MongoDB Europe 2016 - Debugging MongoDB Performance

MongoDB
MongoDBMarketing Ninja um MongoDB
MongoDB Europe 2016 - Debugging MongoDB Performance
Asya Kamsky,
Lead Product Manager
MongoDB
Diagnostics and Debugging 3.4
Asya Kamsky,
Lead Product Manager
MongoDB
Diagnostics and Debugging 3.4
MongoDB Europe 2016 - Debugging MongoDB Performance
MongoDB Europe 2016 - Debugging MongoDB Performance
“
I thought of my old teacher Joe Bell, ... of his eerie
trick of spotting details. If he were a detective he
would surely reduce this ... business to something
nearer an exact science.
—Arthur Conan Doyle
The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red
x still appears, you may have to delete the image and then insert it again.
The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red
x still appears, you may have to delete the image and then insert it again.
Understanding The Patient
#MDBW16
Understanding The Patient
Understand the system
Knowledge
Monitor trends over time
Trends
Record all metrics "at rest"
Baseline
MongoDB Europe 2016 - Debugging MongoDB Performance
MongoDB Europe 2016 - Debugging MongoDB Performance
Gathering Data
“Data! Data! Data! 
I can't make bricks without clay.”
-- Sherlock Holmes, 
The Adventure of the Copper Beeches
MongoDB Europe 2016 - Debugging MongoDB Performance
“There is nothing like first-hand evidence.”
-- Sherlock Holmes, A Study in Scarlet
Available Tools
#MDBW16
Available Tools: Say "AH"
#MDBW16
Available Tools: Say "AH"
#MDBW16
Available Tools: Say "AH"
#MDBW16
Available Tools: Say "AH"
> db.isMaster( )
> rs.conf( )
> rs.status( )
> sh.status( )
> db.version( )
> db.serverCmdLineOpts( )
#MDBW16
Available Tools: Say "AH"
#MDBW16
> show dbs
> show collections
> db.getCollectionNames().forEach(function(c) {
printjson(db.getCollection(c).getIndexes());
});
Available Tools: Say "AH"
#MDBW16
Available Tools: Say "AH"
#MDBW16
Available Tools: Compass
#MDBW16
Available Tools: OS
% free
% blockdev --report
% dmesg
% ulimit -a
% ifconfig, ip <...>, iptables
% iostat
% netstat
% top; htop
% perf
% iperf3
#MDBW16
Available Tools: OS for MongoDB
% mongostat
% mongotop
mongod logs
2014-09-01T15:50:03.184-0004 [conn208] query
data.activity query: { $query: { _updated_at: { $gt: new
Date(1396459946346) }, _to: "_UserA" } }, $orderby:
{ _updated_at: -1 } } planSummary: IXSCAN { _to: 1,
_created_at: -1 } ntoreturn:100 ntoskip:0 nscanned:19692
nscannedObjects:19692 numYields:170 locks(micros) r:
283957 nreturned:65 reslen:24939 342ms
2014-09-01T15:50:03.184-0004 [conn208] query
data.activity query: { $query: { _updated_at: { $gt: new
Date(1396459946346) }, _to: "_UserA" } }, $orderby:
{ _updated_at: -1 } } planSummary: IXSCAN { _to: 1,
_created_at: -1 } ntoreturn:100 ntoskip:0 nscanned:19692
nscannedObjects:19692 numYields:170 locks(micros) r:
283957 nreturned:65 reslen:24939 342ms
mongod logs
2015-05-26T23:33:32.774-0500 I
2015-05-28T12:37:11.440-0500 I
2015-05-28T12:38:35.839-0500 I
D, I, W, E, F
3.0 mongod logs
2015-05-26T23:33:32.774-0500 I COMMAND
2015-05-28T12:37:11.440-0500 I NETWORK
2015-05-28T12:38:35.839-0500 I QUERY
3.0
COMMAND,NETWORK,QUERY,REPL,ACCESS,INDEX,JOURNAL,SHARDING,WRITE,-
mongod logs
2015-05-26T23:33:32.774-0500 I COMMAND [conn45] command admin.$cmd command:
listDatabases { listDatabases: 1.0 } ntoskip:0 keyUpdates:0 writeConflicts:0
numYields:0 reslen:393 locks:{ Global: { acquireCount: { r: 12 } },
Database: { acquireCount: { r: 6 } } } 321ms
2015-05-28T12:37:11.440-0500 I NETWORK [initandlisten] connection accepted
from 127.0.0.1:48625 #183 (21 connections now open)
2015-05-28T12:38:35.839-0500 I QUERY [conn183] getmore
tableau.flights201406 query: { origin_city_market_id: 31703.0 } cursorid:
61957110347 ntoreturn:0 cursorExhausted:1 keyUpdates:0 writeConflicts:0
numYields:176 nreturned:22579 reslen:1332181 locks:{ Global: { acquireCount:
{ r: 354 } }, Database: { acquireCount: { r: 177 } }, Collection:
{ acquireCount: { r: 177 } } } 114ms
3.0 mongod logs
3.2 mongod logs
2016-06-23T10:34:41.559-0700 I COMMAND [conn26] command test.c
command: find { find: "c", filter: { a: { $elemMatch: { v: { $gte: 3.0, $lt:
4.0 } } } } } planSummary: IXSCAN { a.v: 1.0 }
keysExamined:2 docsExamined:1 fromMultiPlanner:1 cursorExhausted:1
keyUpdates:0 writeConflicts:0 numYields:1 nreturned:1 reslen:187
locks:{ Global: { acquireCount: { r: 4 } }, Database: { acquireCount: { r:
2 } }, Collection: { acquireCount: { r: 2 } } } protocol:op_command 110ms
3.2 mongod logs
2016-06-23T10:34:41.559-0700 I COMMAND [conn26] command test.c
command: find { find: "c", filter: { a: { $elemMatch: { v: { $gte: 3.0, $lt:
4.0 } } } } } planSummary: IXSCAN { a.v: 1.0 }
keysExamined:2 docsExamined:1 fromMultiPlanner:1 cursorExhausted:1
keyUpdates:0 writeConflicts:0 numYields:1 nreturned:1 reslen:187
locks:{ Global: { acquireCount: { r: 4 } }, Database: { acquireCount: { r:
2 } }, Collection: { acquireCount: { r: 2 } } } protocol:op_command 110ms
3.2 mongod logs
3.4 mongod logs
3.4 mongod logs
2016-06-01T15:30:04.373-0700 I COMMAND [conn99] command socialite.following
command: aggregate { aggregate: "following", pipeline: [ { $match: { _f: "45705" } },
{ $group: { _id: null, followees: { $addToSet: "$_t" } } }, { $lookup: { from: "following",
localField: "followees", foreignField: "_f", as: "fofollowees" } }, { $project: { fofs: { $setUnion:
[ "$followees", "$fofollowees._t" ] } } } ] } planSummary: IXSCAN { _f: 1, _t: 1 } keysExamined:1
docsExamined:0 numYields:11 reslen:316214 locks:{ Global: { acquireCount: { r: 3800 } },
Database: { acquireCount: { r: 1900 } }, Collection: { acquireCount: { r: 1900 } } }
protocol:op_query 218ms
3.4 mongod logs
2016-06-25T23:38:27.346-0500 I WRITE [conn128] update ycsb.usertable query:
{ _id: "user7074965863272626663" } planSummary: IDHACK update: { $set: { field1: BinData(0, 2
} } keysExamined:1 docsExamined:1 nMatched:1 nModified:1 numYields:1 locks:{ Global: {
acquireCount: { r: 3, w: 3 } }, Database: { acquireCount: { w: 3 } }, Collection: { acquireCount:
{ w: 2 } }, Metadata: { acquireCount: { w: 1 } }, oplog: { acquireCount: { w: 1 } } } 11ms
> db.getLogComponents()
> db.getLogComponents()
{ "verbosity" : 1,
"accessControl" : { "verbosity" : -1},
"command" : { "verbosity" : -1},
"control" : { "verbosity" : -1},
"geo" : { "verbosity" : -1},
"index" : { "verbosity" : -1},
"network" : { "verbosity" : -1},
"query" : { "verbosity" : -1},
"replication" : { "verbosity" : -1},
"sharding" : { "verbosity" : -1},
"storage" : { "verbosity" : -1,
"journal" : { "verbosity" : -1}},
"write" : { "verbosity" : -1}
}
> db.getLogComponents()
{ "verbosity" : 1,
"accessControl" : { "verbosity" : -1},
"command" : { "verbosity" : -1},
"control" : { "verbosity" : -1},
"executor" : { "verbosity" : -1},
"geo" : { "verbosity" : -1},
"index" : { "verbosity" : -1},
"network" : { "verbosity" : -1},
"query" : { "verbosity" : -1},
"replication" : { "verbosity" : -1},
"sharding" : { "verbosity" : -1},
"storage" : { "verbosity" : -1,
"journal" : { "verbosity" : -1}},
"write" : { "verbosity" : -1},
"ftdc" : { "verbosity" : -1}
}
> db.setLogLevel( logLevel, component )
> db.setLogLevel( 1, "sharding" )
> db.setLogLevel( 2, "query" )
"It is of the highest importance ... to be able to recognize,
out of a number of facts, which are incidental and which vital. "
Sherlock Holmes, The Reigate Puzzle
MongoDB Europe 2016 - Debugging MongoDB Performance
MongoDB Europe 2016 - Debugging MongoDB Performance
https://github.com/rueckstiess/mtools
byThomasRückstieß
https://github.com/rueckstiess/mtools
byThomasRückstieß
#MDBW16
mplotqueries
$ mplotqueries --help
usage: mplotqueries [OPTIONS] [logfile [logfile ...]]
A script to plot various information from logfiles. ...
#MDBW16
mplotqueries
$ mplotqueries --help
usage: mplotqueries [OPTIONS] [logfile [logfile ...]]
A script to plot various information from logfiles. ...
optional arguments:
--type {nscanned/n,rsstate,connchurn,durline,histogram,range,scatter,event}
type of plot (default=scatter with --yaxis duration)
#MDBW16
mplotqueries
$ mplotqueries --help
usage: mplotqueries [OPTIONS] [logfile [logfile ...]]
A script to plot various information from logfiles. ...
optional arguments:
--type {nscanned/n,rsstate,connchurn,durline,histogram,range,scatter,event}
type of plot (default=scatter with --yaxis duration)
--group GROUP specify value to group on.
All basic plot types can group on
'namespace', 'operation', 'thread', 'pattern' ...
MongoDB Europe 2016 - Debugging MongoDB Performance
"... what is out of the common is usually a guide
rather than a hindrance."
— Sherlock Holmes, A Study in Scarlet
mplotqueries
% mplotqueries firstmongo.log --type nscanned/n
% mplotqueries firstmongo.log --type nscanned/n
2014-06-17T17:13:34.235 [conn1569841] query db1.coll query: { time: { $lt: "2014-06-17 17:13:31", $gte: "2014-06-17 17:04:31" } } planSummary:
COLLSCAN ntoreturn:0 ntoskip:0 nscanned:5169727 nscannedObjects:5169727 keyUpdates:0 numYields:12492 locks(micros) r:37736571 nreturned:72
reslen:32707 30129ms
mplotqueries
% mplotqueries firstmongo.log --type nscanned/n
2014-06-17T17:13:34.235 [conn1569841] query db1.coll query: { time: { $lt: "2014-06-17 17:13:31", $gte: "2014-06-17 17:04:31" } } planSummary:
COLLSCAN ntoreturn:0 ntoskip:0 nscanned:5169727 nscannedObjects:5169727 keyUpdates:0 numYields:12492 locks(micros) r:37736571 nreturned:72
reslen:32707 30129ms
mplotqueries
% mplotqueries firstmongo.log --type nscanned/n
2014-06-17T17:13:34.235 [conn1569841] query db1.coll query: { time: { $lt: "2014-06-17 17:13:31", $gte: "2014-06-17 17:04:31" } } planSummary:
COLLSCAN ntoreturn:0 ntoskip:0 nscanned:5169727 nscannedObjects:5169727 keyUpdates:0 numYields:12492 locks(micros) r:37736571 nreturned:72
reslen:32707 30129ms
mplotqueries
% mplotqueries firstmongo.log --type nscanned/n
2014-06-17T17:13:34.235 [conn1569841] query db1.coll query: { time: { $lt: "2014-06-17 17:13:31", $gte: "2014-06-17 17:04:31" } } planSummary:
COLLSCAN ntoreturn:0 ntoskip:0 nscanned:5169727 nscannedObjects:5169727 keyUpdates:0 numYields:12492 locks(micros) r:37736571 nreturned:72
reslen:32707 30129ms
2014-06-17T17:13:47.607 [conn1569990] query db2.coll query: { time: { $lt: "2014-06-17 17:14:05", $gte: "2014-06-17 17:05:05" }, status: 8 }
planSummary: COLLSCAN ntoreturn:0 ntoskip:0 nscanned:2057564 nscannedObjects:2057564 keyUpdates:0 numYields:5008 locks(micros) r:11557172
nreturned:56 reslen:18745 13086ms
mplotqueries
% mplotqueries firstmongo.log --type nscanned/n
2014-06-17T17:13:34.235 [conn1569841] query db1.coll query: { time: { $lt: "2014-06-17 17:13:31", $gte: "2014-06-17 17:04:31" } } planSummary:
COLLSCAN ntoreturn:0 ntoskip:0 nscanned:5169727 nscannedObjects:5169727 keyUpdates:0 numYields:12492 locks(micros) r:37736571 nreturned:72
reslen:32707 30129ms
2014-06-17T17:13:47.607 [conn1569990] query db2.coll query: { time: { $lt: "2014-06-17 17:14:05", $gte: "2014-06-17 17:05:05" }, status: 8 }
planSummary: COLLSCAN ntoreturn:0 ntoskip:0 nscanned:2057564 nscannedObjects:2057564 keyUpdates:0 numYields:5008 locks(micros) r:11557172
nreturned:56 reslen:18745 13086ms
mplotqueries
% mplotqueries firstmongo.log --type nscanned/n
2014-06-17T17:13:34.235 [conn1569841] query db1.coll query: { time: { $lt: "2014-06-17 17:13:31", $gte: "2014-06-17 17:04:31" } } planSummary:
COLLSCAN ntoreturn:0 ntoskip:0 nscanned:5169727 nscannedObjects:5169727 keyUpdates:0 numYields:12492 locks(micros) r:37736571 nreturned:72
reslen:32707 30129ms
2014-06-17T17:13:47.607 [conn1569990] query db2.coll query: { time: { $lt: "2014-06-17 17:14:05", $gte: "2014-06-17 17:05:05" }, status: 8 }
planSummary: COLLSCAN ntoreturn:0 ntoskip:0 nscanned:2057564 nscannedObjects:2057564 keyUpdates:0 numYields:5008 locks(micros) r:11557172
nreturned:56 reslen:18745 13086ms
mplotqueries
MongoDB Europe 2016 - Debugging MongoDB Performance
% mplotqueries updates?.log
% mplotqueries updates?.log
% mplotqueries updates?.log
% mplotqueries updates?.log
% mplotqueries updates?.log
"Eliminate all other factors, and the 
one which remains must be the truth."

