Algebra 2 Section 4-6

J
Jimbo LambMath Teacher and Technology Coach um Annville-Cleona Secondary School
Section 4-6
Solving Polynomial Equations
Essential Questions
• How do you factor polynomials?

• How do you solve polynomial equations by
factoring?
Vocabulary
1. Prime Polynomials:
2. Quadratic Form:
Vocabulary
1. Prime Polynomials: Polynomials that cannot be
factored
2. Quadratic Form:
Vocabulary
1. Prime Polynomials: Polynomials that cannot be
factored
2. Quadratic Form: Rewriting a polynomial so that it
fits the pattern of a standard form quadratic;
occurs with the degree of the first term is twice
that of the second, with a constant third term
Number
of Terms
Factoring Technique General Case
Any
Greatest Common Factor
(GCF)
2 Difference of Squares
2 Sum of Cubes
2 Difference of Cubes
3 Perfect Square Trinomial
3 General Trinomials
4+ Grouping
Number
of Terms
Factoring Technique General Case
Any
Greatest Common Factor
(GCF)
2 Difference of Squares
2 Sum of Cubes
2 Difference of Cubes
3 Perfect Square Trinomial
3 General Trinomials
4+ Grouping
4a5
b7
+12ab = 4ab(a4
b6
+ 3)
Number
of Terms
Factoring Technique General Case
Any
Greatest Common Factor
(GCF)
2 Difference of Squares
2 Sum of Cubes
2 Difference of Cubes
3 Perfect Square Trinomial
3 General Trinomials
4+ Grouping
4a5
b7
+12ab = 4ab(a4
b6
+ 3)
a2
− b2
= (a + b)(a − b)
Number
of Terms
Factoring Technique General Case
Any
Greatest Common Factor
(GCF)
2 Difference of Squares
2 Sum of Cubes
2 Difference of Cubes
3 Perfect Square Trinomial
3 General Trinomials
4+ Grouping
4a5
b7
+12ab = 4ab(a4
b6
+ 3)
a2
− b2
= (a + b)(a − b)
a3
+ b3
= (a + b)(a2
− ab + b2
)
Number
of Terms
Factoring Technique General Case
Any
Greatest Common Factor
(GCF)
2 Difference of Squares
2 Sum of Cubes
2 Difference of Cubes
3 Perfect Square Trinomial
3 General Trinomials
4+ Grouping
4a5
b7
+12ab = 4ab(a4
b6
+ 3)
a2
− b2
= (a + b)(a − b)
a3
+ b3
= (a + b)(a2
− ab + b2
)
a3
− b3
= (a − b)(a2
+ ab + b2
)
Number
of Terms
Factoring Technique General Case
Any
Greatest Common Factor
(GCF)
2 Difference of Squares
2 Sum of Cubes
2 Difference of Cubes
3 Perfect Square Trinomial
3 General Trinomials
4+ Grouping
4a5
b7
+12ab = 4ab(a4
b6
+ 3)
a2
− b2
= (a + b)(a − b)
a3
+ b3
= (a + b)(a2
− ab + b2
)
a3
− b3
= (a − b)(a2
+ ab + b2
)
a2
+ 2ab + b2
= (a + b)2
Number
of Terms
Factoring Technique General Case
Any
Greatest Common Factor
(GCF)
2 Difference of Squares
2 Sum of Cubes
2 Difference of Cubes
3 Perfect Square Trinomial
3 General Trinomials
4+ Grouping
4a5
b7
+12ab = 4ab(a4
b6
+ 3)
a2
− b2
= (a + b)(a − b)
a3
+ b3
= (a + b)(a2
− ab + b2
)
a3
− b3
= (a − b)(a2
+ ab + b2
)
a2
+ 2ab + b2
= (a + b)2
a2
− 2ab + b2
= (a − b)2
Number
of Terms
Factoring Technique General Case
Any
Greatest Common Factor
(GCF)
2 Difference of Squares
2 Sum of Cubes
2 Difference of Cubes
3 Perfect Square Trinomial
3 General Trinomials
4+ Grouping
4a5
b7
+12ab = 4ab(a4
b6
+ 3)
a2
− b2
= (a + b)(a − b)
a3
+ b3
= (a + b)(a2
− ab + b2
)
a3
− b3
= (a − b)(a2
+ ab + b2
)
a2
+ 2ab + b2
= (a + b)2
a2
− 2ab + b2
= (a − b)2
acx 2
+ (ad + bc)x + bd
= (ax + b)(cx + d )
Number
of Terms
Factoring Technique General Case
Any
Greatest Common Factor
(GCF)
2 Difference of Squares
2 Sum of Cubes
2 Difference of Cubes
