Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.
Reduced-cost ensemble Kalman filter
for parameter estimation!
Application to front-tracking problems!
Mélanie Rochoux!
in c...
INTRODUCTION ●●●●
Data assimilation: why? how?!
2 !Rochoux et al. – UNCECOMP 2015 – MS-10!
➙ Key idea: “optimal combinatio...
INTRODUCTION ●●●●
Data assimilation: why? how?!
➙ Key idea: “optimal combination of observations and forward model”!
Ensem...
INTRODUCTION ●●●●
Uncertainty quantification!
➙ Challenging idea: Use uncertainty quantification to overcome the slow
conver...
INTRODUCTION ●●●●
Parameter estimation!
➙ Objective: Improvement of the forecast performance
•  State estimation limitatio...
INTRODUCTION ●●●●
Outline!
!
Reduced-cost ensemble Kalman filter for parameter
estimation (PC-EnKF)!
!
u  Algorithm!
u  A...
ALGORITHM ●●●
Standard EnKF!
Cxy = Pt
f
Gt
T
xt
a,(k)
= xt
f,(k)
+Cxy (Cyy + R)−1
(yt
o
+ξo,(k)
− yt
f,(k)
)
Prior
paramet...
ALGORITHM ●●●
Hybrid PC-EnKF!
➙ Objective: Reduce computational cost of forward model integration
•  Integrating Polynomia...
ALGORITHM ●●●
Coupling PC and EnKF approaches!
EnKF prediction
Surrogate model
Surrogate model
Forward modelHermite quadra...
WILDFIRE SPREAD APPLICATION ●●●
Front-tracking problem!
Experimental grassland fire
(100m x 100m), N.S. Cheney,
Annaburroo ...
WILDFIRE SPREAD APPLICATION ●●●
Front-tracking problem!
•  2-D state variable: reaction progress variable c 

•  Front mar...
WILDFIRE SPREAD APPLICATION ●●●
Front-tracking problem!
•  2-D state variable: reaction progress variable c 

•  Front mar...
WILDFIRE SPREAD APPLICATION ●●●
Synthetic experiment!
•  Estimation of a uniform proportionality coefficient P in the ROS f...
WILDFIRE SPREAD APPLICATION ●●●
Controlled fire experiment!
•  Reduced scale fire experiment (4 m x 4 m) over quasi-homogene...
WILDFIRE SPREAD APPLICATION ●●●
Controlled fire experiment!
•  Reduced scale fire experiment (4 m x 4 m) over quasi-homogene...
WILDFIRE SPREAD APPLICATION ●●●
Controlled fire experiment!
•  Reduced scale fire experiment (4 m x 4 m) over quasi-homogene...
CONCLUSION
Key ideas!
Rochoux et al (2014), NHESS!
Rochoux et al (2012), CTR brief!
➙ Reduced-cost ensemble Kalman filter (...
CONCLUSION
Key ideas!
Rochoux et al (2014), NHESS!
Rochoux et al (2012), CTR brief!
➙ Reduced-cost ensemble Kalman filter (...
*	
  Melanie.Rochoux@cerfacs.fr
Thank you for your attention!
Any question?
Cxy = Pt
f
Gt
T
xt
a,(k)
= xt
f,(k)
+Cxy (Cyy + R)−1
(yt
o
+ξo,(k)
− yt
f,(k)
)
Prior
parameters
Prior
fire fronts
Posteri...
Nächste SlideShare
Wird geladen in …5
×

Reduced-cost ensemble Kalman filter for front-tracking problems

957 Aufrufe

Veröffentlicht am

In this talk, a reduced-cost ensemble Kalman filter (PC-EnKF) is implemented for the estimation of the model input parameters in the context of a front-tracking problem. The forecast step relies on a probabilistic sampling based on a Polynomial Chaos (PC) surrogate model. The performance of the hybrid PC-EnKF strategy is assessed for synthetic front-tracking test cases as well as in the context of wildfire spread, which features a front-like geometry and where the estimation targets are the unknown biomass fuel properties and the surface wind conditions. Results indicate that the hybrid PC-EnKF strategy features similar performance to the standard EnKF algorithm, without loss of accuracy but at a much reduced computational cost.

Reference published in NHESS (2014)
➞ Rochoux, M.C., Ricci, S., Lucor, D., Cuenot, B., and Trouvé, A. (2014) Towards predictive data-driven simulations of wildfire spread. Part I: Reduced-cost Ensemble Kalman Filter based on a Polynomial Chaos surrogate model for parameter estimation, Natural Hazards and Earth System Sciences, Special Issue: Numerical Wildland Combustion, from the flame to the atmosphere, vol. 14, pp. 2951-2973, doi: 10.5194/nhess-14-2951-2014, published.