Sherlock Holmes -The Sign of Four
#MDBW16
Available Tools
% mongostat
#MDBW16
mongostat
#MDBW16
--discover
mongostat
#MDBW16
mongostat
insert query update delete getmore command % dirty % used flushes vsize res faults qr|qw ar|aw netIn netOut conn ReplSetName role ts
#MDBW16
Trends
#MDBW16
Available Tools
#MDBW16
Available Tools: in the Cloud
#MDBW16
Available Tools: in the Cloud
#MDBW16
Available Tools: in the Cloud
#MDBW16
Available Tools: in the Cloud
#MDBW16
Available Tools: in the Cloud
#MDBW16
Available Tools: in the Cloud
#MDBW16
Available Tools: in the Cloud
#MDBW16
Available Tools: in the Cloud
#MDBW16
Available Tools: in the Cloud
MongoDB Europe 2016 - Debugging MongoDB Performance
MongoDB Europe 2016 - Debugging MongoDB Performance
% mplotqueries –type connchurn
MongoDB Europe 2016 - Debugging MongoDB Performance
MongoDB Europe 2016 - Debugging MongoDB Performance
MongoDB Europe 2016 - Debugging MongoDB Performance
MongoDB Europe 2016 - Debugging MongoDB Performance
MongoDB Europe 2016 - Debugging MongoDB Performance
MongoDB Europe 2016 - Debugging MongoDB Performance
MongoDB Europe 2016 - Debugging MongoDB Performance
MongoDB Europe 2016 - Debugging MongoDB Performance
MongoDB Europe 2016 - Debugging MongoDB Performance
MongoDB Europe 2016 - Debugging MongoDB Performance
MongoDB Europe 2016 - Debugging MongoDB Performance
#MDBW16
db.currentOp()
#MDBW16
db.currentOp()
> db.currentOp({secs_running:{$gt:10}})
{ "desc" : "conn3482",
"threadId" : "140512575297280",
"connectionId" : 3482,
"client_s" : "10.0.149.179:55295",
"active" : true,
"opid" : "SocialiteAtlas-shard-2:55547103",
"secs_running" : 13,
"microsecs_running" : NumberLong(13483812),
"op" : "query",
"ns" : "db1.coll1",
"numYields" : 48815,
"query" : {
"field1" : 5,
#MDBW16
db.currentOp()
> db.currentOp({desc:/^conn/,secs_running:{$gt:0}}).inprog.forEach(function(op) {
print(op.opid, op.op, op.ns, op.secs_running);
});
SocialiteAtlas-shard-0:68479014 query socialite.content 3
SocialiteAtlas-shard-0:68479730 query socialite.content 2
SocialiteAtlas-shard-0:68480174 query socialite.content 1
SocialiteAtlas-shard-0:68479234 query socialite.content 2
SocialiteAtlas-shard-0:68480136 query socialite.content 1
SocialiteAtlas-shard-0:68479529 query socialite.content 2
SocialiteAtlas-shard-0:68480182 query socialite.content 1
SocialiteAtlas-shard-0:68480261 query socialite.content 1
>
db.killOp ( opid )
MongoDB Europe 2016 - Debugging MongoDB Performance
#MDBW16
Asya Kamsky,
Lead Product Manager
MongoDB
Diagnostics and Debugging 3.4
MongoDB Europe 2016 - Debugging MongoDB Performance
Title Slide Option 1
Click here to add speaker name and title
Title Slide Option 2
Click here to add speaker name
and title
This is divider slide option 2
#MDBW16
Click to add title: keep it to 56 characters w/spaces
This is a typical content slide with full width body.
•  First level bullet list
•  Second level bullet list
•  Third level bullet list
#MDBW16
Two content
Click to add text.
•  First level bullet list
•  Second level bullet list
•  Third level bullet list
Click to add text.
•  First level bullet list
•  Second level bullet list
•  Third level bullet list
#MDBW16
Left content
Click to add text.
•  First level bullet list
•  Second level bullet list
#MDBW16
Left content
Click to add text.
•  First level bullet list
•  Second level bullet list
#MDBW16
Pie Chart
64%
25%
11%
1st Qtr 2nd Qtr 3rd Qtr
1st Quarter
Lorem ipsum dolor sit amet, onsectetur adipiscing
elit. Praesent sodales odio sit amet odio tristique .
2nd Quarter
Lorem ipsum dolor sit amet, onsectetur adipiscing
elit. Praesent sodales odio sit amet odio tristique .
3rd Quarter
Lorem ipsum dolor sit amet, onsectetur adipiscing
elit. Praesent sodales odio sit amet odio tristique .
#MDBW16
Bar Graph
0
1
2
3
4
5
6
Category 1 Category 2 Category 3 Category 4
Chart Title
Series 1 Series 2 Series 3
#MDBW16
Column Header 1 Column Header 2 Column Header 3 Column Header 4 Column Header 5
Lorem ipsum dolor sit amet Lorem ipsum dolor sit amet Lorem ipsum dolor sit amet Lorem ipsum dolor sit amet Lorem ipsum dolor sit amet
Lorem ipsum dolor sit amet Lorem ipsum dolor sit amet Lorem ipsum dolor sit amet Lorem ipsum dolor sit amet Lorem ipsum dolor sit amet
Lorem ipsum dolor sit amet Lorem ipsum dolor sit amet Lorem ipsum dolor sit amet Lorem ipsum dolor sit amet Lorem ipsum dolor sit amet
Table
#MDBW16
Title only
#MDBW16
Coding Example – Light Background
// Retrieve
var MongoClient = require('mongodb').MongoClient;
// Connect to the db
MongoClient.connect("mongodb://localhost:27017/exampleDb", function(err, db) {
if(err) { return console.dir(err); }
db.collection('test', function(err, collection) {});
db.collection('test', {w:1}, function(err, collection) {});
db.createCollection('test', function(err, collection) {});
db.createCollection('test', {w:1}, function(err, collection) {});
});
#MDBW16
Coding Example – Dark Background
// Retrieve
var MongoClient = require('mongodb').MongoClient;
// Connect to the db
MongoClient.connect("mongodb://localhost:27017/exampleDb", function(err, db) {
if(err) { return console.dir(err); }
db.collection('test', function(err, collection) {});
db.collection('test', {w:1}, function(err, collection) {});
db.createCollection('test', function(err, collection) {});
db.createCollection('test', {w:1}, function(err, collection) {});
});
MongoDB Europe 2016 - Debugging MongoDB Performance
MongoDB Europe 2016 - Debugging MongoDB Performance
MongoDB Europe 2016 - Debugging MongoDB Performance
#MDBW16
List slide – can also be used for agenda
Lorem ipsum dolor sit amet,
onsectetur adipiscing elit. Praesent
sodales odio sit amet odio tristique
sit elit.
Lorem Ipsum
01 Lorem ipsum dolor sit amet,
onsectetur adipiscing elit. Praesent
sodales odio sit amet odio tristique
sit elit.
Lorem Ipsum
03Lorem ipsum dolor sit amet,
onsectetur adipiscing elit. Praesent
sodales odio sit amet odio tristique
sit elit.
Lorem Ipsum
02
Lorem ipsum dolor sit amet,
onsectetur adipiscing elit. Praesent
sodales odio sit amet odio tristique
sit elit.
Lorem Ipsum
05 Lorem ipsum dolor sit amet,
onsectetur adipiscing elit. Praesent
sodales odio sit amet odio tristique
sit elit.
Lorem Ipsum
06Lorem ipsum dolor sit amet,
onsectetur adipiscing elit. Praesent
sodales odio sit amet odio tristique
sit elit.
Lorem Ipsum
05
#MDBW16
Columns and icons with copy (option 1)
Lorem ipsum dolor sit
amet, onsectetur
adipiscing elit.
Praesent sodales odio
sit amet odio tristique.
Linked
Lorem ipsum dolor sit
amet, onsectetur
adipiscing elit.
Praesent sodales odio
sit amet odio tristique.
Planning
Lorem ipsum dolor sit
amet, onsectetur
adipiscing elit.
Praesent sodales odio
sit amet odio tristique.
Writing
Lorem ipsum dolor sit
amet, onsectetur
adipiscing elit.
Praesent sodales odio
sit amet odio tristique.
Research
#MDBW16
Columns and icons with copy (option 2)
Lorem ipsum dolor sit
amet, onsectetur
adipiscing elit.
Praesent sodales odio
sit amet odio tristique .
Linked
Lorem ipsum dolor sit
amet, onsectetur
adipiscing elit.
Praesent sodales odio
sit amet odio tristique .
Planning
Lorem ipsum dolor sit
amet, onsectetur
adipiscing elit.
Praesent sodales odio
sit amet odio tristique .
Writing
Lorem ipsum dolor sit
amet, onsectetur
adipiscing elit.
Praesent sodales odio
sit amet odio tristique .
Research
#MDBW16
Timeline or progress
2013
Lorem ipsum dolor sit amet,
onsectetur adipiscing elit.
Praesent sodales odio sit
amet odio tristique sit elit.
Lorem ipsum dolor sit amet,
onsectetur adipiscing elit.
Praesent sodales odio sit
amet odio tristique sit elit.
2014
2015
Lorem ipsum dolor sit amet,
onsectetur adipiscing elit.
Praesent sodales odio sit
amet odio tristique sit elit.
Lorem ipsum dolor sit amet,
onsectetur adipiscing elit.
Praesent sodales odio sit
amet odio tristique sit elit.
2016
“
Quote sample. Lorem ipsum dolor sit amet,
onsectetur adipiscing elit amet sodales. Praesent
sodales odio sit amet odio tristique. Lorem ipsum
dolor sit amet, onsectetur adipiscing elit. Praesent
sodales odio sit amet odio tristique. Lorem ipsum
dolor sit amet, onsectetur adipiscing elit.”
MongoDB Europe 2016 - Debugging MongoDB Performance
1 von 123

