Interactive Visualization With Bokeh (SF Python Meetup)

Peter Wang
Peter WangCTO and Co-Founder at Continuum Analytics, Inc.
Interactive Visualization with Bokeh
About Continuum Analytics 
Domains 
• Finance 
•Geophysics 
•Defense 
•Advertising metrics & data analysis 
• Scientific computing 
Technologies 
•Array/Columnar data processing 
• Distributed computing, HPC 
• GPU and new vector hardware 
•Machine learning, predictive analytics 
• Interactive Visualization 
Enterprise 
Python 
Data Processing 
Scientific 
Computing 
Data Analysis 
Visualisation 
Scalable 
Computing
Bokeh 
• Interactive visualization 
• Novel graphics 
• Streaming, dynamic, large data 
• For the browser, with or without a server 
• No need to write Javascript
Interactive 
• Dragging & zooming, with linking 
• Selections that can round-trip to server 
• Resize, entirely on client side 
• Flexible hover 
http://bokeh.pydata.org/gallery.html
Novel Graphics
Novel Graphics
Novel Graphics
No Javascript
No Javascript
Streaming & Dynamic Data
Streaming & Dynamic Data
Big Data
Server-based, Standalone, Notebook
Matplotlib Chaco d3 mpld3 Vincent 
Interactive visualization * Y * Y 
Novel graphics * * Y Y 
Streaming/dynamic data * Y Y 
Large data * Y Y 
For the browser Y Y Y Y 
No need to write Javascript Y Y Y Y Y 
Works with Matplotlib Y Y Y 
Works with IPython notebook Y Y Y Y
Architecture
Previous: Javascript code generation 
HTML 
server.py Browser 
App Model 
js_str = """ <d3.js> 
<highchart.js> 
<etc.js> 
""" 
plot.js.template 
D3 
highcharts 
flot 
crossfilter 
etc. ... 
One-shot; no MVC interaction; no data streaming
BokehJS 
• Full-fledged dynamic, interactive plotting engine 
• materializes a reactive scenegraph from JSON 
• optionally push/pull state from server, using websockets 
• HTML5 Canvas, backbone.js, coffeescript, AMD, plays 
with JSfiddle, … 
! 
“We wrote JavaScript, so you don’t have to.”
bokeh.py & bokeh.js 
App Model server.py Browser 
bokeh.py 
object graph 
JSON 
BokehJS 
object graph
bokeh.py & bokeh.js 
App Model server.py Browser 
BokehJS 
object graph 
bokeh-server 
bokeh.py 
object graph 
JSON
iris.py
iris.html ! 
<!DOCTYPE html> 
<html lang="en"> 
<head> 
<meta charset="utf-8"> 
<title>iris.py example</title> 
<link rel="stylesheet" href="../../../../../anaconda/envs/bokehdemo/lib/python2.7/site-packages/bokeh/server/static/css/bokeh.min.css" type="text/css" /> 
<script type="text/javascript" src="../../../../../anaconda/envs/bokehdemo/lib/python2.7/site-packages/bokeh/server/static/js/bokeh.min.js"></script> 
<script type="text/javascript"> 
$(function() { 
var all_models = [{"attributes": {"column_names": ["fill_color", "line_color", "x", "y"], "doc": null, "selected": [], "discrete_ranges": {}, "cont_ranges": {}, "data": {"line_color": ["red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", 
"red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "green", "green", "green", "green", "green", "green", "green", "green", "green", 
"green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", 
"green", "green", "green", "green", "green", "green", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", 
"blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue"], "x": [1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.4, 1.5, 1.5, 1.6, 1.4, 1.1, 1.2, 1.5, 1.3, 1.4, 1.7, 1.5, 1.7, 1.5, 1.0, 1.7, 1.9, 1.6, 1.6, 1.5, 1.4, 1.6, 1.6, 1.5, 1.5, 1.4, 1.5, 
1.2, 1.3, 1.4, 1.3, 1.5, 1.3, 1.3, 1.3, 1.6, 1.9, 1.4, 1.6, 1.4, 1.5, 1.4, 4.7, 4.5, 4.9, 4.0, 4.6, 4.5, 4.7, 3.3, 4.6, 3.9, 3.5, 4.2, 4.0, 4.7, 3.6, 4.4, 4.5, 4.1, 4.5, 3.9, 4.8, 4.0, 4.9, 4.7, 4.3, 4.4, 4.8, 5.0, 4.5, 3.5, 3.8, 3.7, 3.9, 5.1, 4.5, 4.5, 4.7, 4.4, 4.1, 4.0, 4.4, 4.6, 4.0, 3.3, 4.2, 4.2, 4.2, 4.3, 
3.0, 4.1, 6.0, 5.1, 5.9, 5.6, 5.8, 6.6, 4.5, 6.3, 5.8, 6.1, 5.1, 5.3, 5.5, 5.0, 5.1, 5.3, 5.5, 6.7, 6.9, 5.0, 5.7, 4.9, 6.7, 4.9, 5.7, 6.0, 4.8, 4.9, 5.6, 5.8, 6.1, 6.4, 5.6, 5.1, 5.6, 6.1, 5.6, 5.5, 4.8, 5.4, 5.6, 5.1, 5.1, 5.9, 5.7, 5.2, 5.0, 5.2, 5.4, 5.1], "fill_color": ["red", "red", "red", "red", "red", "red", 
"red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "green", 
"green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", 
"green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", 
"blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue"], "y": [0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, 0.2, 0.2, 0.1, 0.2, 0.2, 0.1, 0.1, 0.2, 0.4, 0.4, 0.3, 0.3, 0.3, 
0.2, 0.4, 0.2, 0.5, 0.2, 0.2, 0.4, 0.2, 0.2, 0.2, 0.2, 0.4, 0.1, 0.2, 0.2, 0.2, 0.2, 0.1, 0.2, 0.2, 0.3, 0.3, 0.2, 0.6, 0.4, 0.3, 0.2, 0.2, 0.2, 0.2, 1.4, 1.5, 1.5, 1.3, 1.5, 1.3, 1.6, 1.0, 1.3, 1.4, 1.0, 1.5, 1.0, 1.4, 1.3, 1.4, 1.5, 1.0, 1.5, 1.1, 1.8, 1.3, 1.5, 1.2, 1.3, 1.4, 1.4, 1.7, 1.5, 1.0, 1.1, 1.0, 1.2, 
1.6, 1.5, 1.6, 1.5, 1.3, 1.3, 1.3, 1.2, 1.4, 1.2, 1.0, 1.3, 1.2, 1.3, 1.3, 1.1, 1.3, 2.5, 1.9, 2.1, 1.8, 2.2, 2.1, 1.7, 1.8, 1.8, 2.5, 2.0, 1.9, 2.1, 2.0, 2.4, 2.3, 1.8, 2.2, 2.3, 1.5, 2.3, 2.0, 2.0, 1.8, 2.1, 1.8, 1.8, 1.8, 2.1, 1.6, 1.9, 2.0, 2.2, 1.5, 1.4, 2.3, 2.4, 1.8, 1.8, 2.1, 2.4, 2.3, 1.9, 2.3, 2.5, 2.3, 
1.9, 2.0, 2.3, 1.8]}, "id": "5e71b46a-0d81-4a18-8402-188816471c0c"}, "type": "ColumnDataSource", "id": "5e71b46a-0d81-4a18-8402-188816471c0c"}, {"attributes": {"sources": [{"source": {"type": "ColumnDataSource", "id": "5e71b46a-0d81-4a18-8402-188816471c0c"}, "columns": ["x"]}], "id": 
"bbaf66fb-48b8-474a-8dae-910a995186f6", "doc": null}, "type": "DataRange1d", "id": "bbaf66fb-48b8-474a-8dae-910a995186f6"}, {"attributes": {"sources": [{"source": {"type": "ColumnDataSource", "id": "5e71b46a-0d81-4a18-8402-188816471c0c"}, "columns": ["y"]}], "id": "8377dd3b-9c4e-41ce-8930-76a92a68e907", "doc": null}, 
"type": "DataRange1d", "id": "8377dd3b-9c4e-41ce-8930-76a92a68e907"}, {"attributes": {"doc": null, "id": "24c8ae7c-f3c8-4c88-9f5d-dcbe59506791"}, "type": "BasicTickFormatter", "id": "24c8ae7c-f3c8-4c88-9f5d-dcbe59506791"}, {"attributes": {"doc": null, "id": "3720fa34-cea8-4b54-a51b-c738a1ef96fb"}, "type": 
"BasicTicker", "id": "3720fa34-cea8-4b54-a51b-c738a1ef96fb"}, {"attributes": {"plot": {"type": "Plot", "id": "iris"}, "doc": null, "bounds": "auto", "id": "0ae2ae05-3abd-414a-9840-c5e804de9661", "location": "min", "formatter": {"type": "BasicTickFormatter", "id": "24c8ae7c-f3c8-4c88-9f5d-dcbe59506791"}, "ticker": 
{"type": "BasicTicker", "id": "3720fa34-cea8-4b54-a51b-c738a1ef96fb"}, "dimension": 0}, "type": "LinearAxis", "id": "0ae2ae05-3abd-414a-9840-c5e804de9661"}, {"attributes": {"plot": {"type": "Plot", "id": "iris"}, "doc": null, "axis": {"type": "LinearAxis", "id": "0ae2ae05-3abd-414a-9840-c5e804de9661"}, "id": 
"25d48bf1-6583-4aff-9e47-dd57e304fb7a", "dimension": 0}, "type": "Grid", "id": "25d48bf1-6583-4aff-9e47-dd57e304fb7a"}, {"attributes": {"doc": null, "id": "d88bdf6f-b1a7-49c1-b71e-df2c1156f202"}, "type": "BasicTickFormatter", "id": "d88bdf6f-b1a7-49c1-b71e-df2c1156f202"}, {"attributes": {"doc": null, "id": 
"434ab651-0a3a-4bab-aa7a-34844b833bce"}, "type": "BasicTicker", "id": "434ab651-0a3a-4bab-aa7a-34844b833bce"}, {"attributes": {"plot": {"type": "Plot", "id": "iris"}, "doc": null, "bounds": "auto", "id": "53cf6b9d-1c82-48d2-8094-5a81fed497d9", "location": "min", "formatter": {"type": "BasicTickFormatter", "id": 
"d88bdf6f-b1a7-49c1-b71e-df2c1156f202"}, "ticker": {"type": "BasicTicker", "id": "434ab651-0a3a-4bab-aa7a-34844b833bce"}, "dimension": 1}, "type": "LinearAxis", "id": "53cf6b9d-1c82-48d2-8094-5a81fed497d9"}, {"attributes": {"plot": {"type": "Plot", "id": "iris"}, "doc": null, "axis": {"type": "LinearAxis", "id": 