Veröffentlicht in: Wissenschaft
  • Loggen Sie sich ein, um Kommentare anzuzeigen.

Reduced-cost ensemble Kalman filter for front-tracking problems

  1. 1. Reduced-cost ensemble Kalman filter for parameter estimation! Application to front-tracking problems! Mélanie Rochoux! in collaboration with S.Ricci, D. Lucor, B. Cuenot & A. Trouvé! *  melanie.rochoux@cerfacs.fr! MS-10 Reduced-order models for stochastic inverse problems – U626  
  2. 2. INTRODUCTION ●●●● Data assimilation: why? how?! 2 !Rochoux et al. – UNCECOMP 2015 – MS-10! ➙ Key idea: “optimal combination of observations and forward model”! Determine best estimate of a dynamical system given Weather forecast! Atm. chemistry! Hydrology! Biomechanics! - Sparse and imperfect - Relation between observations and model outputs Observations Numerical model Model formulation Model parameters Initial condition Forcing data Mathematical technique based on estimation theory •  The “true state” is unknown and should be estimated •  Measurements and models are imperfect •  The estimate should be an optimal combination of both measurements and models ➙ error minimization problem Ex. applications
  3. 3. INTRODUCTION ●●●● Data assimilation: why? how?! ➙ Key idea: “optimal combination of observations and forward model”! Ensemble Kalman filter (EnKF) •  Forecast step ➙ uncertainty propagation - Explicit propagation of the error statistics - Nonlinear extension of the Kalman filter •  Analysis step ➙ Kalman filter update equation ! reality     model forecast Diagnostic!           measurements analysis Time! Sequential approach  =                +      K  [            -­‐                        ]           Distance to observations! G( ) Kalman gain matrix! Stochastic characterization Estimation of error covariance matrices Control variables! 3 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  4. 4. INTRODUCTION ●●●● Uncertainty quantification! ➙ Challenging idea: Use uncertainty quantification to overcome the slow convergence rate and sampling errors of the Monte Carlo-based EnKF! ! reality     model forecast Diagnostic!           measurements analysis Time! Sequential approach Npc X k=1 ˆck k( )                          ●   Basis functions 4 !Rochoux et al. – UNCECOMP 2015 – MS-10!  =                +      K  [            -­‐                        ]          G( ) Control variables! Hybrid Ensemble Kalman filter (PC-EnKF) •  Forecast step ➙ uncertainty propagation - Use of surrogate model to compute model trajectories - Polynomial Chaos (PC) expansion •  Analysis step ➙ Kalman filter update equation !
  5. 5. INTRODUCTION ●●●● Parameter estimation! ➙ Objective: Improvement of the forecast performance •  State estimation limitation ➙ no long persistence of the initial condition for a chaotic system •  Parameter estimation ➙ accounting for the temporal variability in the errors Difficulties ➙ Possible nonlinear relationship between input parameters and model counterparts of the observations ➙ Existence of an evolution model for parameters? ! Forward model Parameters Initial condition Boundary conditions Comparison Model outputs Observations Ensemble Kalman filter Parameter estimation State estimation 5 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  6. 6. INTRODUCTION ●●●● Outline! ! Reduced-cost ensemble Kalman filter for parameter estimation (PC-EnKF)! ! u  Algorithm! u  Application to wildfire spread forecasting! •  Front-tracking problem •  Synthetic case •  Controlled fire experiment 6 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  7. 7. ALGORITHM ●●● Standard EnKF! Cxy = Pt f Gt T xt a,(k) = xt f,(k) +Cxy (Cyy + R)−1 (yt o +ξo,(k) − yt f,(k) ) Prior parameters Prior fire fronts Posterior parameters xt f,(1) xt f,(2) xt f,(Ne ) yt f,(1) yt f,(2) yt f,(Ne ) Covariance matrices EnKF update Cyy = GtPt f Gt T xt a,(1) xt a,(2) xt a,(Ne ) yt o +ξo,(1) Ke t Posterior fire fronts yt a,(1) yt a,(2) yt a,(Ne ) EnKF prediction FORECAST ANALYSIS EnKF prediction yt o +ξo,(Ne ) yt o +ξo,(2) Gt Gt ➙ Key idea: 3D-Var approach with stochastically-based estimation of the error covariance matrices over the assimilation cycle [t-1, t] Specificities!! •  Random walk model for parameter evolution •  Data randomization ➙ Burgers et al. 1998 •  Limitations ➙ Slow convergence rate (large number of members) ➙ Sampling errors (Li 2008) – local & global 7 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  8. 