Recomendados

MongoDB Europe 2016 - ETL for Pros – Getting Data Into MongoDB The Right Way von
MongoDB Europe 2016 - ETL for Pros – Getting Data Into MongoDB The Right WayMongoDB Europe 2016 - ETL for Pros – Getting Data Into MongoDB The Right Way
MongoDB Europe 2016 - ETL for Pros – Getting Data Into MongoDB The Right WayMongoDB
1.3K views72 Folien
MongoDB Europe 2016 - Enabling the Internet of Things at Proximus - Belgium's... von
MongoDB Europe 2016 - Enabling the Internet of Things at Proximus - Belgium's...MongoDB Europe 2016 - Enabling the Internet of Things at Proximus - Belgium's...
MongoDB Europe 2016 - Enabling the Internet of Things at Proximus - Belgium's...MongoDB
1.1K views52 Folien
MongoDB Performance Tuning von
MongoDB Performance TuningMongoDB Performance Tuning
MongoDB Performance TuningPuneet Behl
1.8K views35 Folien
Inside MongoDB: the Internals of an Open-Source Database von
Inside MongoDB: the Internals of an Open-Source DatabaseInside MongoDB: the Internals of an Open-Source Database
Inside MongoDB: the Internals of an Open-Source DatabaseMike Dirolf
52.5K views25 Folien
MongoDB Europe 2016 - Advanced MongoDB Aggregation Pipelines von
MongoDB Europe 2016 - Advanced MongoDB Aggregation PipelinesMongoDB Europe 2016 - Advanced MongoDB Aggregation Pipelines
MongoDB Europe 2016 - Advanced MongoDB Aggregation PipelinesMongoDB
1.5K views231 Folien
2011 Mongo FR - Indexing in MongoDB von
2011 Mongo FR - Indexing in MongoDB2011 Mongo FR - Indexing in MongoDB
2011 Mongo FR - Indexing in MongoDBantoinegirbal
674 views78 Folien

Más contenido relacionado

Was ist angesagt?