3 Perfect Square Trinomial
3 General Trinomials
4+ Grouping
4a5
b7
+12ab = 4ab(a4
b6
+ 3)
a2
− b2
= (a + b)(a − b)
a3
+ b3
= (a + b)(a2
− ab + b2
)
a3
− b3
= (a − b)(a2
+ ab + b2
)
a2
+ 2ab + b2
= (a + b)2
a2
− 2ab + b2
= (a − b)2
acx 2
+ (ad + bc)x + bd
= (ax + b)(cx + d )
ax + bx + ay + by
= (a + b)(x + y )
Example 1
Factor each polynomial. If the polynomial cannot be
factored, write prime.
a. x 3
−1000
b. 24x 5
+ 3x 2
y 3
c. x 3
+ 400
Example 1
Factor each polynomial. If the polynomial cannot be
factored, write prime.
a. x 3
−1000
(x −10)(x 2
+10x +100)
b. 24x 5
+ 3x 2
y 3
c. x 3
+ 400
Example 1
Factor each polynomial. If the polynomial cannot be
factored, write prime.
a. x 3
−1000
(x −10)(x 2
+10x +100)
b. 24x 5
+ 3x 2
y 3
3x 2
(8x 3
+ y 3
)
c. x 3
+ 400
Example 1
Factor each polynomial. If the polynomial cannot be
factored, write prime.
a. x 3
−1000
(x −10)(x 2
+10x +100)
b. 24x 5
+ 3x 2
y 3
3x 2
(8x 3
+ y 3
)
3x 2
(2x + y )(4x 2
− 2xy + y 2
)
c. x 3
+ 400
Example 1
Factor each polynomial. If the polynomial cannot be
factored, write prime.
a. x 3
−1000
(x −10)(x 2
+10x +100)
b. 24x 5
+ 3x 2
y 3
3x 2
(8x 3
+ y 3
)
3x 2
(2x + y )(4x 2
− 2xy + y 2
)
c. x 3
+ 400
Prime
Example 2
Factor each polynomial. If the polynomial cannot be
factored, write prime.
a. x 3
+ 5x 2
− 2x −10
Example 2
Factor each polynomial. If the polynomial cannot be
factored, write prime.
a. x 3
+ 5x 2
− 2x −10
(x 3
+ 5x 2
)+ (−2x −10)
Example 2
Factor each polynomial. If the polynomial cannot be
factored, write prime.
a. x 3
+ 5x 2
− 2x −10
(x 3
+ 5x 2
)+ (−2x −10)
x 2
(x + 5)− 2(x + 5)
Example 2
Factor each polynomial. If the polynomial cannot be
factored, write prime.
a. x 3
+ 5x 2
− 2x −10
(x 3
+ 5x 2
)+ (−2x −10)
x 2
(x + 5)− 2(x + 5)
(x + 5)(x 2
− 2)
Example 2
Factor each polynomial. If the polynomial cannot be
factored, write prime.
b. a2
+ 3ay + 2ay 2
+ 6y 3
Example 2
Factor each polynomial. If the polynomial cannot be
factored, write prime.
b. a2
+ 3ay + 2ay 2
+ 6y 3
(a2
+ 3ay )+ (2ay 2
+ 6y 3
)
Example 2
Factor each polynomial. If the polynomial cannot be
factored, write prime.
b. a2
+ 3ay + 2ay 2
+ 6y 3
(a2
+ 3ay )+ (2ay 2
+ 6y 3
)
a(a + 3y )+ 2y 2
(a + 3y )
Example 2
Factor each polynomial. If the polynomial cannot be
factored, write prime.
b. a2
+ 3ay + 2ay 2
+ 6y 3
(a2
+ 3ay )+ (2ay 2
+ 6y 3
)
a(a + 3y )+ 2y 2
(a + 3y )
(a + 3y )(a + 2y 2
)
Example 3
Factor each polynomial. If the polynomial cannot be
factored, write prime.
a. x 2
y 3
− 3xy 3
+ 2y 3
+ x 2
z3
− 3xz3
+ 2z3
Example 3
Factor each polynomial. If the polynomial cannot be
factored, write prime.
a. x 2
y 3
− 3xy 3
+ 2y 3
+ x 2
z3
− 3xz3
+ 2z3
(x 2
y 3
− 3xy 3
+ 2y 3
)+ (x 2
z3
− 3xz3
+ 2z3
)
Example 3
Factor each polynomial. If the polynomial cannot be
factored, write prime.
a. x 2
y 3
− 3xy 3
+ 2y 3
+ x 2
z3
− 3xz3
+ 2z3
(x 2
y 3
− 3xy 3
+ 2y 3
)+ (x 2
z3
− 3xz3
+ 2z3
)
y 3
(x 2
− 3x + 2)+ z3
(x 2
− 3x + 2)
Example 3
Factor each polynomial. If the polynomial cannot be
factored, write prime.
a. x 2
y 3
− 3xy 3
+ 2y 3
+ x 2
z3
− 3xz3
+ 2z3
(x 2
y 3
− 3xy 3
+ 2y 3
)+ (x 2
z3
− 3xz3
+ 2z3
)
y 3
(x 2
− 3x + 2)+ z3
(x 2
− 3x + 2)
(x 2
− 3x + 2)(y 3
+ z3
)
Example 3
Factor each polynomial. If the polynomial cannot be
factored, write prime.
a. x 2