"53cf6b9d-1c82-48d2-8094-5a81fed497d9"}, "id": "21bd25eb-22d3-427c-a6a3-5e3afc96cc2a", "dimension": 1}, "type": "Grid", "id": "21bd25eb-22d3-427c-a6a3-5e3afc96cc2a"}, {"attributes": {"data_source": {"type": "ColumnDataSource", "id": "5e71b46a-0d81-4a18-8402-188816471c0c"}, "server_data_source": null, "doc": null, 
"nonselection_glyphspec": {"line_color": {"value": "#1f77b4"}, "angle_units": "deg", "fill_color": {"value": "#1f77b4"}, "visible": null, "line_dash_offset": 0, "line_join": "miter", "size": {"units": "screen", "value": 10}, "line_alpha": {"units": "data", "value": 0.1}, "radius_units": "screen", "end_angle_units": 
"deg", "valign": null, "length_units": "screen", "start_angle_units": "deg", "line_cap": "butt", "line_dash": [], "line_width": {"units": "data", "field": "line_width"}, "type": "circle", "fill_alpha": {"units": "data", "value": 0.1}, "halign": null, "y": {"units": "data", "field": "y"}, "x": {"units": "data", 
"field": "x"}, "margin": null}, "xdata_range": null, "ydata_range": null, "glyphspec": {"line_color": {"units": "data", "field": "line_color"}, "line_alpha": {"units": "data", "value": 1.0}, "fill_color": {"units": "data", "field": "fill_color"}, "line_width": {"units": "data", "field": "line_width"}, "fill_alpha": 
{"units": "data", "value": 0.2}, "y": {"units": "data", "field": "y"}, "x": {"units": "data", "field": "x"}, "type": "circle", "size": {"units": "screen", "value": 10}}, "id": "093300cf-6759-4449-877b-7731476588a0"}, "type": "Glyph", "id": "093300cf-6759-4449-877b-7731476588a0"}, {"attributes": {"plot": null, "doc": 
null, "renderers": [{"type": "Glyph", "id": "093300cf-6759-4449-877b-7731476588a0"}], "id": "9a60e0da-efe5-4b08-a4f6-7ed315d67b9b"}, "type": "BoxSelectTool", "id": "9a60e0da-efe5-4b08-a4f6-7ed315d67b9b"}, {"attributes": {"doc": null, "tool": {"type": "BoxSelectTool", "id": "9a60e0da-efe5-4b08-a4f6-7ed315d67b9b"}, 
"id": "5a0e8c76-4893-452b-b2e8-cefb1a232437"}, "type": "BoxSelection", "id": "5a0e8c76-4893-452b-b2e8-cefb1a232437"}, {"attributes": {"plot": {"type": "Plot", "id": "iris"}, "dimensions": ["width", "height"], "doc": null, "id": "a4b154c7-b674-4f86-93f8-770cf7a0d9b5"}, "type": "PanTool", "id": "a4b154c7- 
b674-4f86-93f8-770cf7a0d9b5"}, {"attributes": {"plot": {"type": "Plot", "id": "iris"}, "dimensions": ["width", "height"], "doc": null, "id": "3ba5854b-e047-47c2-989b-15b5b79cb205"}, "type": "WheelZoomTool", "id": "3ba5854b-e047-47c2-989b-15b5b79cb205"}, {"attributes": {"plot": {"type": "Plot", "id": "iris"}, "id": 
"0a583af8-4db5-45ea-b09b-16562035ccc4", "doc": null}, "type": "PreviewSaveTool", "id": "0a583af8-4db5-45ea-b09b-16562035ccc4"}, {"attributes": {"plot": {"type": "Plot", "id": "iris"}, "id": "5621f214-17c9-417f-aaed-f841745f489f", "doc": null}, "type": "ResizeTool", "id": "5621f214-17c9-417f-aaed-f841745f489f"}, 
{"attributes": {"plot": {"type": "Plot", "id": "iris"}, "id": "98be8a66-dfaa-4f2d-95cd-0296a3647da1", "doc": null}, "type": "ResetTool", "id": "98be8a66-dfaa-4f2d-95cd-0296a3647da1"}, {"attributes": {"outer_height": 600, "x_range": {"type": "DataRange1d", "id": "bbaf66fb-48b8-474a-8dae-910a995186f6"}, "y_range": 
{"type": "DataRange1d", "id": "8377dd3b-9c4e-41ce-8930-76a92a68e907"}, "outer_width": 600, "renderers": [{"type": "LinearAxis", "id": "0ae2ae05-3abd-414a-9840-c5e804de9661"}, {"type": "Grid", "id": "25d48bf1-6583-4aff-9e47-dd57e304fb7a"}, {"type": "LinearAxis", "id": "53cf6b9d-1c82-48d2-8094-5a81fed497d9"}, {"type": 
"Grid", "id": "21bd25eb-22d3-427c-a6a3-5e3afc96cc2a"}, {"type": "BoxSelection", "id": "6451a3a2-d1d7-401e-8ec6-ed92c626f448"}, {"type": "BoxSelection", "id": "5a0e8c76-4893-452b-b2e8-cefb1a232437"}, {"type": "Glyph", "id": "093300cf-6759-4449-877b-7731476588a0"}], "id": "iris", "data_sources": [], "doc": null, 
"canvas_height": 600, "title": "Plot", "tools": [{"type": "PanTool", "id": "a4b154c7-b674-4f86-93f8-770cf7a0d9b5"}, {"type": "WheelZoomTool", "id": "3ba5854b-e047-47c2-989b-15b5b79cb205"}, {"type": "BoxZoomTool", "id": "a047dc9b-0dd1-4883-8575-550cd63409fa"}, {"type": "PreviewSaveTool", "id": "0a583af8-4db5-45ea-b09b- 
16562035ccc4"}, {"type": "ResizeTool", "id": "5621f214-17c9-417f-aaed-f841745f489f"}, {"type": "BoxSelectTool", "id": "9a60e0da-efe5-4b08-a4f6-7ed315d67b9b"}, {"type": "ResetTool", "id": "98be8a66-dfaa-4f2d-95cd-0296a3647da1"}], "canvas_width": 600}, "type": "Plot", "id": "iris"}, {"attributes": {"plot": 
{"type": "Plot", "id": "iris"}, "id": "a047dc9b-0dd1-4883-8575-550cd63409fa", "doc": null}, "type": "BoxZoomTool", "id": "a047dc9b-0dd1-4883-8575-550cd63409fa"}, {"attributes": {"doc": null, "tool": {"type": "BoxZoomTool", "id": "a047dc9b-0dd1-4883-8575-550cd63409fa"}, "id": "6451a3a2-d1d7-401e-8ec6-ed92c626f448"}, 
"type": "BoxSelection", "id": "6451a3a2-d1d7-401e-8ec6-ed92c626f448"}, {"attributes": {"doc": null, "children": [{"type": "Plot", "id": "iris"}], "id": "475ad0da-baf5-48be-902b-166b060b6978"}, "type": "PlotContext", "id": "475ad0da-baf5-48be-902b-166b060b6978"}]; 
var modelid = "475ad0da-baf5-48be-902b-166b060b6978"; 
var modeltype = "PlotContext"; 
var elementid = "8bb1deb5-74cb-4b28-b44f-c89dc5701d69"; 
console.log(modelid, modeltype, elementid); 
Bokeh.load_models(all_models); 
var model = Bokeh.Collections(modeltype).get(modelid); 
var view = new model.default_view({model: model, el: '#8bb1deb5-74cb-4b28-b44f-c89dc5701d69'}); 
}); 
</script> 
</head> 
<body> 
<div class="plotdiv" id="8bb1deb5-74cb-4b28-b44f-c89dc5701d69">Plots</div> 
</body> 
</html>
iris.html (detail) 
<head> 
<meta charset="utf-8"> 
<title>iris.py example</title> 
<link rel="stylesheet" href="../bokeh/server/static/css/bokeh.min.css" type="text/css" /> 
<script type="text/javascript" src=“../bokeh/server/static/js/bokeh.min.js"></script> 
<script type=“text/javascript”> 
$(function() { 
var all_models = [JSON data] 
var modelid = "475ad0da-baf5-48be-902b-166b060b6978"; 
var modeltype = "PlotContext"; 
var elementid = "8bb1deb5-74cb-4b28-b44f-c89dc5701d69"; 
console.log(modelid, modeltype, elementid); 
Bokeh.load_models(all_models); 
var model = Bokeh.Collections(modeltype).get(modelid); 
var view = new model.default_view({ 
model: model, 
el: '#8bb1deb5-74cb-4b28-b44f-c89dc5701d69'}); 
}); 
</script> 
</head> 
<body> 
<div class="plotdiv" id="8bb1deb5-74cb-4b28-b44f-c89dc5701d69">Plots</div> 
</body> 
</html>
JSON 
{ 
"attributes": { 
"sources": [ 
{ 
"source": { 
"type": "ColumnDataSource", 
"id": "5e71b46a-0d81-4a18-8402-188816471c0c" 
}, 
"columns": [ 
"x" 
] 
} 
], 
"id": "bbaf66fb-48b8-474a-8dae-910a995186f6", 
"doc": null 
}, 
"type": "DataRange1d", 
"id": "bbaf66fb-48b8-474a-8dae-910a995186f6" 
},
Other languages can generate JSON... 
bokeh.r! 
bokeh.h 
bokeh.m 
bokeh.java 
...
New Release! v0.6 
• New charts in bokeh.charts: Time Series and Categorical Heatmap 
• Sophisticated Hands-on Table widget 
• Complete Python 3 support for bokeh-server 
• Much expanded User Guide and Dev Guide 
• Multiple axes and ranges now supported 
• Object query interface to help with plot styling 
• Blog post coming soon (tomorrow?) 
https://groups.google.com/a/continuum.io/forum/#!topic/bokeh/Hm-QNV9uQOA
Abstract Rendering
What’s Next 
• Improved widgets (including tables): 
• Graphical, data-driven “applets” 
• Easier dashboards 
• Improved crossfilter app 
• Improved bokeh.charts library 
• Data-driven layout 
• SVG output 
• command-line tool
Data Apps
Dashboard / Crossfilter Tool
How to Help & Contribute 
• Open source BSD license for everything (JS, Python, server) 
• Use it and provide feedback 
• Designer? Front-end dev? - Get in touch! 
• Engage us to work on custom visual exploration apps & 
dashboards 
• Not just code integration - also provide visualization expertise 
• Helps the open source efforts 
@bokehplots
Additional Demos
1 von 31