8. ALGORITHM ●●● Hybrid PC-EnKF! ➙ Objective: Reduce computational cost of forward model integration •  Integrating Polynomial Chaos (PC) into forecast •  Control parameters projected onto a stochastic space spanned by orthogonal PC functions of independent Gaussian random variables Surrogate model! Model inputs! Model outputs! Random event! •  Easy access to statistics (mean, covariance, ensemble sampling) Ensemble sampling! •  Integrating Polynomial Chaos (PC) into observation •  Use the same basis for the model and for the data space (not obvious since observations and model counterparts should remain uncorrelated, Evensen 2009) 8 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  9. 9. ALGORITHM ●●● Coupling PC and EnKF approaches! EnKF prediction Surrogate model Surrogate model Forward modelHermite quadrature Simulated fire fronts Hermite polynomials Surrogate model Forecast ! distribution! ➀! Monte-Carlo sampling Predicted fire front positions Posterior estimate of parameters Updated fire front positions ➁ ➂ EnKF update ('q)q = 1, · · · , Npc k = 1, · · · , Ne k = 1, · · · , Ne EnKF prediction k = 1, · · · , Ne k = 1, · · · , Ne FIREFLY j = 1, · · · , (Nquad)n j = 1, · · · , (Nquad)n ⇣ x f,(j) t , !j ⌘ ⇣ y f,(j) t ⌘ pf (xt) yf t = Gpc,t(xf t) ⇣ x f,(k) t ⌘ ⇣ x a,(k) t ⌘ ⇣ y a,(k) t ⌘ ⇣ y f,(k) t ⌘ ➙ Non-intrusive approach: PC used to build a surrogate model of the observation operator 9 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  10. 10. WILDFIRE SPREAD APPLICATION ●●● Front-tracking problem! Experimental grassland fire (100m x 100m), N.S. Cheney, Annaburroo site (Australia)! ➙ Wildfires feature a front-like geometry at regional scales! FRONT! •  Scales ranging from meters up to several kilometers •  Thin flame zone propagating normal to itself towards unburnt vegetation •  Local propagation speed of the front called “rate of spread” (ROS) 10 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  11. 11. WILDFIRE SPREAD APPLICATION ●●● Front-tracking problem! •  2-D state variable: reaction progress variable c •  Front marker: contour line c = 0.5 •  Submodel for the local ROS along the normal direction to the front •  Semi-empirical formulation (Rothermel) •  Function of the local environmental conditions ➙ Level-set-based front propagation simulator ROS = f(uw, ↵sl, Mv, v, ⌃v, ...) Simulated front c= 0.5 ! (x1 , y1 ) (x2 , y2 ) (x3 , y3 ) (x4 , y4 ) @c @t = ROS |rc| 11 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  12. 12. WILDFIRE SPREAD APPLICATION ●●● Front-tracking problem! •  2-D state variable: reaction progress variable c •  Front marker: contour line c = 0.5 •  Submodel for the local ROS along the normal direction to the front •  Semi-empirical formulation (Rothermel) •  Function of the local environmental conditions ➙ Level-set-based front propagation simulator ROS = f(uw, ↵sl, Mv, v, ⌃v, ...) Simulated front c= 0.5 ! (x1 , y1 ) (x2 , y2 ) (x3 , y3 ) (x4 , y4 ) @c @t = ROS |rc|➙ Observation represented as a discretized fire front!! raw data: infrared imagery 12 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  13. 13. WILDFIRE SPREAD APPLICATION ●●● Synthetic experiment! •  Estimation of a uniform proportionality coefficient P in the ROS formulation •  True parameter at the tail of the Gaussian distribution associated with the forecast estimates •  Reduced-cost approach: •  5 model integrations to build the surrogate model •  1000 members in the ensemble •  Observation error STD = 2 m ! 75 85 95 105 115 125 75 85 95 105 115 125 x [m] y[m] m 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 75 85 95 105 115 125 P [1/s]x−coordinate[m] 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 75 85 95 105 115 125 P [1/s] y−coordinate[m] forecast true trueforecast 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 75 85 95 105 115 125 P [1/s] x−coordinate[m] 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 75 85 95 105 115 125 y−coordinate[m] analysis analysis true true - forecast - analysis + observations quadrature points ▾ Response surface for the x-coordinate front marker m ◀ Fire front positions at time 50 s (analysis time) 13 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  14. 14. WILDFIRE SPREAD APPLICATION ●●● Controlled fire experiment! •  Reduced scale fire experiment (4 m x 4 m) over quasi-homogeneous short grass ! 1min32s 50s 1min46s 1min04s 1min18s Wind 1m/s 0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 x [m] y [m] •  Mid-Infrared imaging •  Quasi-homogeneous short grass (22% moisture content) •  Mean wind speed: 1m/s in northwestern direction •  Mean ROS = 2 cm/s •  Max. ROS = 5 cm/s ANALYSIS TIME FORECAST TIME 14 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  15. 