50.0 34 1 2.4 2.4 52.4 35 2 4.8 4.8 57.1 36 1 2.4 2.4 59.5 37 2 4.8 4.8 64.3 38 1 2.4 2.4 66.7 39 1 2.4 2.4 69.0 40 1 2.4 2.4 71.4 41 2 4.8 4.8 76.2 44 1 2.4 2.4 78.6 45 2 4.8 4.8 83.3 46 1 2.4 2.4 85.7 48 1 2.4 2.4 88.1 49 2 4.8 4.8 92.9 50 1 2.4 2.4 95.2 53 1 2.4 2.4 97.6 55 1 2.4 2.4 100.0 Total 42 100.0 100.0 14
  15. 15. Meniul Analyze – Descriptive Statistics – Frequencies pentru variabilele val_initiala, val_1, val_2 Pentru grafic 15
  16. 16. Frequency Table val_initiala Frequen cy Percent Valid Percent Cumulative Percent Valid 1 4 9.5 9.5 9.5 2 4 9.5 9.5 19.0 3 12 28.6 28.6 47.6 4 7 16.7 16.7 64.3 5 9 21.4 21.4 85.7 6 3 7.1 7.1 92.9 7 2 4.8 4.8 97.6 8 1 2.4 2.4 100.0 Total 42 100.0 100.0 16
  17. 17. val_1 Frequency Percent Valid Percent Cumulative Percent Valid 1 2 4.8 4.8 4.8 2 6 14.3 14.3 19.0 3 12 28.6 28.6 47.6 4 9 21.4 21.4 69.0 5 6 14.3 14.3 83.3 6 4 9.5 9.5 92.9 7 2 4.8 4.8 97.6 8 1 2.4 2.4 100.0 Total 42 100.0 100.0 val_2 Frequency Percent Valid Percent Cumulative Percent Valid 1 2 4,8 4,8 4,8 2 3 7,1 7,1 11,9 3 8 19,0 19,0 31,0 4 9 21,4 21,4 52,4 5 11 26,2 26,2 78,6 6 5 11,9 11,9 90,5 7 2 4,8 4,8 95,2 8 2 4,8 4,8 100,0 Total 42 100,0 100,0 17
  18. 18. 18
  19. 19. Analyze – Comparare Means – Paired Sample T Test … Vom crea cele perechi de câte două variabile:  val_initiala şi val_1  val_1 şi val_2 Gruparea se realizează ţinând apăstă tasta CTRL şi click pe numele variatei dorite în câmpul din stânga şi transferarea în câmpul 19
  20. 20. Paired Variables. Butonul Options permite stabilirea pragului de semnificaţie, rularea procedurii generând următoarele rezultate: Paired Samples Statistics Mean N Std. Deviation Std. Error Mean Pair 1 val_initiala 3,83 42 1,695 ,262 val_1 3,86 42 1,632 ,252 Pair 2 val_1 3,86 42 1,632 ,252 val_2 4,36 42 1,665 ,257 În tabelul Paired Samples Statistics sunt afişate mediile celor două grupuri comparate şi pe liniile Pair1 şi Pair2 cele două împerecheri de grupuri val_initiala - val_1 şi val_1 – val 2, numărul de subiecţi care nu se modifica - determinarea iniţială a studiului, abaterea pentru fiecare grup şi eroarea standard a mediei fiecărui grup. Paired Samples Correlations N Correlatio n Sig. Pair 1 val_initiala & val_1 42 ,917 ,000 Pair 2 val_1 & val_2 42 ,899 ,000 În tabelul Paired Samples Correlations prezintă corelaţia dintre cele două variabile pentru cele două împerecheri Pair1 şi Pair2: N=42, r1=0,917, p. 0,000; N=42, r2=0,899, p. 0,000; Paired Samples Test Paired Differences Mea n Std. Deviat ion Std. Error Mean 95% Confidence Interval of the Difference t df Sig. (2- tailed)Lower Upper Pair 1 val_initiala - val_1 -,02 4 ,680 ,105 -,236 ,188 -,22 7 41 ,822 Pair 2 val_1 - val_2 -,50 0 ,741 ,114 -,731 -,269 - 4,37 4 41 ,000 20
  21. 21. Dacă în primul grup de variabile sig (2-tailed) este de 0,822>0,05=p (pragul alfa) rezultatul testului t permite acceptarea ipotezei studiului conform căreia rezultatele obţinute de personalul angajat după prima sesiune de training este nesemnificativ faţă de situaţia iniţială înainte de prima sesiune de training. În cazul celui de-al doilea grup de variabile val_1 – val_2 indicator principal al testului p este egal cu zero adică este diferit de pragul alfa=0,05, ipoteza de nul (adică de medii egale) se respinge, adică avem o diferenţă semnificativă între valorile înregistrare după prima sesiune de training şi cea de-a doua sesiune de training. În meniul Analiyze – Compare Means – Paired Sample T Test … Paired Samples Statistics Mean N Std. Deviation Std. Error Mean Pair 1 val_2 4,36 42 1,665 ,257 val_initial a 3,83 42 1,695 ,262 Paired Samples Correlations N Correlatio n Sig. Pair 1 val_2 & val_initiala 42 ,817 ,000 21
  22. 22. Paired Samples Test Paired Differences Mea n Std. Deviat ion Std. Error Mean 95% Confidence Interval of the Difference t df Sig. (2- tailed)Lower Upper Pair 1 val_2 - val_initial a ,524 1,018 ,157 ,207 ,841 3,33 5 41 ,002 Din tabelul Paired Samples Test rezultat în urma aplicării observăm că parametrul p=0,002<0,05=pragul alfa, aproape de zero, reprezentând o deferenţă semnificativă între rezultatele obţinute între prima evaluare – evaluarea iniţială şi cea de-a doua evaluare – val_2. 22
  23. 23. Capitolul V Concluzii Folosind programul SPPS vedem că la un număr de 42 de cazuri valide 100% avem: - 9 cazuri care au studii – 10 clase cu un procent de 21,4 - 27 cazuri cu liceu, procent de 64,3 - 6 cazuri cu studii superioare, procent de 14,3. În concluzie majoritatea celor folosiţi în studiul nostru au liceu 64,3%. Din histograma grafică pentru variabila varsta observăm că avem până la vârsta de 40 un procent de 71,4%. Compărând media obţinută în primul caz – val_initiala – este de 3,83; în cel de-al doilea caz – val_1 – media este de 3,86; iar în cel de- al treilea caz – val_2 – media este de 4,36. Din compararea valorilor celor trei variabile se observă o creştere a medie variabilei val_2 faţă de valoarea iniţială val_initiala. De asemenea, în urma aplicării testului t pentru ipotezele statistice pentru diferenţa dintre mediile a două eşantioane dependente se observă o creştere nesemnificativă după prima sesiune de evaluare şi training dar se observă o creştere semnificativă după a doua sesiune de training şi evaluare, adică o creştere val_2=4,36>3,83=val_initiala, pe durata unui an. Se observă că, în urma a două sesiuni de training, productivitatea muncii a crescut şi implicit a scăzut numărul deficienţelor constatate. Aşa cum am menţionat la prezentarea studiului, la sesiunile de training, a participat un procent de 10 % din personalul societăţii, iar în urma rezultatelor obţinute, concluzia finală este că se justifică investiţia societăţii în pregătirea personalului angajat şi aplicarea lui la nivelul întregii firme. 23

×