Recomendados

[Pgday.Seoul 2019] Citus를 이용한 분산 데이터베이스 von
[Pgday.Seoul 2019] Citus를 이용한 분산 데이터베이스[Pgday.Seoul 2019] Citus를 이용한 분산 데이터베이스
[Pgday.Seoul 2019] Citus를 이용한 분산 데이터베이스PgDay.Seoul
1.5K views29 Folien
Data Science. Intro von
Data Science. IntroData Science. Intro
Data Science. IntroSeongyun Byeon
20K views106 Folien
성장을 좋아하는 사람이, 성장하고 싶은 사람에게 von
성장을 좋아하는 사람이, 성장하고 싶은 사람에게성장을 좋아하는 사람이, 성장하고 싶은 사람에게
성장을 좋아하는 사람이, 성장하고 싶은 사람에게Seongyun Byeon
8.6K views126 Folien
Challenge And Evolution Of Data Orchestration at Rakuten Data System von
Challenge And Evolution Of Data Orchestration at Rakuten Data SystemChallenge And Evolution Of Data Orchestration at Rakuten Data System
Challenge And Evolution Of Data Orchestration at Rakuten Data SystemAlluxio, Inc.
1.9K views13 Folien
Table partitioning in PostgreSQL + Rails von
Table partitioning in PostgreSQL + RailsTable partitioning in PostgreSQL + Rails
Table partitioning in PostgreSQL + RailsAgnieszka Figiel
5.5K views24 Folien
Es272 ch4b von
Es272 ch4bEs272 ch4b
Es272 ch4bBatuhan Yıldırım
1.7K views29 Folien

Más contenido relacionado

Was ist angesagt?