MongoDB World 2016: Deciphering .explain() Output von
MongoDB World 2016: Deciphering .explain() OutputMongoDB World 2016: Deciphering .explain() Output
MongoDB World 2016: Deciphering .explain() OutputMongoDB
2.3K views129 Folien
MongoDB Europe 2016 - Graph Operations with MongoDB von
MongoDB Europe 2016 - Graph Operations with MongoDBMongoDB Europe 2016 - Graph Operations with MongoDB
MongoDB Europe 2016 - Graph Operations with MongoDBMongoDB
7.9K views52 Folien
Webinar: Index Tuning and Evaluation von
Webinar: Index Tuning and EvaluationWebinar: Index Tuning and Evaluation
Webinar: Index Tuning and EvaluationMongoDB
1.7K views47 Folien
Webinar: Exploring the Aggregation Framework von
Webinar: Exploring the Aggregation FrameworkWebinar: Exploring the Aggregation Framework
Webinar: Exploring the Aggregation FrameworkMongoDB
3.5K views65 Folien
Why MongoDB is awesome von
Why MongoDB is awesomeWhy MongoDB is awesome
Why MongoDB is awesomeJohn Nunemaker
79.2K views104 Folien
Getting Started with MongoDB and NodeJS von
Getting Started with MongoDB and NodeJSGetting Started with MongoDB and NodeJS
Getting Started with MongoDB and NodeJSMongoDB
3.9K views63 Folien

Was ist angesagt?(20)

MongoDB World 2016: Deciphering .explain() Output von MongoDB
MongoDB World 2016: Deciphering .explain() OutputMongoDB World 2016: Deciphering .explain() Output
MongoDB World 2016: Deciphering .explain() Output
MongoDB2.3K views
MongoDB Europe 2016 - Graph Operations with MongoDB von MongoDB
MongoDB Europe 2016 - Graph Operations with MongoDBMongoDB Europe 2016 - Graph Operations with MongoDB
MongoDB Europe 2016 - Graph Operations with MongoDB
MongoDB7.9K views
Webinar: Index Tuning and Evaluation von MongoDB
Webinar: Index Tuning and EvaluationWebinar: Index Tuning and Evaluation
Webinar: Index Tuning and Evaluation
MongoDB1.7K views
Webinar: Exploring the Aggregation Framework von MongoDB
Webinar: Exploring the Aggregation FrameworkWebinar: Exploring the Aggregation Framework
Webinar: Exploring the Aggregation Framework
MongoDB3.5K views
Getting Started with MongoDB and NodeJS von MongoDB
Getting Started with MongoDB and NodeJSGetting Started with MongoDB and NodeJS
Getting Started with MongoDB and NodeJS
MongoDB3.9K views
Back to Basics Webinar 4: Advanced Indexing, Text and Geospatial Indexes von MongoDB
Back to Basics Webinar 4: Advanced Indexing, Text and Geospatial IndexesBack to Basics Webinar 4: Advanced Indexing, Text and Geospatial Indexes
Back to Basics Webinar 4: Advanced Indexing, Text and Geospatial Indexes
MongoDB5.5K views
Introduction to MongoDB von antoinegirbal
Introduction to MongoDBIntroduction to MongoDB
Introduction to MongoDB
antoinegirbal1.3K views
Webinaire 2 de la série « Retour aux fondamentaux » : Votre première applicat... von MongoDB
Webinaire 2 de la série « Retour aux fondamentaux » : Votre première applicat...Webinaire 2 de la série « Retour aux fondamentaux » : Votre première applicat...
Webinaire 2 de la série « Retour aux fondamentaux » : Votre première applicat...
MongoDB1.1K views
Back to Basics Webinar 3: Schema Design Thinking in Documents von MongoDB
 Back to Basics Webinar 3: Schema Design Thinking in Documents Back to Basics Webinar 3: Schema Design Thinking in Documents
Back to Basics Webinar 3: Schema Design Thinking in Documents
MongoDB3.6K views
MongoDB + Java - Everything you need to know von Norberto Leite
MongoDB + Java - Everything you need to know MongoDB + Java - Everything you need to know
MongoDB + Java - Everything you need to know
Norberto Leite14.3K views
MongoDB - Aggregation Pipeline von Jason Terpko
MongoDB - Aggregation PipelineMongoDB - Aggregation Pipeline
MongoDB - Aggregation Pipeline
Jason Terpko1.2K views
Back to Basics, webinar 2: La tua prima applicazione MongoDB von MongoDB
Back to Basics, webinar 2: La tua prima applicazione MongoDBBack to Basics, webinar 2: La tua prima applicazione MongoDB
Back to Basics, webinar 2: La tua prima applicazione MongoDB
MongoDB1.2K views
Agg framework selectgroup feb2015 v2 von MongoDB
Agg framework selectgroup feb2015 v2Agg framework selectgroup feb2015 v2
Agg framework selectgroup feb2015 v2
MongoDB11.6K views
Building a Scalable Inbox System with MongoDB and Java von antoinegirbal
Building a Scalable Inbox System with MongoDB and JavaBuilding a Scalable Inbox System with MongoDB and Java
Building a Scalable Inbox System with MongoDB and Java
antoinegirbal6.7K views
MongoDB Performance Debugging von MongoDB
MongoDB Performance DebuggingMongoDB Performance Debugging
MongoDB Performance Debugging
MongoDB3.8K views
Mythbusting: Understanding How We Measure the Performance of MongoDB von MongoDB
Mythbusting: Understanding How We Measure the Performance of MongoDBMythbusting: Understanding How We Measure the Performance of MongoDB
Mythbusting: Understanding How We Measure the Performance of MongoDB
MongoDB2K views
Indexing with MongoDB von MongoDB
Indexing with MongoDBIndexing with MongoDB
Indexing with MongoDB
MongoDB12.6K views

Destacado

MongoDB Europe 2016 - MongoDB 3.4 preview and introduction to MongoDB Atlas von
MongoDB Europe 2016 - MongoDB 3.4 preview and introduction to MongoDB AtlasMongoDB Europe 2016 - MongoDB 3.4 preview and introduction to MongoDB Atlas
MongoDB Europe 2016 - MongoDB 3.4 preview and introduction to MongoDB AtlasMongoDB
1.2K views32 Folien
Eventually Consistent von
Eventually ConsistentEventually Consistent
Eventually ConsistentWilfred Springer
3.3K views19 Folien
Concurrency Control in MongoDB 3.0 von
Concurrency Control in MongoDB 3.0Concurrency Control in MongoDB 3.0
Concurrency Control in MongoDB 3.0MongoDB
10.6K views49 Folien
MongoDB Europe 2016 - MongoDB, Ops Manager & Docker at SNCF von
MongoDB Europe 2016 - MongoDB, Ops Manager & Docker at SNCFMongoDB Europe 2016 - MongoDB, Ops Manager & Docker at SNCF
MongoDB Europe 2016 - MongoDB, Ops Manager & Docker at SNCFMongoDB
1.1K views29 Folien
MongoDB Europe 2016 - Using MongoDB to Build a Fast and Scalable Content Repo... von
MongoDB Europe 2016 - Using MongoDB to Build a Fast and Scalable Content Repo...MongoDB Europe 2016 - Using MongoDB to Build a Fast and Scalable Content Repo...
MongoDB Europe 2016 - Using MongoDB to Build a Fast and Scalable Content Repo...MongoDB
953 views49 Folien
MongoDB Europe 2016 - Building WiredTiger von
MongoDB Europe 2016 - Building WiredTigerMongoDB Europe 2016 - Building WiredTiger
MongoDB Europe 2016 - Building WiredTigerMongoDB
1.4K views59 Folien

Destacado(20)