y 3
− 3xy 3
+ 2y 3
+ x 2
z3
− 3xz3
+ 2z3
(x 2
y 3
− 3xy 3
+ 2y 3
)+ (x 2
z3
− 3xz3
+ 2z3
)
y 3
(x 2
− 3x + 2)+ z3
(x 2
− 3x + 2)
(x 2
− 3x + 2)(y 3
+ z3
)
(x − 2)(x −1)(y + z)(y 2
− yz + z2
)
Example 3
Factor each polynomial. If the polynomial cannot be
factored, write prime.
b. 64x 6
− y 6
Example 3
Factor each polynomial. If the polynomial cannot be
factored, write prime.
b. 64x 6
− y 6
(8x 3
+ y 3
)(8x 3
− y 3
)
Example 3
Factor each polynomial. If the polynomial cannot be
factored, write prime.
b. 64x 6
− y 6
(8x 3
+ y 3
)(8x 3
− y 3
)
(2x + y )(4x 2
− 2xy + y 2
)(2x − y )(4x 2
+ 2xy + y 2
)
Example 4
A small cube is cut from a larger cube.
Determine the dimensions of the cubes if the
length of the smaller cube is is one half the
length of the larger cube, and the volume of the
object is 23,625 cubic centimeters.
Example 4
A small cube is cut from a larger cube.
Determine the dimensions of the cubes if the
length of the smaller cube is is one half the
length of the larger cube, and the volume of the
object is 23,625 cubic centimeters.
x
x
x
Example 4
A small cube is cut from a larger cube.
Determine the dimensions of the cubes if the
length of the smaller cube is is one half the
length of the larger cube, and the volume of the
object is 23,625 cubic centimeters.
x 3
−
x
2
⎛
⎝⎜
⎞
⎠⎟
3
= 23625
x
x
x
Example 4
A small cube is cut from a larger cube.
Determine the dimensions of the cubes if the
length of the smaller cube is is one half the
length of the larger cube, and the volume of the
object is 23,625 cubic centimeters.
x 3
−
x
2
⎛
⎝⎜
⎞
⎠⎟
3
= 23625
x
x
x
x 3
−
1
8
x 3
= 23625
Example 4
A small cube is cut from a larger cube.
Determine the dimensions of the cubes if the
length of the smaller cube is is one half the
length of the larger cube, and the volume of the
object is 23,625 cubic centimeters.
x 3
−
x
2
⎛
⎝⎜
⎞
⎠⎟
3
= 23625
x
x
x
x 3
−
1
8
x 3
= 23625
7
8
x 3
= 23625
Example 4
A small cube is cut from a larger cube.
Determine the dimensions of the cubes if the
length of the smaller cube is is one half the
length of the larger cube, and the volume of the
object is 23,625 cubic centimeters.
x 3
−
x
2
⎛
⎝⎜
⎞
⎠⎟
3
= 23625
x
x
x
x 3
−
1
8
x 3
= 23625
7
8
x 3
= 23625
x 3
= 27000
Example 4
A small cube is cut from a larger cube.
Determine the dimensions of the cubes if the
length of the smaller cube is is one half the
length of the larger cube, and the volume of the
object is 23,625 cubic centimeters.
x 3
−
x
2
⎛
⎝⎜
⎞
⎠⎟
3
= 23625
x
x
x
x 3
−
1
8
x 3
= 23625
7
8
x 3
= 23625
x 3
= 27000
x 33
= 270003
Example 4
A small cube is cut from a larger cube.
Determine the dimensions of the cubes if the
length of the smaller cube is is one half the
length of the larger cube, and the volume of the
object is 23,625 cubic centimeters.
x 3
−
x
2
⎛
⎝⎜
⎞
⎠⎟
3
= 23625
x
x
x
x 3
−
1
8
x 3
= 23625
7
8
x 3
= 23625
x 3
= 27000
x 33
= 270003
x = 30
Example 4
A small cube is cut from a larger cube.
Determine the dimensions of the cubes if the
length of the smaller cube is is one half the
length of the larger cube, and the volume of the
object is 23,625 cubic centimeters.
x 3
−
x
2
⎛
⎝⎜
⎞
⎠⎟
3
= 23625
x
x
x
x 3
−
1
8
x 3
= 23625
7
8
x 3
= 23625
x 3
= 27000
x 33
= 270003
x = 30
The larger cube has a length of 30cm.