TF에서 팀 빌딩까지 9개월의 기록 : 성장하는 조직을 만드는 여정 von
TF에서 팀 빌딩까지 9개월의 기록 : 성장하는 조직을 만드는 여정TF에서 팀 빌딩까지 9개월의 기록 : 성장하는 조직을 만드는 여정
TF에서 팀 빌딩까지 9개월의 기록 : 성장하는 조직을 만드는 여정Seongyun Byeon
14.7K views65 Folien
초이채널 제작 및 운영 20개월 간의 기록 von
초이채널 제작 및 운영 20개월 간의 기록 초이채널 제작 및 운영 20개월 간의 기록
초이채널 제작 및 운영 20개월 간의 기록 Frank Junghyun Kim
1.9K views40 Folien
공간정보 스터디 1주차 von
공간정보 스터디 1주차공간정보 스터디 1주차
공간정보 스터디 1주차Byeong-Hyeok Yu
3.6K views22 Folien
Auditing and Monitoring PostgreSQL/EPAS von
Auditing and Monitoring PostgreSQL/EPASAuditing and Monitoring PostgreSQL/EPAS
Auditing and Monitoring PostgreSQL/EPASEDB
500 views53 Folien
Hive spark-s3acommitter-hbase-nfs von
Hive spark-s3acommitter-hbase-nfsHive spark-s3acommitter-hbase-nfs
Hive spark-s3acommitter-hbase-nfsYifeng Jiang
4.7K views30 Folien
공간정보 스터디 2주차 von
공간정보 스터디 2주차공간정보 스터디 2주차
공간정보 스터디 2주차Byeong-Hyeok Yu
5.9K views23 Folien

Was ist angesagt?(20)

TF에서 팀 빌딩까지 9개월의 기록 : 성장하는 조직을 만드는 여정 von Seongyun Byeon
TF에서 팀 빌딩까지 9개월의 기록 : 성장하는 조직을 만드는 여정TF에서 팀 빌딩까지 9개월의 기록 : 성장하는 조직을 만드는 여정
TF에서 팀 빌딩까지 9개월의 기록 : 성장하는 조직을 만드는 여정
Seongyun Byeon14.7K views
초이채널 제작 및 운영 20개월 간의 기록 von Frank Junghyun Kim
초이채널 제작 및 운영 20개월 간의 기록 초이채널 제작 및 운영 20개월 간의 기록
초이채널 제작 및 운영 20개월 간의 기록
Frank Junghyun Kim1.9K views
Auditing and Monitoring PostgreSQL/EPAS von EDB
Auditing and Monitoring PostgreSQL/EPASAuditing and Monitoring PostgreSQL/EPAS
Auditing and Monitoring PostgreSQL/EPAS
EDB500 views
Hive spark-s3acommitter-hbase-nfs von Yifeng Jiang
Hive spark-s3acommitter-hbase-nfsHive spark-s3acommitter-hbase-nfs
Hive spark-s3acommitter-hbase-nfs
Yifeng Jiang4.7K views
Online MySQL Backups with Percona XtraBackup von Kenny Gryp
Online MySQL Backups with Percona XtraBackupOnline MySQL Backups with Percona XtraBackup
Online MySQL Backups with Percona XtraBackup
Kenny Gryp1.2K views
Webブラウザで動くOSSオフィスソフト、LibreOffice Onlineの中身に迫る / LibreOffice Online Implementa... von Naruhiko Ogasawara
Webブラウザで動くOSSオフィスソフト、LibreOffice Onlineの中身に迫る / LibreOffice Online Implementa...Webブラウザで動くOSSオフィスソフト、LibreOffice Onlineの中身に迫る / LibreOffice Online Implementa...
Webブラウザで動くOSSオフィスソフト、LibreOffice Onlineの中身に迫る / LibreOffice Online Implementa...
Naruhiko Ogasawara9.2K views
Terasort von hhyin
TerasortTerasort
Terasort
hhyin2.8K views
SQL Transactions - What they are good for and how they work von Markus Winand
SQL Transactions - What they are good for and how they workSQL Transactions - What they are good for and how they work
SQL Transactions - What they are good for and how they work
Markus Winand33.9K views
Market your add on like a pro von Atlassian
Market your add on like a proMarket your add on like a pro
Market your add on like a pro
Atlassian1.8K views
Backup Online no MySQL com Percona Xtrabackup von Marcelo Altmann
Backup Online no MySQL com Percona XtrabackupBackup Online no MySQL com Percona Xtrabackup
Backup Online no MySQL com Percona Xtrabackup
Marcelo Altmann68 views
PostgreSQL Troubleshoot On-line, (RITfest 2015 meetup at Moscow, Russia). von Alexey Lesovsky
PostgreSQL Troubleshoot On-line, (RITfest 2015 meetup at Moscow, Russia).PostgreSQL Troubleshoot On-line, (RITfest 2015 meetup at Moscow, Russia).
PostgreSQL Troubleshoot On-line, (RITfest 2015 meetup at Moscow, Russia).
Alexey Lesovsky10.4K views
OSMC 2021 | pg_stat_monitor: A cool extension for better database (PostgreSQL... von NETWAYS
OSMC 2021 | pg_stat_monitor: A cool extension for better database (PostgreSQL...OSMC 2021 | pg_stat_monitor: A cool extension for better database (PostgreSQL...
OSMC 2021 | pg_stat_monitor: A cool extension for better database (PostgreSQL...
NETWAYS146 views
Little Big Data #1. 바닥부터 시작하는 데이터 인프라 von Seongyun Byeon
Little Big Data #1. 바닥부터 시작하는 데이터 인프라Little Big Data #1. 바닥부터 시작하는 데이터 인프라
Little Big Data #1. 바닥부터 시작하는 데이터 인프라
Seongyun Byeon17K views
The State of HBase Replication von HBaseCon
The State of HBase ReplicationThe State of HBase Replication
The State of HBase Replication
HBaseCon9.1K views
How to Manage Scale-Out Environments with MariaDB MaxScale von MariaDB plc
How to Manage Scale-Out Environments with MariaDB MaxScaleHow to Manage Scale-Out Environments with MariaDB MaxScale
How to Manage Scale-Out Environments with MariaDB MaxScale
MariaDB plc1.2K views
Apache Cassandra and DataStax Enterprise Explained with Peter Halliday at Wil... von DataStax Academy
Apache Cassandra and DataStax Enterprise Explained with Peter Halliday at Wil...Apache Cassandra and DataStax Enterprise Explained with Peter Halliday at Wil...
Apache Cassandra and DataStax Enterprise Explained with Peter Halliday at Wil...
DataStax Academy11.3K views
user Behavior Analysis with Session Windows and Apache Kafka's Streams API von confluent
user Behavior Analysis with Session Windows and Apache Kafka's Streams APIuser Behavior Analysis with Session Windows and Apache Kafka's Streams API
user Behavior Analysis with Session Windows and Apache Kafka's Streams API
confluent4.6K views

Similar a Interactive Visualization With Bokeh (SF Python Meetup)

Bokeh Tutorial - PyData @ Strata San Jose 2015 von
Bokeh Tutorial - PyData @ Strata San Jose 2015Bokeh Tutorial - PyData @ Strata San Jose 2015
Bokeh Tutorial - PyData @ Strata San Jose 2015Peter Wang
4.2K views27 Folien
Elasticsearch intro output von
Elasticsearch intro outputElasticsearch intro output
Elasticsearch intro outputTom Chen
1.4K views57 Folien
Create Graph and Grid Using D3 Library von
Create Graph and Grid Using D3 LibraryCreate Graph and Grid Using D3 Library
Create Graph and Grid Using D3 LibraryYanliang Bao (Beryl)
242 views13 Folien
아파트 정보를 이용한 ELK stack 활용 - 오근문 von
아파트 정보를 이용한 ELK stack 활용 - 오근문아파트 정보를 이용한 ELK stack 활용 - 오근문
아파트 정보를 이용한 ELK stack 활용 - 오근문NAVER D2
1.4K views17 Folien
Analytics with MongoDB Aggregation Framework and Hadoop Connector von
Analytics with MongoDB Aggregation Framework and Hadoop ConnectorAnalytics with MongoDB Aggregation Framework and Hadoop Connector
Analytics with MongoDB Aggregation Framework and Hadoop ConnectorHenrik Ingo
9.8K views48 Folien
ELK Stack - Turn boring logfiles into sexy dashboard von
ELK Stack - Turn boring logfiles into sexy dashboardELK Stack - Turn boring logfiles into sexy dashboard
ELK Stack - Turn boring logfiles into sexy dashboardGeorg Sorst
5.4K views12 Folien

Similar a Interactive Visualization With Bokeh (SF Python Meetup)(20)