MongoDB Europe 2016 - MongoDB 3.4 preview and introduction to MongoDB Atlas von MongoDB
MongoDB Europe 2016 - MongoDB 3.4 preview and introduction to MongoDB AtlasMongoDB Europe 2016 - MongoDB 3.4 preview and introduction to MongoDB Atlas
MongoDB Europe 2016 - MongoDB 3.4 preview and introduction to MongoDB Atlas
MongoDB1.2K views
Concurrency Control in MongoDB 3.0 von MongoDB
Concurrency Control in MongoDB 3.0Concurrency Control in MongoDB 3.0
Concurrency Control in MongoDB 3.0
MongoDB10.6K views
MongoDB Europe 2016 - MongoDB, Ops Manager & Docker at SNCF von MongoDB
MongoDB Europe 2016 - MongoDB, Ops Manager & Docker at SNCFMongoDB Europe 2016 - MongoDB, Ops Manager & Docker at SNCF
MongoDB Europe 2016 - MongoDB, Ops Manager & Docker at SNCF
MongoDB1.1K views
MongoDB Europe 2016 - Using MongoDB to Build a Fast and Scalable Content Repo... von MongoDB
MongoDB Europe 2016 - Using MongoDB to Build a Fast and Scalable Content Repo...MongoDB Europe 2016 - Using MongoDB to Build a Fast and Scalable Content Repo...
MongoDB Europe 2016 - Using MongoDB to Build a Fast and Scalable Content Repo...
MongoDB953 views
MongoDB Europe 2016 - Building WiredTiger von MongoDB
MongoDB Europe 2016 - Building WiredTigerMongoDB Europe 2016 - Building WiredTiger
MongoDB Europe 2016 - Building WiredTiger
MongoDB1.4K views
MongoDB Europe 2016 - Deploying MongoDB on NetApp storage von MongoDB
MongoDB Europe 2016 - Deploying MongoDB on NetApp storageMongoDB Europe 2016 - Deploying MongoDB on NetApp storage
MongoDB Europe 2016 - Deploying MongoDB on NetApp storage
MongoDB1.3K views
Webinar: Data Streaming with Apache Kafka & MongoDB von MongoDB
Webinar: Data Streaming with Apache Kafka & MongoDBWebinar: Data Streaming with Apache Kafka & MongoDB
Webinar: Data Streaming with Apache Kafka & MongoDB
MongoDB1.8K views
MongoDB Europe 2016 - Choosing Between 100 Billion Travel Options – Instant S... von MongoDB
MongoDB Europe 2016 - Choosing Between 100 Billion Travel Options – Instant S...MongoDB Europe 2016 - Choosing Between 100 Billion Travel Options – Instant S...
MongoDB Europe 2016 - Choosing Between 100 Billion Travel Options – Instant S...
MongoDB1.2K views
MongoDB Europe 2016 - Welcome von MongoDB
MongoDB Europe 2016 - WelcomeMongoDB Europe 2016 - Welcome
MongoDB Europe 2016 - Welcome
MongoDB1.1K views
Webinar: Introducing the MongoDB Connector for BI 2.0 with Tableau von MongoDB
Webinar: Introducing the MongoDB Connector for BI 2.0 with TableauWebinar: Introducing the MongoDB Connector for BI 2.0 with Tableau
Webinar: Introducing the MongoDB Connector for BI 2.0 with Tableau
MongoDB3.5K views
Webinar: Transitioning from SQL to MongoDB von MongoDB
Webinar: Transitioning from SQL to MongoDBWebinar: Transitioning from SQL to MongoDB
Webinar: Transitioning from SQL to MongoDB
MongoDB2.5K views
Webinar: 10-Step Guide to Creating a Single View of your Business von MongoDB
Webinar: 10-Step Guide to Creating a Single View of your BusinessWebinar: 10-Step Guide to Creating a Single View of your Business
Webinar: 10-Step Guide to Creating a Single View of your Business
MongoDB2.3K views
MongoDB at Scale von MongoDB
MongoDB at ScaleMongoDB at Scale
MongoDB at Scale
MongoDB7.1K views
Indexing and Performance Tuning von MongoDB
Indexing and Performance TuningIndexing and Performance Tuning
Indexing and Performance Tuning
MongoDB3.1K views
Webinar: MongoDB Schema Design and Performance Implications von MongoDB
Webinar: MongoDB Schema Design and Performance ImplicationsWebinar: MongoDB Schema Design and Performance Implications
Webinar: MongoDB Schema Design and Performance Implications
MongoDB4K views
MongoDB Europe 2016 - Welcome von MongoDB
MongoDB Europe 2016 - WelcomeMongoDB Europe 2016 - Welcome
MongoDB Europe 2016 - Welcome
MongoDB429 views
MongoDB Launchpad 2016: What’s New in the 3.4 Server von MongoDB
MongoDB Launchpad 2016: What’s New in the 3.4 ServerMongoDB Launchpad 2016: What’s New in the 3.4 Server
MongoDB Launchpad 2016: What’s New in the 3.4 Server
MongoDB1.1K views
Production deployment von MongoDB
Production deploymentProduction deployment
Production deployment
MongoDB4.3K views

Similar a MongoDB Europe 2016 - Debugging MongoDB Performance

Diagnostics & Debugging webinar von
Diagnostics & Debugging webinarDiagnostics & Debugging webinar
Diagnostics & Debugging webinarMongoDB
4.8K views91 Folien
Diagnostics and Debugging von
Diagnostics and DebuggingDiagnostics and Debugging
Diagnostics and DebuggingMongoDB
2.2K views87 Folien
It's 10pm: Do You Know Where Your Writes Are? von
It's 10pm: Do You Know Where Your Writes Are?It's 10pm: Do You Know Where Your Writes Are?
It's 10pm: Do You Know Where Your Writes Are?MongoDB
2.6K views69 Folien
Mongo db dla administratora von
Mongo db dla administratoraMongo db dla administratora
Mongo db dla administratoraŁukasz Jagiełło
551 views24 Folien
Py conkr 20150829_docker-python von
Py conkr 20150829_docker-pythonPy conkr 20150829_docker-python
Py conkr 20150829_docker-pythonEric Ahn
3K views41 Folien
Py conkr 20150829_docker-python von
Py conkr 20150829_docker-pythonPy conkr 20150829_docker-python
Py conkr 20150829_docker-pythonEric Ahn
619 views41 Folien

Similar a MongoDB Europe 2016 - Debugging MongoDB Performance(20)

Diagnostics & Debugging webinar von MongoDB
Diagnostics & Debugging webinarDiagnostics & Debugging webinar
Diagnostics & Debugging webinar
MongoDB4.8K views
Diagnostics and Debugging von MongoDB
Diagnostics and DebuggingDiagnostics and Debugging
Diagnostics and Debugging
MongoDB2.2K views
It's 10pm: Do You Know Where Your Writes Are? von MongoDB
It's 10pm: Do You Know Where Your Writes Are?It's 10pm: Do You Know Where Your Writes Are?
It's 10pm: Do You Know Where Your Writes Are?
MongoDB2.6K views
Py conkr 20150829_docker-python von Eric Ahn
Py conkr 20150829_docker-pythonPy conkr 20150829_docker-python
Py conkr 20150829_docker-python
Eric Ahn3K views
Py conkr 20150829_docker-python von Eric Ahn
Py conkr 20150829_docker-pythonPy conkr 20150829_docker-python
Py conkr 20150829_docker-python
Eric Ahn619 views
Building and Deploying Application to Apache Mesos von Joe Stein
Building and Deploying Application to Apache MesosBuilding and Deploying Application to Apache Mesos
Building and Deploying Application to Apache Mesos
Joe Stein27.2K views
10 Key MongoDB Performance Indicators von iammutex
10 Key MongoDB Performance Indicators  10 Key MongoDB Performance Indicators
10 Key MongoDB Performance Indicators
iammutex10.8K views
Presentation Brucon - Anubisnetworks and PTCoresec von Tiago Henriques
Presentation Brucon - Anubisnetworks and PTCoresecPresentation Brucon - Anubisnetworks and PTCoresec
Presentation Brucon - Anubisnetworks and PTCoresec
Tiago Henriques3.9K views
Why you should be using structured logs von Stefan Krawczyk
Why you should be using structured logsWhy you should be using structured logs
Why you should be using structured logs
Stefan Krawczyk477 views
Intravert Server side processing for Cassandra von Edward Capriolo
Intravert Server side processing for CassandraIntravert Server side processing for Cassandra
Intravert Server side processing for Cassandra
Edward Capriolo5.2K views
NYC* 2013 - "Advanced Data Processing: Beyond Queries and Slices" von DataStax Academy
NYC* 2013 - "Advanced Data Processing: Beyond Queries and Slices"NYC* 2013 - "Advanced Data Processing: Beyond Queries and Slices"
NYC* 2013 - "Advanced Data Processing: Beyond Queries and Slices"
DataStax Academy3.9K views
Webinar: Architecting Secure and Compliant Applications with MongoDB von MongoDB
Webinar: Architecting Secure and Compliant Applications with MongoDBWebinar: Architecting Secure and Compliant Applications with MongoDB
Webinar: Architecting Secure and Compliant Applications with MongoDB
MongoDB10.3K views
sf bay area dfir meetup (2016-04-30) - OsxCollector von Rishi Bhargava
sf bay area dfir meetup (2016-04-30) - OsxCollector   sf bay area dfir meetup (2016-04-30) - OsxCollector
sf bay area dfir meetup (2016-04-30) - OsxCollector
Rishi Bhargava229 views
MongoDB Performance Tuning von MongoDB
MongoDB Performance TuningMongoDB Performance Tuning
MongoDB Performance Tuning
MongoDB30.5K views
Null Bachaav - May 07 Attack Monitoring workshop. von Prajal Kulkarni
Null Bachaav - May 07 Attack Monitoring workshop.Null Bachaav - May 07 Attack Monitoring workshop.
Null Bachaav - May 07 Attack Monitoring workshop.
Prajal Kulkarni5.9K views
Architecting Secure and Compliant Applications with MongoDB von MongoDB
Architecting Secure and Compliant Applications with MongoDB        Architecting Secure and Compliant Applications with MongoDB
Architecting Secure and Compliant Applications with MongoDB
MongoDB1.2K views
Robert Pankowecki - Czy sprzedawcy SQLowych baz nas oszukali? von SegFaultConf
Robert Pankowecki - Czy sprzedawcy SQLowych baz nas oszukali?Robert Pankowecki - Czy sprzedawcy SQLowych baz nas oszukali?
Robert Pankowecki - Czy sprzedawcy SQLowych baz nas oszukali?
SegFaultConf250 views
Nodejs性能分析优化和分布式设计探讨 von flyinweb
Nodejs性能分析优化和分布式设计探讨Nodejs性能分析优化和分布式设计探讨
Nodejs性能分析优化和分布式设计探讨
flyinweb3K views
MongoDB dla administratora von 3camp
MongoDB dla administratora MongoDB dla administratora
MongoDB dla administratora
3camp688 views