The smaller cube has a length of 15 cm.
Example 5
Write each expression in quadratic form, if possible.
a. 2x 6
− x 3
+ 9 b. x 4
+ 2x 3
−1
Example 5
Write each expression in quadratic form, if possible.
a. 2x 6
− x 3
+ 9
2(x 3
)2
− (x 3
)+ 9
b. x 4
+ 2x 3
−1
Example 5
Write each expression in quadratic form, if possible.
a. 2x 6
− x 3
+ 9
2(x 3
)2
− (x 3
)+ 9
Let u = x 3
b. x 4
+ 2x 3
−1
Example 5
Write each expression in quadratic form, if possible.
a. 2x 6
− x 3
+ 9
2(x 3
)2
− (x 3
)+ 9
2u2
−u + 9
Let u = x 3
b. x 4
+ 2x 3
−1
Example 5
Write each expression in quadratic form, if possible.
a. 2x 6
− x 3
+ 9
2(x 3
)2
− (x 3
)+ 9
2u2
−u + 9
Let u = x 3
b. x 4
+ 2x 3
−1
Not possible
Example 6
Solve.
x 4
− 29x 2
+100 = 0
Example 6
Solve.
x 4
− 29x 2
+100 = 0
Let u = x 2
Example 6
Solve.
x 4
− 29x 2
+100 = 0
Let u = x 2
u2
− 29u +100 = 0
Example 6
Solve.
x 4
− 29x 2
+100 = 0
Let u = x 2
u2
− 29u +100 = 0
(u − 25)(u − 4) = 0
Example 6
Solve.
x 4
− 29x 2
+100 = 0
Let u = x 2
u2
− 29u +100 = 0
(u − 25)(u − 4) = 0
(x 2
− 25)(x 2
− 4) = 0
Example 6
Solve.
x 4
− 29x 2
+100 = 0
Let u = x 2
u2
− 29u +100 = 0
(u − 25)(u − 4) = 0
(x 2
− 25)(x 2
− 4) = 0
(x + 5)(x − 5)(x + 2)(x − 2) = 0
Example 6
Solve.
x 4
− 29x 2
+100 = 0
Let u = x 2
u2
− 29u +100 = 0
(u − 25)(u − 4) = 0
(x 2
− 25)(x 2
− 4) = 0
(x + 5)(x − 5)(x + 2)(x − 2) = 0
x = −5,x = 5,x = −2,x = 2
1 von 56