Bokeh Tutorial - PyData @ Strata San Jose 2015 von Peter Wang
Bokeh Tutorial - PyData @ Strata San Jose 2015Bokeh Tutorial - PyData @ Strata San Jose 2015
Bokeh Tutorial - PyData @ Strata San Jose 2015
Peter Wang4.2K views
Elasticsearch intro output von Tom Chen
Elasticsearch intro outputElasticsearch intro output
Elasticsearch intro output
Tom Chen1.4K views
아파트 정보를 이용한 ELK stack 활용 - 오근문 von NAVER D2
아파트 정보를 이용한 ELK stack 활용 - 오근문아파트 정보를 이용한 ELK stack 활용 - 오근문
아파트 정보를 이용한 ELK stack 활용 - 오근문
NAVER D21.4K views
Analytics with MongoDB Aggregation Framework and Hadoop Connector von Henrik Ingo
Analytics with MongoDB Aggregation Framework and Hadoop ConnectorAnalytics with MongoDB Aggregation Framework and Hadoop Connector
Analytics with MongoDB Aggregation Framework and Hadoop Connector
Henrik Ingo9.8K views
ELK Stack - Turn boring logfiles into sexy dashboard von Georg Sorst
ELK Stack - Turn boring logfiles into sexy dashboardELK Stack - Turn boring logfiles into sexy dashboard
ELK Stack - Turn boring logfiles into sexy dashboard
Georg Sorst5.4K views
Scaling Saved Searches at eBay Kleinanzeigen von Andre Charton
Scaling Saved Searches at eBay KleinanzeigenScaling Saved Searches at eBay Kleinanzeigen
Scaling Saved Searches at eBay Kleinanzeigen
Andre Charton1.4K views
Class 4 handout two column layout w mobile web design von Erin M. Kidwell
Class 4 handout two column layout w mobile web designClass 4 handout two column layout w mobile web design
Class 4 handout two column layout w mobile web design
Erin M. Kidwell1.3K views
Использование Elasticsearch для организации поиска по сайту von Olga Lavrentieva
Использование Elasticsearch для организации поиска по сайтуИспользование Elasticsearch для организации поиска по сайту
Использование Elasticsearch для организации поиска по сайту
Olga Lavrentieva7.8K views
Elasticsearch sur Azure : Make sense of your (BIG) data ! von Microsoft
Elasticsearch sur Azure : Make sense of your (BIG) data !Elasticsearch sur Azure : Make sense of your (BIG) data !
Elasticsearch sur Azure : Make sense of your (BIG) data !
Microsoft3.3K views
Awesome Traefik - Ingress Controller for Kubernetes - Swapnasagar Pradhan von Ajeet Singh Raina
Awesome Traefik - Ingress Controller for Kubernetes - Swapnasagar PradhanAwesome Traefik - Ingress Controller for Kubernetes - Swapnasagar Pradhan
Awesome Traefik - Ingress Controller for Kubernetes - Swapnasagar Pradhan
Ajeet Singh Raina343 views
Custom Visualizations: What, How and Why von Jeroen Van Der A
Custom Visualizations: What, How and WhyCustom Visualizations: What, How and Why
Custom Visualizations: What, How and Why
Jeroen Van Der A727 views
Hopper Elasticsearch Hackathon von imotov
Hopper Elasticsearch HackathonHopper Elasticsearch Hackathon
Hopper Elasticsearch Hackathon
imotov4.1K views
Peggy elasticsearch應用 von LearningTech
Peggy elasticsearch應用Peggy elasticsearch應用
Peggy elasticsearch應用
LearningTech304 views
Anwendungsfaelle für Elasticsearch von Florian Hopf
Anwendungsfaelle für ElasticsearchAnwendungsfaelle für Elasticsearch
Anwendungsfaelle für Elasticsearch
Florian Hopf6.8K views
Full-Text Search Explained - Philipp Krenn - Codemotion Rome 2017 von Codemotion
Full-Text Search Explained - Philipp Krenn - Codemotion Rome 2017Full-Text Search Explained - Philipp Krenn - Codemotion Rome 2017
Full-Text Search Explained - Philipp Krenn - Codemotion Rome 2017
Codemotion945 views
d3sparql.js demo at SWAT4LS 2014 in Berlin von Toshiaki Katayama
d3sparql.js demo at SWAT4LS 2014 in Berlind3sparql.js demo at SWAT4LS 2014 in Berlin
d3sparql.js demo at SWAT4LS 2014 in Berlin
Toshiaki Katayama2.9K views
Fighting fraud: finding duplicates at scale von Alexey Grigorev
Fighting fraud: finding duplicates at scaleFighting fraud: finding duplicates at scale
Fighting fraud: finding duplicates at scale
Alexey Grigorev358 views

Más de Peter Wang

Rethinking Decentralization / Whither Privacy? von
Rethinking Decentralization / Whither Privacy?Rethinking Decentralization / Whither Privacy?
Rethinking Decentralization / Whither Privacy?Peter Wang
149 views21 Folien
Rethinking OSS In An Era of Cloud and ML von
Rethinking OSS In An Era of Cloud and MLRethinking OSS In An Era of Cloud and ML
Rethinking OSS In An Era of Cloud and MLPeter Wang
169 views43 Folien
Python for Data: Past, Present, Future (PyCon JP 2017 Keynote) von
Python for Data: Past, Present, Future (PyCon JP 2017 Keynote)Python for Data: Past, Present, Future (PyCon JP 2017 Keynote)
Python for Data: Past, Present, Future (PyCon JP 2017 Keynote)Peter Wang
2.4K views28 Folien
Command line Data Tools von
Command line Data ToolsCommand line Data Tools
Command line Data ToolsPeter Wang
287 views9 Folien
Stories, Myth, and the Humane Network von
Stories, Myth, and the Humane NetworkStories, Myth, and the Humane Network
Stories, Myth, and the Humane NetworkPeter Wang
1.8K views27 Folien
Thoughts on Business & Startups von
Thoughts on Business & StartupsThoughts on Business & Startups
Thoughts on Business & StartupsPeter Wang
1K views42 Folien

Más de Peter Wang(9)

Rethinking Decentralization / Whither Privacy? von Peter Wang
Rethinking Decentralization / Whither Privacy?Rethinking Decentralization / Whither Privacy?
Rethinking Decentralization / Whither Privacy?
Peter Wang149 views
Rethinking OSS In An Era of Cloud and ML von Peter Wang
Rethinking OSS In An Era of Cloud and MLRethinking OSS In An Era of Cloud and ML
Rethinking OSS In An Era of Cloud and ML
Peter Wang169 views
Python for Data: Past, Present, Future (PyCon JP 2017 Keynote) von Peter Wang
Python for Data: Past, Present, Future (PyCon JP 2017 Keynote)Python for Data: Past, Present, Future (PyCon JP 2017 Keynote)
Python for Data: Past, Present, Future (PyCon JP 2017 Keynote)
Peter Wang2.4K views
Command line Data Tools von Peter Wang
Command line Data ToolsCommand line Data Tools
Command line Data Tools
Peter Wang287 views
Stories, Myth, and the Humane Network von Peter Wang
Stories, Myth, and the Humane NetworkStories, Myth, and the Humane Network
Stories, Myth, and the Humane Network
Peter Wang1.8K views
Thoughts on Business & Startups von Peter Wang
Thoughts on Business & StartupsThoughts on Business & Startups
Thoughts on Business & Startups
Peter Wang1K views
PyData Texas 2015 Keynote von Peter Wang
PyData Texas 2015 KeynotePyData Texas 2015 Keynote
PyData Texas 2015 Keynote
Peter Wang2.6K views
PyData: Past, Present Future (PyData SV 2014 Keynote) von Peter Wang
PyData: Past, Present Future (PyData SV 2014 Keynote)PyData: Past, Present Future (PyData SV 2014 Keynote)
PyData: Past, Present Future (PyData SV 2014 Keynote)
Peter Wang2.2K views
Python's Role in the Future of Data Analysis von Peter Wang
Python's Role in the Future of Data AnalysisPython's Role in the Future of Data Analysis
Python's Role in the Future of Data Analysis
Peter Wang6.4K views