Más de MongoDB

MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas von
MongoDB SoCal 2020: Migrate Anything* to MongoDB AtlasMongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB AtlasMongoDB
6.7K views46 Folien
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts! von
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!MongoDB
1.2K views20 Folien
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel... von
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...MongoDB
1.1K views40 Folien
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB von
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDBMongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDBMongoDB
1.4K views106 Folien
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T... von
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...MongoDB
782 views37 Folien
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data von
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series DataMongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series DataMongoDB
870 views47 Folien

Más de MongoDB(20)

MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas von MongoDB
MongoDB SoCal 2020: Migrate Anything* to MongoDB AtlasMongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB6.7K views
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts! von MongoDB
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB1.2K views
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel... von MongoDB
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB1.1K views
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB von MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDBMongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB1.4K views
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T... von MongoDB
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB782 views
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data von MongoDB
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series DataMongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB870 views
MongoDB SoCal 2020: MongoDB Atlas Jump Start von MongoDB
 MongoDB SoCal 2020: MongoDB Atlas Jump Start MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB633 views
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys] von MongoDB
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB528 views
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2 von MongoDB
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB473 views
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ... von MongoDB
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB492 views
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts! von MongoDB
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB355 views
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset von MongoDB
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your MindsetMongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB383 views
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart von MongoDB
MongoDB .local San Francisco 2020: MongoDB Atlas JumpstartMongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB287 views
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin... von MongoDB
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB392 views
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++ von MongoDB
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB359 views
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo... von MongoDB
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB382 views
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive von MongoDB
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep DiveMongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB330 views
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang von MongoDB
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & GolangMongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB293 views
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app... von MongoDB
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB328 views
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning... von MongoDB
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB312 views

Último

Introduction to Microsoft Fabric.pdf von
Introduction to Microsoft Fabric.pdfIntroduction to Microsoft Fabric.pdf
Introduction to Microsoft Fabric.pdfishaniuudeshika
29 views16 Folien
Cross-network in Google Analytics 4.pdf von
Cross-network in Google Analytics 4.pdfCross-network in Google Analytics 4.pdf
Cross-network in Google Analytics 4.pdfGA4 Tutorials
6 views7 Folien
Chapter 3b- Process Communication (1) (1)(1) (1).pptx von
Chapter 3b- Process Communication (1) (1)(1) (1).pptxChapter 3b- Process Communication (1) (1)(1) (1).pptx
Chapter 3b- Process Communication (1) (1)(1) (1).pptxayeshabaig2004
5 views30 Folien
3196 The Case of The East River von
3196 The Case of The East River3196 The Case of The East River
3196 The Case of The East RiverErickANDRADE90
11 views4 Folien
PROGRAMME.pdf von
PROGRAMME.pdfPROGRAMME.pdf
PROGRAMME.pdfHiNedHaJar
18 views13 Folien
ColonyOS von
ColonyOSColonyOS
ColonyOSJohanKristiansson6
9 views17 Folien

Último(20)

Cross-network in Google Analytics 4.pdf von GA4 Tutorials
Cross-network in Google Analytics 4.pdfCross-network in Google Analytics 4.pdf
Cross-network in Google Analytics 4.pdf
GA4 Tutorials6 views
Chapter 3b- Process Communication (1) (1)(1) (1).pptx von ayeshabaig2004
Chapter 3b- Process Communication (1) (1)(1) (1).pptxChapter 3b- Process Communication (1) (1)(1) (1).pptx
Chapter 3b- Process Communication (1) (1)(1) (1).pptx
ayeshabaig20045 views
Supercharging your Data with Azure AI Search and Azure OpenAI von Peter Gallagher
Supercharging your Data with Azure AI Search and Azure OpenAISupercharging your Data with Azure AI Search and Azure OpenAI
Supercharging your Data with Azure AI Search and Azure OpenAI
Peter Gallagher37 views
Understanding Hallucinations in LLMs - 2023 09 29.pptx von Greg Makowski
Understanding Hallucinations in LLMs - 2023 09 29.pptxUnderstanding Hallucinations in LLMs - 2023 09 29.pptx
Understanding Hallucinations in LLMs - 2023 09 29.pptx
Greg Makowski17 views
RuleBookForTheFairDataEconomy.pptx von noraelstela1
RuleBookForTheFairDataEconomy.pptxRuleBookForTheFairDataEconomy.pptx
RuleBookForTheFairDataEconomy.pptx
noraelstela167 views
Vikas 500 BIG DATA TECHNOLOGIES LAB.pdf von vikas12611618
Vikas 500 BIG DATA TECHNOLOGIES LAB.pdfVikas 500 BIG DATA TECHNOLOGIES LAB.pdf
Vikas 500 BIG DATA TECHNOLOGIES LAB.pdf
vikas126116188 views
Building Real-Time Travel Alerts von Timothy Spann
Building Real-Time Travel AlertsBuilding Real-Time Travel Alerts
Building Real-Time Travel Alerts
Timothy Spann111 views
Organic Shopping in Google Analytics 4.pdf von GA4 Tutorials
Organic Shopping in Google Analytics 4.pdfOrganic Shopping in Google Analytics 4.pdf
Organic Shopping in Google Analytics 4.pdf
GA4 Tutorials11 views
[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx von DataScienceConferenc1
[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx
[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx
Data structure and algorithm. von Abdul salam
Data structure and algorithm. Data structure and algorithm.
Data structure and algorithm.
Abdul salam 19 views
CRIJ4385_Death Penalty_F23.pptx von yvettemm100
CRIJ4385_Death Penalty_F23.pptxCRIJ4385_Death Penalty_F23.pptx
CRIJ4385_Death Penalty_F23.pptx
yvettemm1006 views
Short Story Assignment by Kelly Nguyen von kellynguyen01
Short Story Assignment by Kelly NguyenShort Story Assignment by Kelly Nguyen
Short Story Assignment by Kelly Nguyen
kellynguyen0119 views
UNEP FI CRS Climate Risk Results.pptx von pekka28
UNEP FI CRS Climate Risk Results.pptxUNEP FI CRS Climate Risk Results.pptx
UNEP FI CRS Climate Risk Results.pptx
pekka2811 views