15. WILDFIRE SPREAD APPLICATION ●●● Controlled fire experiment! •  Reduced scale fire experiment (4 m x 4 m) over quasi-homogeneous short grass •  Estimation of 2 biomass fuel parameters: moisture content (Mv), geometrical parameter (Σv) •  Reduced-cost approach: •  25 model integrations to build the surrogate model •  1000 members in the ensemble •  Observation error STD = 5 cm ! 15 11500 Σv [1/m]Mv [%] Σv [1/m]Mv [%] 15 11500 x-coordinate[m]y-coordinate[m] 13.8 2234513.8 22345 13.8 22345 Σv [1/m]Mv [%] x-coordinate[m]y-coordinate[m] 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 0 0.5 1 1.5 2 x [m] y[m] m ▾ Response surface for the x-coordinate front marker m ◀ Fire front positions at time 1min18 s quadrature points forecast! analysis! - Forecast (PC-EnKF) - Analysis (PC-EnKF) □ Analysis (standard EnKF) + observations ANALYSIS TIME 15 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  16. 16. WILDFIRE SPREAD APPLICATION ●●● Controlled fire experiment! •  Reduced scale fire experiment (4 m x 4 m) over quasi-homogeneous short grass •  Estimation of 2 biomass fuel parameters: moisture content (Mv), geometrical parameter (Σv) •  Reduced-cost approach: •  25 model integrations to build the surrogate model •  1000 members in the ensemble •  Observation error STD = 5 cm ! 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 0 0.5 1 1.5 2 x [m] y[m] m ANALYSIS TIME 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 0 0.5 1 1.5 2 x [m] y[m] - Forecast (PC-EnKF) - Analysis (PC-EnKF) □ Analysis (standard EnKF) + observations FORECAST TIME Good behavior of the PC surrogate model! 16 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  17. 17. CONCLUSION Key ideas! Rochoux et al (2014), NHESS! Rochoux et al (2012), CTR brief! ➙ Reduced-cost ensemble Kalman filter (PC-EnKF) for parameter estimation in front-tracking problems! •  Stand-alone parameter estimation ➙ forecast improvement! •  Prototype able to address multi-parameter sequential estimation at a reduced cost •  Spatially-uniform and constant parameters over the time window •  Application: Reduced-scale wildfire spread problem ➙ Need to extend the strategy at regional scales ➙ Need to combine parameter estimation and state estimation approaches to treat anisotropic uncertainties ! 17 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  18. 18. CONCLUSION Key ideas! Rochoux et al (2014), NHESS! Rochoux et al (2012), CTR brief! ➙ Reduced-cost ensemble Kalman filter (PC-EnKF) for parameter estimation in front-tracking problems! •  Stand-alone parameter estimation ➙ forecast improvement! •  Prototype able to address multi-parameter sequential estimation at a reduced cost •  Spatially-uniform and constant parameters over the time window •  Application: Reduced-scale wildfire spread problem ➙ Need to extend the strategy at regional scales ➙ Need to combine parameter estimation and state estimation approaches to treat anisotropic uncertainties •  Front-tracking problem ➙ dynamically-evolving observation operator over time! •  Prototype able to track coherent features •  Unusual application of the EnKF algorithm ➙ Need to test the sensitivity of the hybrid data assimilation algorithm to different representations of the front ! 18 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  19. 19. *  Melanie.Rochoux@cerfacs.fr Thank you for your attention! Any question?
  20. 20. Cxy = Pt f Gt T xt a,(k) = xt f,(k) +Cxy (Cyy + R)−1 (yt o +ξo,(k) − yt f,(k) ) Prior parameters Prior fire fronts Posterior parameters xt f,(1) xt f,(2) xt f,(Ne ) yt f,(1) yt f,(2) yt f,(Ne ) Covariance matrices EnKF update Cyy = GtPt f Gt T xt a,(1) xt a,(2) xt a,(Ne ) yt o +ξo,(1) Ke t Posterior fire fronts yt a,(1) yt a,(2) yt a,(Ne ) EnKF prediction FORECAST ANALYSIS EnKF prediction yt o +ξo,(Ne ) yt o +ξo,(2) Gt Gt ALGORITHM ●●● Standard EnKF! ➙ Key idea: 3D-Var approach with stochastically-based estimation of the error covariance matrices over the assimilation cycle [t-1, t] ! •  Local error (over one assimilation cycle) ! •  Global error (over all assimilation cycles) Specificities!! •  Random walk model for parameter evolution •  Data randomization ➙ Burgers et al. 1998 •  Limitations ➙ Slow convergence rate (large number of members) ➙ Sampling errors (Li 2008) – local & global 20 !Rochoux et al. – UNCECOMP 2015 – MS-10!

×