Último

Data Journeys Hard Talk workshop final.pptx von
Data Journeys Hard Talk workshop final.pptxData Journeys Hard Talk workshop final.pptx
Data Journeys Hard Talk workshop final.pptxinfo828217
10 views18 Folien
[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx von
[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx
[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptxDataScienceConferenc1
6 views12 Folien
Cross-network in Google Analytics 4.pdf von
Cross-network in Google Analytics 4.pdfCross-network in Google Analytics 4.pdf
Cross-network in Google Analytics 4.pdfGA4 Tutorials
6 views7 Folien
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation von
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented GenerationDataScienceConferenc1
17 views29 Folien
[DSC Europe 23] Predrag Ilic & Simeon Rilling - From Data Lakes to Data Mesh ... von
[DSC Europe 23] Predrag Ilic & Simeon Rilling - From Data Lakes to Data Mesh ...[DSC Europe 23] Predrag Ilic & Simeon Rilling - From Data Lakes to Data Mesh ...
[DSC Europe 23] Predrag Ilic & Simeon Rilling - From Data Lakes to Data Mesh ...DataScienceConferenc1
9 views18 Folien
META.pptx von
META.pptxMETA.pptx
META.pptxvasanthan19012003
6 views10 Folien

Último(20)

Data Journeys Hard Talk workshop final.pptx von info828217
Data Journeys Hard Talk workshop final.pptxData Journeys Hard Talk workshop final.pptx
Data Journeys Hard Talk workshop final.pptx
info82821710 views
[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx von DataScienceConferenc1
[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx
[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx
Cross-network in Google Analytics 4.pdf von GA4 Tutorials
Cross-network in Google Analytics 4.pdfCross-network in Google Analytics 4.pdf
Cross-network in Google Analytics 4.pdf
GA4 Tutorials6 views
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation von DataScienceConferenc1
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation
[DSC Europe 23] Predrag Ilic & Simeon Rilling - From Data Lakes to Data Mesh ... von DataScienceConferenc1
[DSC Europe 23] Predrag Ilic & Simeon Rilling - From Data Lakes to Data Mesh ...[DSC Europe 23] Predrag Ilic & Simeon Rilling - From Data Lakes to Data Mesh ...
[DSC Europe 23] Predrag Ilic & Simeon Rilling - From Data Lakes to Data Mesh ...
Advanced_Recommendation_Systems_Presentation.pptx von neeharikasingh29
Advanced_Recommendation_Systems_Presentation.pptxAdvanced_Recommendation_Systems_Presentation.pptx
Advanced_Recommendation_Systems_Presentation.pptx
[DSC Europe 23] Rania Wazir - Opening up the box: the complexity of human int... von DataScienceConferenc1
[DSC Europe 23] Rania Wazir - Opening up the box: the complexity of human int...[DSC Europe 23] Rania Wazir - Opening up the box: the complexity of human int...
[DSC Europe 23] Rania Wazir - Opening up the box: the complexity of human int...
UNEP FI CRS Climate Risk Results.pptx von pekka28
UNEP FI CRS Climate Risk Results.pptxUNEP FI CRS Climate Risk Results.pptx
UNEP FI CRS Climate Risk Results.pptx
pekka2811 views
CRM stick or twist workshop von info828217
CRM stick or twist workshopCRM stick or twist workshop
CRM stick or twist workshop
info82821712 views
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M... von DataScienceConferenc1
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...
CRM stick or twist.pptx von info828217
CRM stick or twist.pptxCRM stick or twist.pptx
CRM stick or twist.pptx
info82821711 views
Product Research sample.pdf von AllenSingson
Product Research sample.pdfProduct Research sample.pdf
Product Research sample.pdf
AllenSingson29 views
OPPOTUS - Malaysians on Malaysia 3Q2023.pdf von Oppotus
OPPOTUS - Malaysians on Malaysia 3Q2023.pdfOPPOTUS - Malaysians on Malaysia 3Q2023.pdf
OPPOTUS - Malaysians on Malaysia 3Q2023.pdf
Oppotus23 views
Chapter 3b- Process Communication (1) (1)(1) (1).pptx von ayeshabaig2004
Chapter 3b- Process Communication (1) (1)(1) (1).pptxChapter 3b- Process Communication (1) (1)(1) (1).pptx
Chapter 3b- Process Communication (1) (1)(1) (1).pptx
ayeshabaig20047 views
Dr. Ousmane Badiane-2023 ReSAKSS Conference von AKADEMIYA2063
Dr. Ousmane Badiane-2023 ReSAKSS ConferenceDr. Ousmane Badiane-2023 ReSAKSS Conference
Dr. Ousmane Badiane-2023 ReSAKSS Conference
AKADEMIYA20635 views
[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx von DataScienceConferenc1
[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx
[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx

Interactive Visualization With Bokeh (SF Python Meetup)