MongoDB Europe 2016 - Debugging MongoDB Performance

  • 2. Asya Kamsky, Lead Product Manager MongoDB Diagnostics and Debugging 3.4
  • 3. Asya Kamsky, Lead Product Manager MongoDB Diagnostics and Debugging 3.4
  • 6. “ I thought of my old teacher Joe Bell, ... of his eerie trick of spotting details. If he were a detective he would surely reduce this ... business to something nearer an exact science. —Arthur Conan Doyle
  • 7. The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
  • 8. The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
  • 10. #MDBW16 Understanding The Patient Understand the system Knowledge Monitor trends over time Trends Record all metrics "at rest" Baseline
  • 13. Gathering Data “Data! Data! Data! I can't make bricks without clay.” -- Sherlock Holmes, The Adventure of the Copper Beeches
  • 15. “There is nothing like first-hand evidence.” -- Sherlock Holmes, A Study in Scarlet
  • 20. #MDBW16 Available Tools: Say "AH" > db.isMaster( ) > rs.conf( ) > rs.status( ) > sh.status( ) > db.version( ) > db.serverCmdLineOpts( )
  • 22. #MDBW16 > show dbs > show collections > db.getCollectionNames().forEach(function(c) { printjson(db.getCollection(c).getIndexes()); }); Available Tools: Say "AH"
  • 25. #MDBW16 Available Tools: OS % free % blockdev --report % dmesg % ulimit -a % ifconfig, ip <...>, iptables % iostat % netstat % top; htop % perf % iperf3
  • 26. #MDBW16 Available Tools: OS for MongoDB % mongostat % mongotop
  • 28. 2014-09-01T15:50:03.184-0004 [conn208] query data.activity query: { $query: { _updated_at: { $gt: new Date(1396459946346) }, _to: "_UserA" } }, $orderby: { _updated_at: -1 } } planSummary: IXSCAN { _to: 1, _created_at: -1 } ntoreturn:100 ntoskip:0 nscanned:19692 nscannedObjects:19692 numYields:170 locks(micros) r: 283957 nreturned:65 reslen:24939 342ms 2014-09-01T15:50:03.184-0004 [conn208] query data.activity query: { $query: { _updated_at: { $gt: new Date(1396459946346) }, _to: "_UserA" } }, $orderby: { _updated_at: -1 } } planSummary: IXSCAN { _to: 1, _created_at: -1 } ntoreturn:100 ntoskip:0 nscanned:19692 nscannedObjects:19692 numYields:170 locks(micros) r: 283957 nreturned:65 reslen:24939 342ms mongod logs
  • 30. 2015-05-26T23:33:32.774-0500 I COMMAND 2015-05-28T12:37:11.440-0500 I NETWORK 2015-05-28T12:38:35.839-0500 I QUERY 3.0 COMMAND,NETWORK,QUERY,REPL,ACCESS,INDEX,JOURNAL,SHARDING,WRITE,- mongod logs
  • 31. 2015-05-26T23:33:32.774-0500 I COMMAND [conn45] command admin.$cmd command: listDatabases { listDatabases: 1.0 } ntoskip:0 keyUpdates:0 writeConflicts:0 numYields:0 reslen:393 locks:{ Global: { acquireCount: { r: 12 } }, Database: { acquireCount: { r: 6 } } } 321ms 2015-05-28T12:37:11.440-0500 I NETWORK [initandlisten] connection accepted from 127.0.0.1:48625 #183 (21 connections now open) 2015-05-28T12:38:35.839-0500 I QUERY [conn183] getmore tableau.flights201406 query: { origin_city_market_id: 31703.0 } cursorid: 61957110347 ntoreturn:0 cursorExhausted:1 keyUpdates:0 writeConflicts:0 numYields:176 nreturned:22579 reslen:1332181 locks:{ Global: { acquireCount: { r: 354 } }, Database: { acquireCount: { r: 177 } }, Collection: { acquireCount: { r: 177 } } } 114ms 3.0 mongod logs
  • 33. 2016-06-23T10:34:41.559-0700 I COMMAND [conn26] command test.c command: find { find: "c", filter: { a: { $elemMatch: { v: { $gte: 3.0, $lt: 4.0 } } } } } planSummary: IXSCAN { a.v: 1.0 } keysExamined:2 docsExamined:1 fromMultiPlanner:1 cursorExhausted:1 keyUpdates:0 writeConflicts:0 numYields:1 nreturned:1 reslen:187 locks:{ Global: { acquireCount: { r: 4 } }, Database: { acquireCount: { r: 2 } }, Collection: { acquireCount: { r: 2 } } } protocol:op_command 110ms 3.2 mongod logs
  • 34. 2016-06-23T10:34:41.559-0700 I COMMAND [conn26] command test.c command: find { find: "c", filter: { a: { $elemMatch: { v: { $gte: 3.0, $lt: 4.0 } } } } } planSummary: IXSCAN { a.v: 1.0 } keysExamined:2 docsExamined:1 fromMultiPlanner:1 cursorExhausted:1 keyUpdates:0 writeConflicts:0 numYields:1 nreturned:1 reslen:187 locks:{ Global: { acquireCount: { r: 4 } }, Database: { acquireCount: { r: 2 } }, Collection: { acquireCount: { r: 2 } } } protocol:op_command 110ms 3.2 mongod logs
  • 36. 3.4 mongod logs 2016-06-01T15:30:04.373-0700 I COMMAND [conn99] command socialite.following command: aggregate { aggregate: "following", pipeline: [ { $match: { _f: "45705" } }, { $group: { _id: null, followees: { $addToSet: "$_t" } } }, { $lookup: { from: "following", localField: "followees", foreignField: "_f", as: "fofollowees" } }, { $project: { fofs: { $setUnion: [ "$followees", "$fofollowees._t" ] } } } ] } planSummary: IXSCAN { _f: 1, _t: 1 } keysExamined:1 docsExamined:0 numYields:11 reslen:316214 locks:{ Global: { acquireCount: { r: 3800 } }, Database: { acquireCount: { r: 1900 } }, Collection: { acquireCount: { r: 1900 } } } protocol:op_query 218ms
  • 37. 3.4 mongod logs 2016-06-25T23:38:27.346-0500 I WRITE [conn128] update ycsb.usertable query: { _id: "user7074965863272626663" } planSummary: IDHACK update: { $set: { field1: BinData(0, 2 } } keysExamined:1 docsExamined:1 nMatched:1 nModified:1 numYields:1 locks:{ Global: { acquireCount: { r: 3, w: 3 } }, Database: { acquireCount: { w: 3 } }, Collection: { acquireCount: { w: 2 } }, Metadata: { acquireCount: { w: 1 } }, oplog: { acquireCount: { w: 1 } } } 11ms
  • 39. > db.getLogComponents() { "verbosity" : 1, "accessControl" : { "verbosity" : -1}, "command" : { "verbosity" : -1}, "control" : { "verbosity" : -1}, "geo" : { "verbosity" : -1}, "index" : { "verbosity" : -1}, "network" : { "verbosity" : -1}, "query" : { "verbosity" : -1}, "replication" : { "verbosity" : -1}, "sharding" : { "verbosity" : -1}, "storage" : { "verbosity" : -1, "journal" : { "verbosity" : -1}}, "write" : { "verbosity" : -1} }
  • 40. > db.getLogComponents() { "verbosity" : 1, "accessControl" : { "verbosity" : -1}, "command" : { "verbosity" : -1}, "control" : { "verbosity" : -1}, "executor" : { "verbosity" : -1}, "geo" : { "verbosity" : -1}, "index" : { "verbosity" : -1}, "network" : { "verbosity" : -1}, "query" : { "verbosity" : -1}, "replication" : { "verbosity" : -1}, "sharding" : { "verbosity" : -1}, "storage" : { "verbosity" : -1, "journal" : { "verbosity" : -1}}, "write" : { "verbosity" : -1}, "ftdc" : { "verbosity" : -1} }
  • 41. > db.setLogLevel( logLevel, component ) > db.setLogLevel( 1, "sharding" ) > db.setLogLevel( 2, "query" )
  • 42. "It is of the highest importance ... to be able to recognize, out of a number of facts, which are incidental and which vital. " Sherlock Holmes, The Reigate Puzzle
  • 47. #MDBW16 mplotqueries $ mplotqueries --help usage: mplotqueries [OPTIONS] [logfile [logfile ...]] A script to plot various information from logfiles. ...
  • 48. #MDBW16 mplotqueries $ mplotqueries --help usage: mplotqueries [OPTIONS] [logfile [logfile ...]] A script to plot various information from logfiles. ... optional arguments: --type {nscanned/n,rsstate,connchurn,durline,histogram,range,scatter,event} type of plot (default=scatter with --yaxis duration)
  • 49. #MDBW16 mplotqueries $ mplotqueries --help usage: mplotqueries [OPTIONS] [logfile [logfile ...]] A script to plot various information from logfiles. ... optional arguments: --type {nscanned/n,rsstate,connchurn,durline,histogram,range,scatter,event} type of plot (default=scatter with --yaxis duration) --group GROUP specify value to group on. All basic plot types can group on 'namespace', 'operation', 'thread', 'pattern' ...
  • 51. "... what is out of the common is usually a guide rather than a hindrance." — Sherlock Holmes, A Study in Scarlet
  • 53. % mplotqueries firstmongo.log --type nscanned/n 2014-06-17T17:13:34.235 [conn1569841] query db1.coll query: { time: { $lt: "2014-06-17 17:13:31", $gte: "2014-06-17 17:04:31" } } planSummary: COLLSCAN ntoreturn:0 ntoskip:0 nscanned:5169727 nscannedObjects:5169727 keyUpdates:0 numYields:12492 locks(micros) r:37736571 nreturned:72 reslen:32707 30129ms mplotqueries
  • 54. % mplotqueries firstmongo.log --type nscanned/n 2014-06-17T17:13:34.235 [conn1569841] query db1.coll query: { time: { $lt: "2014-06-17 17:13:31", $gte: "2014-06-17 17:04:31" } } planSummary: COLLSCAN ntoreturn:0 ntoskip:0 nscanned:5169727 nscannedObjects:5169727 keyUpdates:0 numYields:12492 locks(micros) r:37736571 nreturned:72 reslen:32707 30129ms mplotqueries
  • 55. % mplotqueries firstmongo.log --type nscanned/n 2014-06-17T17:13:34.235 [conn1569841] query db1.coll query: { time: { $lt: "2014-06-17 17:13:31", $gte: "2014-06-17 17:04:31" } } planSummary: COLLSCAN ntoreturn:0 ntoskip:0 nscanned:5169727 nscannedObjects:5169727 keyUpdates:0 numYields:12492 locks(micros) r:37736571 nreturned:72 reslen:32707 30129ms mplotqueries