  • 2. About Continuum Analytics Domains • Finance •Geophysics •Defense •Advertising metrics & data analysis • Scientific computing Technologies •Array/Columnar data processing • Distributed computing, HPC • GPU and new vector hardware •Machine learning, predictive analytics • Interactive Visualization Enterprise Python Data Processing Scientific Computing Data Analysis Visualisation Scalable Computing
  • 3. Bokeh • Interactive visualization • Novel graphics • Streaming, dynamic, large data • For the browser, with or without a server • No need to write Javascript
  • 4. Interactive • Dragging & zooming, with linking • Selections that can round-trip to server • Resize, entirely on client side • Flexible hover http://bokeh.pydata.org/gallery.html
  • 14. Matplotlib Chaco d3 mpld3 Vincent Interactive visualization * Y * Y Novel graphics * * Y Y Streaming/dynamic data * Y Y Large data * Y Y For the browser Y Y Y Y No need to write Javascript Y Y Y Y Y Works with Matplotlib Y Y Y Works with IPython notebook Y Y Y Y
  • 16. Previous: Javascript code generation HTML server.py Browser App Model js_str = """ <d3.js> <highchart.js> <etc.js> """ plot.js.template D3 highcharts flot crossfilter etc. ... One-shot; no MVC interaction; no data streaming
  • 17. BokehJS • Full-fledged dynamic, interactive plotting engine • materializes a reactive scenegraph from JSON • optionally push/pull state from server, using websockets • HTML5 Canvas, backbone.js, coffeescript, AMD, plays with JSfiddle, … ! “We wrote JavaScript, so you don’t have to.”
  • 18. bokeh.py & bokeh.js App Model server.py Browser bokeh.py object graph JSON BokehJS object graph
  • 19. bokeh.py & bokeh.js App Model server.py Browser BokehJS object graph bokeh-server bokeh.py object graph JSON
  • 21. iris.html ! <!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <title>iris.py example</title> <link rel="stylesheet" href="../../../../../anaconda/envs/bokehdemo/lib/python2.7/site-packages/bokeh/server/static/css/bokeh.min.css" type="text/css" /> <script type="text/javascript" src="../../../../../anaconda/envs/bokehdemo/lib/python2.7/site-packages/bokeh/server/static/js/bokeh.min.js"></script> <script type="text/javascript"> $(function() { var all_models = [{"attributes": {"column_names": ["fill_color", "line_color", "x", "y"], "doc": null, "selected": [], "discrete_ranges": {}, "cont_ranges": {}, "data": {"line_color": ["red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue"], "x": [1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.4, 1.5, 1.5, 1.6, 1.4, 1.1, 1.2, 1.5, 1.3, 1.4, 1.7, 1.5, 1.7, 1.5, 1.0, 1.7, 1.9, 1.6, 1.6, 1.5, 1.4, 1.6, 1.6, 1.5, 1.5, 1.4, 1.5, 1.2, 1.3, 1.4, 1.3, 1.5, 1.3, 1.3, 1.3, 1.6, 1.9, 1.4, 1.6, 1.4, 1.5, 1.4, 4.7, 4.5, 4.9, 4.0, 4.6, 4.5, 4.7, 3.3, 4.6, 3.9, 3.5, 4.2, 4.0, 4.7, 3.6, 4.4, 4.5, 4.1, 4.5, 3.9, 4.8, 4.0, 4.9, 4.7, 4.3, 4.4, 4.8, 5.0, 4.5, 3.5, 3.8, 3.7, 3.9, 5.1, 4.5, 4.5, 4.7, 4.4, 4.1, 4.0, 4.4, 4.6, 4.0, 3.3, 4.2, 4.2, 4.2, 4.3, 3.0, 4.1, 6.0, 5.1, 5.9, 5.6, 5.8, 6.6, 4.5, 6.3, 5.8, 6.1, 5.1, 5.3, 5.5, 5.0, 5.1, 5.3, 5.5, 6.7, 6.9, 5.0, 5.7, 4.9, 6.7, 4.9, 5.7, 6.0, 4.8, 4.9, 5.6, 5.8, 6.1, 6.4, 5.6, 5.1, 5.6, 6.1, 5.6, 5.5, 4.8, 5.4, 5.6, 5.1, 5.1, 5.9, 5.7, 5.2, 5.0, 5.2, 5.4, 5.1], "fill_color": ["red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "red", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "green", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue", "blue"], "y": [0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, 0.2, 0.2, 0.1, 0.2, 0.2, 0.1, 0.1, 0.2, 0.4, 0.4, 0.3, 0.3, 0.3, 0.2, 0.4, 0.2, 0.5, 0.2, 0.2, 0.4, 0.2, 0.2, 0.2, 0.2, 0.4, 0.1, 0.2, 0.2, 0.2, 0.2, 0.1, 0.2, 0.2, 0.3, 0.3, 0.2, 0.6, 0.4, 0.3, 0.2, 0.2, 0.2, 0.2, 1.4, 1.5, 1.5, 1.3, 1.5, 1.3, 1.6, 1.0, 1.3, 1.4, 1.0, 1.5, 1.0, 1.4, 1.3, 1.4, 1.5, 1.0, 1.5, 1.1, 1.8, 1.3, 1.5, 1.2, 1.3, 1.4, 1.4, 1.7, 1.5, 1.0, 1.1, 1.0, 1.2, 1.6, 1.5, 1.6, 1.5, 1.3, 1.3, 1.3, 1.2, 1.4, 1.2, 1.0, 1.3, 1.2, 1.3, 1.3, 1.1, 1.3, 2.5, 1.9, 2.1, 1.8, 2.2, 2.1, 1.7, 1.8, 1.8, 2.5, 2.0, 1.9, 2.1, 2.0, 2.4, 2.3, 1.8, 2.2, 2.3, 1.5, 2.3, 2.0, 2.0, 1.8, 2.1, 1.8, 1.8, 1.8, 2.1, 1.6, 1.9, 2.0, 2.2, 1.5, 1.4, 2.3, 2.4, 1.8, 1.8, 2.1, 2.4, 2.3, 1.9, 2.3, 2.5, 2.3, 1.9, 2.0, 2.3, 1.8]}, "id": "5e71b46a-0d81-4a18-8402-188816471c0c"}, "type": "ColumnDataSource", "id": "5e71b46a-0d81-4a18-8402-188816471c0c"}, {"attributes": {"sources": [{"source": {"type": "ColumnDataSource", "id": "5e71b46a-0d81-4a18-8402-188816471c0c"}, "columns": ["x"]}], "id": "bbaf66fb-48b8-474a-8dae-910a995186f6", "doc": null}, "type": "DataRange1d", "id": "bbaf66fb-48b8-474a-8dae-910a995186f6"}, {"attributes": {"sources": [{"source": {"type": "ColumnDataSource", "id": "5e71b46a-0d81-4a18-8402-188816471c0c"}, "columns": ["y"]}], "id": "8377dd3b-9c4e-41ce-8930-76a92a68e907", "doc": null}, "type": "DataRange1d", "id": "8377dd3b-9c4e-41ce-8930-76a92a68e907"}, {"attributes": {"doc": null, "id": "24c8ae7c-f3c8-4c88-9f5d-dcbe59506791"}, "type": "BasicTickFormatter", "id": "24c8ae7c-f3c8-4c88-9f5d-dcbe59506791"}, {"attributes": {"doc": null, "id": "3720fa34-cea8-4b54-a51b-c738a1ef96fb"}, "type": "BasicTicker", "id": "3720fa34-cea8-4b54-a51b-c738a1ef96fb"}, {"attributes": {"plot": {"type": "Plot", "id": "iris"}, "doc": null, "bounds": "auto", "id": "0ae2ae05-3abd-414a-9840-c5e804de9661", "location": "min", "formatter": {"type": "BasicTickFormatter", "id": "24c8ae7c-f3c8-4c88-9f5d-dcbe59506791"}, "ticker": {"type": "BasicTicker", "id": "3720fa34-cea8-4b54-a51b-c738a1ef96fb"}, "dimension": 0}, "type": "LinearAxis", "id": "0ae2ae05-3abd-414a-9840-c5e804de9661"}, {"attributes": {"plot": {"type": "Plot", "id": "iris"}, "doc": null, "axis": {"type": "LinearAxis", "id": "0ae2ae05-3abd-414a-9840-c5e804de9661"}, "id": "25d48bf1-6583-4aff-9e47-dd57e304fb7a", "dimension": 0}, "type": "Grid", "id": "25d48bf1-6583-4aff-9e47-dd57e304fb7a"}, {"attributes": {"doc": null, "id": "d88bdf6f-b1a7-49c1-b71e-df2c1156f202"}, "type": "BasicTickFormatter", "id": "d88bdf6f-b1a7-49c1-b71e-df2c1156f202"}, {"attributes": {"doc": null, "id": "434ab651-0a3a-4bab-aa7a-34844b833bce"}, "type": "BasicTicker", "id": "434ab651-0a3a-4bab-aa7a-34844b833bce"}, {"attributes": {"plot": {"type": "Plot", "id": "iris"}, "doc": null, "bounds": "auto", "id": "53cf6b9d-1c82-48d2-8094-5a81fed497d9", "location": "min", "formatter": {"type": "BasicTickFormatter", "id": "d88bdf6f-b1a7-49c1-b71e-df2c1156f202"}, "ticker": {"type": "BasicTicker", "id": "434ab651-0a3a-4bab-aa7a-34844b833bce"}, "dimension": 1}, "type": "LinearAxis", "id": "53cf6b9d-1c82-48d2-8094-5a81fed497d9"}, {"attributes": {"plot": {"type": "Plot", "id": "iris"}, "doc": null, "axis": {"type": "LinearAxis", "id": "53cf6b9d-1c82-48d2-8094-5a81fed497d9"}, "id": "21bd25eb-22d3-427c-a6a3-5e3afc96cc2a", "dimension": 1}, "type": "Grid", "id": "21bd25eb-22d3-427c-a6a3-5e3afc96cc2a"}, {"attributes": {"data_source": {"type": "ColumnDataSource", "id": "5e71b46a-0d81-4a18-8402-188816471c0c"}, "server_data_source": null, "doc": null, "nonselection_glyphspec": {"line_color": {"value": "#1f77b4"}, "angle_units": "deg", "fill_color": {"value": "#1f77b4"}, "visible": null, "line_dash_offset": 0, "line_join": "miter", "size": {"units": "screen", "value": 10}, "line_alpha": {"units": "data", "value": 0.1}, "radius_units": "screen", "end_angle_units": "deg", "valign": null, "length_units": "screen", "start_angle_units": "deg", "line_cap": "butt", "line_dash": [], "line_width": {"units": "data", "field": "line_width"}, "type": "circle", "fill_alpha": {"units": "data", "value": 0.1}, "halign": null, "y": {"units": "data", "field": "y"}, "x": {"units": "data", "field": "x"}, "margin": null}, "xdata_range": null, "ydata_range": null, "glyphspec": {"line_color": {"units": "data", "field": "line_color"}, "line_alpha": {"units": "data", "value": 1.0}, "fill_color": {"units": "data", "field": "fill_color"}, "line_width": {"units": "data", "field": "line_width"}, "fill_alpha": {"units": "data", "value": 0.2}, "y": {"units": "data", "field": "y"}, "x": {"units": "data", "field": "x"}, "type": "circle", "size": {"units": "screen", "value": 10}}, "id": "093300cf-6759-4449-877b-7731476588a0"}, "type": "Glyph", "id": "093300cf-6759-4449-877b-7731476588a0"}, {"attributes": {"plot": null, "doc": null, "renderers": [{"type": "Glyph", "id": "093300cf-6759-4449-877b-7731476588a0"}], "id": "9a60e0da-efe5-4b08-a4f6-7ed315d67b9b"}, "type": "BoxSelectTool", "id": "9a60e0da-efe5-4b08-a4f6-7ed315d67b9b"}, {"attributes": {"doc": null, "tool": {"type": "BoxSelectTool", "id": "9a60e0da-efe5-4b08-a4f6-7ed315d67b9b"}, "id": "5a0e8c76-4893-452b-b2e8-cefb1a232437"}, "type": "BoxSelection", "id": "5a0e8c76-4893-452b-b2e8-cefb1a232437"}, {"attributes": {"plot": {"type": "Plot", "id": "iris"}, "dimensions": ["width", "height"], "doc": null, "id": "a4b154c7-b674-4f86-93f8-770cf7a0d9b5"}, "type": "PanTool", "id": "a4b154c7- b674-4f86-93f8-770cf7a0d9b5"}, {"attributes": {"plot": {"type": "Plot", "id": "iris"}, "dimensions": ["width", "height"], "doc": null, "id": "3ba5854b-e047-47c2-989b-15b5b79cb205"}, "type": "WheelZoomTool", "id": "3ba5854b-e047-47c2-989b-15b5b79cb205"}, {"attributes": {"plot": {"type": "Plot", "id": "iris"}, "id": "0a583af8-4db5-45ea-b09b-16562035ccc4", "doc": null}, "type": "PreviewSaveTool", "id": "0a583af8-4db5-45ea-b09b-16562035ccc4"}, {"attributes": {"plot": {"type": "Plot", "id": "iris"}, "id": "5621f214-17c9-417f-aaed-f841745f489f", "doc": null}, "type": "ResizeTool", "id": "5621f214-17c9-417f-aaed-f841745f489f"}, {"attributes": {"plot": {"type": "Plot", "id": "iris"}, "id": "98be8a66-dfaa-4f2d-95cd-0296a3647da1", "doc": null}, "type": "ResetTool", "id": "98be8a66-dfaa-4f2d-95cd-0296a3647da1"}, {"attributes": {"outer_height": 600, "x_range": {"type": "DataRange1d", "id": "bbaf66fb-48b8-474a-8dae-910a995186f6"}, "y_range": {"type": "DataRange1d", "id": "8377dd3b-9c4e-41ce-8930-76a92a68e907"}, "outer_width": 600, "renderers": [{"type": "LinearAxis", "id": "0ae2ae05-3abd-414a-9840-c5e804de9661"}, {"type": "Grid", "id": "25d48bf1-6583-4aff-9e47-dd57e304fb7a"}, {"type": "LinearAxis", "id": "53cf6b9d-1c82-48d2-8094-5a81fed497d9"}, {"type": "Grid", "id": "21bd25eb-22d3-427c-a6a3-5e3afc96cc2a"}, {"type": "BoxSelection", "id": "6451a3a2-d1d7-401e-8ec6-ed92c626f448"}, {"type": "BoxSelection", "id": "5a0e8c76-4893-452b-b2e8-cefb1a232437"}, {"type": "Glyph", "id": "093300cf-6759-4449-877b-7731476588a0"}], "id": "iris", "data_sources": [], "doc": null, "canvas_height": 600, "title": "Plot", "tools": [{"type": "PanTool", "id": "a4b154c7-b674-4f86-93f8-770cf7a0d9b5"}, {"type": "WheelZoomTool", "id": "3ba5854b-e047-47c2-989b-15b5b79cb205"}, {"type": "BoxZoomTool", "id": "a047dc9b-0dd1-4883-8575-550cd63409fa"}, {"type": "PreviewSaveTool", "id": "0a583af8-4db5-45ea-b09b- 16562035ccc4"}, {"type": "ResizeTool", "id": "5621f214-17c9-417f-aaed-f841745f489f"}, {"type": "BoxSelectTool", "id": "9a60e0da-efe5-4b08-a4f6-7ed315d67b9b"}, {"type": "ResetTool", "id": "98be8a66-dfaa-4f2d-95cd-0296a3647da1"}], "canvas_width": 600}, "type": "Plot", "id": "iris"}, {"attributes": {"plot": {"type": "Plot", "id": "iris"}, "id": "a047dc9b-0dd1-4883-8575-550cd63409fa", "doc": null}, "type": "BoxZoomTool", "id": "a047dc9b-0dd1-4883-8575-550cd63409fa"}, {"attributes": {"doc": null, "tool": {"type": "BoxZoomTool", "id": "a047dc9b-0dd1-4883-8575-550cd63409fa"}, "id": "6451a3a2-d1d7-401e-8ec6-ed92c626f448"}, "type": "BoxSelection", "id": "6451a3a2-d1d7-401e-8ec6-ed92c626f448"}, {"attributes": {"doc": null, "children": [{"type": "Plot", "id": "iris"}], "id": "475ad0da-baf5-48be-902b-166b060b6978"}, "type": "PlotContext", "id": "475ad0da-baf5-48be-902b-166b060b6978"}]; var modelid = "475ad0da-baf5-48be-902b-166b060b6978"; var modeltype = "PlotContext"; var elementid = "8bb1deb5-74cb-4b28-b44f-c89dc5701d69"; console.log(modelid, modeltype, elementid); Bokeh.load_models(all_models); var model = Bokeh.Collections(modeltype).get(modelid); var view = new model.default_view({model: model, el: '#8bb1deb5-74cb-4b28-b44f-c89dc5701d69'}); }); </script> </head> <body> <div class="plotdiv" id="8bb1deb5-74cb-4b28-b44f-c89dc5701d69">Plots</div> </body> </html>
  • 22. iris.html (detail) <head> <meta charset="utf-8"> <title>iris.py example</title> <link rel="stylesheet" href="../bokeh/server/static/css/bokeh.min.css" type="text/css" /> <script type="text/javascript" src=“../bokeh/server/static/js/bokeh.min.js"></script> <script type=“text/javascript”> $(function() { var all_models = [JSON data] var modelid = "475ad0da-baf5-48be-902b-166b060b6978"; var modeltype = "PlotContext"; var elementid = "8bb1deb5-74cb-4b28-b44f-c89dc5701d69"; console.log(modelid, modeltype, elementid); Bokeh.load_models(all_models); var model = Bokeh.Collections(modeltype).get(modelid); var view = new model.default_view({ model: model, el: '#8bb1deb5-74cb-4b28-b44f-c89dc5701d69'}); }); </script> </head> <body> <div class="plotdiv" id="8bb1deb5-74cb-4b28-b44f-c89dc5701d69">Plots</div> </body> </html>
  • 23. JSON { "attributes": { "sources": [ { "source": { "type": "ColumnDataSource", "id": "5e71b46a-0d81-4a18-8402-188816471c0c" }, "columns": [ "x" ] } ], "id": "bbaf66fb-48b8-474a-8dae-910a995186f6", "doc": null }, "type": "DataRange1d", "id": "bbaf66fb-48b8-474a-8dae-910a995186f6" },
  • 24. Other languages can generate JSON... bokeh.r! bokeh.h bokeh.m bokeh.java ...
  • 25. New Release! v0.6 • New charts in bokeh.charts: Time Series and Categorical Heatmap • Sophisticated Hands-on Table widget • Complete Python 3 support for bokeh-server • Much expanded User Guide and Dev Guide • Multiple axes and ranges now supported • Object query interface to help with plot styling • Blog post coming soon (tomorrow?) https://groups.google.com/a/continuum.io/forum/#!topic/bokeh/Hm-QNV9uQOA
  • 27. What’s Next • Improved widgets (including tables): • Graphical, data-driven “applets” • Easier dashboards • Improved crossfilter app • Improved bokeh.charts library • Data-driven layout • SVG output • command-line tool
  • 30. How to Help & Contribute • Open source BSD license for everything (JS, Python, server) • Use it and provide feedback • Designer? Front-end dev? - Get in touch! • Engage us to work on custom visual exploration apps & dashboards • Not just code integration - also provide visualization expertise • Helps the open source efforts @bokehplots