  • 56. % mplotqueries firstmongo.log --type nscanned/n 2014-06-17T17:13:34.235 [conn1569841] query db1.coll query: { time: { $lt: "2014-06-17 17:13:31", $gte: "2014-06-17 17:04:31" } } planSummary: COLLSCAN ntoreturn:0 ntoskip:0 nscanned:5169727 nscannedObjects:5169727 keyUpdates:0 numYields:12492 locks(micros) r:37736571 nreturned:72 reslen:32707 30129ms 2014-06-17T17:13:47.607 [conn1569990] query db2.coll query: { time: { $lt: "2014-06-17 17:14:05", $gte: "2014-06-17 17:05:05" }, status: 8 } planSummary: COLLSCAN ntoreturn:0 ntoskip:0 nscanned:2057564 nscannedObjects:2057564 keyUpdates:0 numYields:5008 locks(micros) r:11557172 nreturned:56 reslen:18745 13086ms mplotqueries
  • 57. % mplotqueries firstmongo.log --type nscanned/n 2014-06-17T17:13:34.235 [conn1569841] query db1.coll query: { time: { $lt: "2014-06-17 17:13:31", $gte: "2014-06-17 17:04:31" } } planSummary: COLLSCAN ntoreturn:0 ntoskip:0 nscanned:5169727 nscannedObjects:5169727 keyUpdates:0 numYields:12492 locks(micros) r:37736571 nreturned:72 reslen:32707 30129ms 2014-06-17T17:13:47.607 [conn1569990] query db2.coll query: { time: { $lt: "2014-06-17 17:14:05", $gte: "2014-06-17 17:05:05" }, status: 8 } planSummary: COLLSCAN ntoreturn:0 ntoskip:0 nscanned:2057564 nscannedObjects:2057564 keyUpdates:0 numYields:5008 locks(micros) r:11557172 nreturned:56 reslen:18745 13086ms mplotqueries
  • 58. % mplotqueries firstmongo.log --type nscanned/n 2014-06-17T17:13:34.235 [conn1569841] query db1.coll query: { time: { $lt: "2014-06-17 17:13:31", $gte: "2014-06-17 17:04:31" } } planSummary: COLLSCAN ntoreturn:0 ntoskip:0 nscanned:5169727 nscannedObjects:5169727 keyUpdates:0 numYields:12492 locks(micros) r:37736571 nreturned:72 reslen:32707 30129ms 2014-06-17T17:13:47.607 [conn1569990] query db2.coll query: { time: { $lt: "2014-06-17 17:14:05", $gte: "2014-06-17 17:05:05" }, status: 8 } planSummary: COLLSCAN ntoreturn:0 ntoskip:0 nscanned:2057564 nscannedObjects:2057564 keyUpdates:0 numYields:5008 locks(micros) r:11557172 nreturned:56 reslen:18745 13086ms mplotqueries
  • 65. "Eliminate all other factors, and the one which remains must be the truth." Sherlock Holmes -The Sign of Four
  • 69. #MDBW16 mongostat insert query update delete getmore command % dirty % used flushes vsize res faults qr|qw ar|aw netIn netOut conn ReplSetName role ts
  • 96. #MDBW16 db.currentOp() > db.currentOp({secs_running:{$gt:10}}) { "desc" : "conn3482", "threadId" : "140512575297280", "connectionId" : 3482, "client_s" : "10.0.149.179:55295", "active" : true, "opid" : "SocialiteAtlas-shard-2:55547103", "secs_running" : 13, "microsecs_running" : NumberLong(13483812), "op" : "query", "ns" : "db1.coll1", "numYields" : 48815, "query" : { "field1" : 5,
  • 97. #MDBW16 db.currentOp() > db.currentOp({desc:/^conn/,secs_running:{$gt:0}}).inprog.forEach(function(op) { print(op.opid, op.op, op.ns, op.secs_running); }); SocialiteAtlas-shard-0:68479014 query socialite.content 3 SocialiteAtlas-shard-0:68479730 query socialite.content 2 SocialiteAtlas-shard-0:68480174 query socialite.content 1 SocialiteAtlas-shard-0:68479234 query socialite.content 2 SocialiteAtlas-shard-0:68480136 query socialite.content 1 SocialiteAtlas-shard-0:68479529 query socialite.content 2 SocialiteAtlas-shard-0:68480182 query socialite.content 1 SocialiteAtlas-shard-0:68480261 query socialite.content 1 > db.killOp ( opid )
  • 100. Asya Kamsky, Lead Product Manager MongoDB Diagnostics and Debugging 3.4
  • 102. Title Slide Option 1 Click here to add speaker name and title
  • 103. Title Slide Option 2 Click here to add speaker name and title
  • 104. This is divider slide option 2
  • 105. #MDBW16 Click to add title: keep it to 56 characters w/spaces This is a typical content slide with full width body. •  First level bullet list •  Second level bullet list •  Third level bullet list
  • 106. #MDBW16 Two content Click to add text. •  First level bullet list •  Second level bullet list •  Third level bullet list Click to add text. •  First level bullet list •  Second level bullet list •  Third level bullet list
  • 107. #MDBW16 Left content Click to add text. •  First level bullet list •  Second level bullet list
  • 108. #MDBW16 Left content Click to add text. •  First level bullet list •  Second level bullet list
  • 109. #MDBW16 Pie Chart 64% 25% 11% 1st Qtr 2nd Qtr 3rd Qtr 1st Quarter Lorem ipsum dolor sit amet, onsectetur adipiscing elit. Praesent sodales odio sit amet odio tristique . 2nd Quarter Lorem ipsum dolor sit amet, onsectetur adipiscing elit. Praesent sodales odio sit amet odio tristique . 3rd Quarter Lorem ipsum dolor sit amet, onsectetur adipiscing elit. Praesent sodales odio sit amet odio tristique .
  • 110. #MDBW16 Bar Graph 0 1 2 3 4 5 6 Category 1 Category 2 Category 3 Category 4 Chart Title Series 1 Series 2 Series 3
  • 111. #MDBW16 Column Header 1 Column Header 2 Column Header 3 Column Header 4 Column Header 5 Lorem ipsum dolor sit amet Lorem ipsum dolor sit amet Lorem ipsum dolor sit amet Lorem ipsum dolor sit amet Lorem ipsum dolor sit amet Lorem ipsum dolor sit amet Lorem ipsum dolor sit amet Lorem ipsum dolor sit amet Lorem ipsum dolor sit amet Lorem ipsum dolor sit amet Lorem ipsum dolor sit amet Lorem ipsum dolor sit amet Lorem ipsum dolor sit amet Lorem ipsum dolor sit amet Lorem ipsum dolor sit amet Table
  • 113. #MDBW16 Coding Example – Light Background // Retrieve var MongoClient = require('mongodb').MongoClient; // Connect to the db MongoClient.connect("mongodb://localhost:27017/exampleDb", function(err, db) { if(err) { return console.dir(err); } db.collection('test', function(err, collection) {}); db.collection('test', {w:1}, function(err, collection) {}); db.createCollection('test', function(err, collection) {}); db.createCollection('test', {w:1}, function(err, collection) {}); });
  • 114. #MDBW16 Coding Example – Dark Background // Retrieve var MongoClient = require('mongodb').MongoClient; // Connect to the db MongoClient.connect("mongodb://localhost:27017/exampleDb", function(err, db) { if(err) { return console.dir(err); } db.collection('test', function(err, collection) {}); db.collection('test', {w:1}, function(err, collection) {}); db.createCollection('test', function(err, collection) {}); db.createCollection('test', {w:1}, function(err, collection) {}); });
  • 118. #MDBW16 List slide – can also be used for agenda Lorem ipsum dolor sit amet, onsectetur adipiscing elit. Praesent sodales odio sit amet odio tristique sit elit. Lorem Ipsum 01 Lorem ipsum dolor sit amet, onsectetur adipiscing elit. Praesent sodales odio sit amet odio tristique sit elit. Lorem Ipsum 03Lorem ipsum dolor sit amet, onsectetur adipiscing elit. Praesent sodales odio sit amet odio tristique sit elit. Lorem Ipsum 02 Lorem ipsum dolor sit amet, onsectetur adipiscing elit. Praesent sodales odio sit amet odio tristique sit elit. Lorem Ipsum 05 Lorem ipsum dolor sit amet, onsectetur adipiscing elit. Praesent sodales odio sit amet odio tristique sit elit. Lorem Ipsum 06Lorem ipsum dolor sit amet, onsectetur adipiscing elit. Praesent sodales odio sit amet odio tristique sit elit. Lorem Ipsum 05
  • 119. #MDBW16 Columns and icons with copy (option 1) Lorem ipsum dolor sit amet, onsectetur adipiscing elit. Praesent sodales odio sit amet odio tristique. Linked Lorem ipsum dolor sit amet, onsectetur adipiscing elit. Praesent sodales odio sit amet odio tristique. Planning Lorem ipsum dolor sit amet, onsectetur adipiscing elit. Praesent sodales odio sit amet odio tristique. Writing Lorem ipsum dolor sit amet, onsectetur adipiscing elit. Praesent sodales odio sit amet odio tristique. Research
  • 120. #MDBW16 Columns and icons with copy (option 2) Lorem ipsum dolor sit amet, onsectetur adipiscing elit. Praesent sodales odio sit amet odio tristique . Linked Lorem ipsum dolor sit amet, onsectetur adipiscing elit. Praesent sodales odio sit amet odio tristique . Planning Lorem ipsum dolor sit amet, onsectetur adipiscing elit. Praesent sodales odio sit amet odio tristique . Writing Lorem ipsum dolor sit amet, onsectetur adipiscing elit. Praesent sodales odio sit amet odio tristique . Research
  • 121. #MDBW16 Timeline or progress 2013 Lorem ipsum dolor sit amet, onsectetur adipiscing elit. Praesent sodales odio sit amet odio tristique sit elit. Lorem ipsum dolor sit amet, onsectetur adipiscing elit. Praesent sodales odio sit amet odio tristique sit elit. 2014 2015 Lorem ipsum dolor sit amet, onsectetur adipiscing elit. Praesent sodales odio sit amet odio tristique sit elit. Lorem ipsum dolor sit amet, onsectetur adipiscing elit. Praesent sodales odio sit amet odio tristique sit elit. 2016
  • 122. “ Quote sample. Lorem ipsum dolor sit amet, onsectetur adipiscing elit amet sodales. Praesent sodales odio sit amet odio tristique. Lorem ipsum dolor sit amet, onsectetur adipiscing elit. Praesent sodales odio sit amet odio tristique. Lorem ipsum dolor sit amet, onsectetur adipiscing elit.”