Recomendados

Polynomial equations von
Polynomial equationsPolynomial equations
Polynomial equationsArjuna Senanayake
8.1K views30 Folien
Notes solving polynomials using synthetic division von
Notes   solving polynomials using synthetic divisionNotes   solving polynomials using synthetic division
Notes solving polynomials using synthetic divisionLori Rapp
4.5K views117 Folien
Remainder & Factor Theorems von
Remainder & Factor TheoremsRemainder & Factor Theorems
Remainder & Factor TheoremsLori Rapp
1.6K views57 Folien
7.3 quadratic techniques von
7.3 quadratic techniques7.3 quadratic techniques
7.3 quadratic techniquesJessica Garcia
4.1K views16 Folien
Quotient of polynomial using (Synthetic Division) and Zeros of Polynomial Fu... von
Quotient of polynomial using (Synthetic Division) and Zeros of Polynomial  Fu...Quotient of polynomial using (Synthetic Division) and Zeros of Polynomial  Fu...
Quotient of polynomial using (Synthetic Division) and Zeros of Polynomial Fu...magnesium121
1.2K views15 Folien
Polynomial Function and Synthetic Division von
Polynomial Function and Synthetic DivisionPolynomial Function and Synthetic Division
Polynomial Function and Synthetic DivisionElceed
1.4K views27 Folien

Más contenido relacionado

Was ist angesagt?

Polynomials von
PolynomialsPolynomials
PolynomialsPoonam Singh
31.6K views31 Folien
Synthetic Division von
Synthetic DivisionSynthetic Division
Synthetic Divisionscnbmitchell
6K views4 Folien
Long division, synthetic division, remainder theorem and factor theorem von
Long division, synthetic division, remainder theorem and factor theoremLong division, synthetic division, remainder theorem and factor theorem
Long division, synthetic division, remainder theorem and factor theoremJohn Rome Aranas
11.1K views15 Folien
5.4 synthetic division von
5.4 synthetic division5.4 synthetic division
5.4 synthetic divisionleblance
1.1K views10 Folien
Dividing polynomials von
Dividing polynomialsDividing polynomials
Dividing polynomialssalvie alvaro
3.3K views20 Folien
Factoring polynomials von
Factoring polynomialsFactoring polynomials
Factoring polynomialsMark Ryder
5.1K views18 Folien

Was ist angesagt?(20)

Long division, synthetic division, remainder theorem and factor theorem von John Rome Aranas
Long division, synthetic division, remainder theorem and factor theoremLong division, synthetic division, remainder theorem and factor theorem
Long division, synthetic division, remainder theorem and factor theorem
John Rome Aranas11.1K views
5.4 synthetic division von leblance
5.4 synthetic division5.4 synthetic division
5.4 synthetic division
leblance1.1K views
Factoring polynomials von Mark Ryder
Factoring polynomialsFactoring polynomials
Factoring polynomials
Mark Ryder5.1K views
3.2 Synthetic Division von smiller5
3.2 Synthetic Division3.2 Synthetic Division
3.2 Synthetic Division
smiller5201 views
Polynomials Add And Subtract Ch 9.1 von taco40
Polynomials Add And Subtract Ch 9.1Polynomials Add And Subtract Ch 9.1
Polynomials Add And Subtract Ch 9.1
taco405.3K views
Mat221 5.6 definite integral substitutions and the area between two curves von GlenSchlee
Mat221 5.6 definite integral substitutions and the area between two curvesMat221 5.6 definite integral substitutions and the area between two curves
Mat221 5.6 definite integral substitutions and the area between two curves
GlenSchlee365 views
Polynomials (Algebra) - Class 10 von AnjaliKaur3
Polynomials (Algebra) - Class 10 Polynomials (Algebra) - Class 10
Polynomials (Algebra) - Class 10
AnjaliKaur37.3K views
Polynomials Grade 10 von ingroy
Polynomials Grade 10Polynomials Grade 10
Polynomials Grade 10
ingroy27.5K views
Notes solving polynomial equations von Lori Rapp
Notes   solving polynomial equationsNotes   solving polynomial equations
Notes solving polynomial equations
Lori Rapp17.1K views
Module 1 polynomial functions von dionesioable
Module 1   polynomial functionsModule 1   polynomial functions
Module 1 polynomial functions
dionesioable9.6K views
Factoring von holmsted
FactoringFactoring
Factoring
holmsted2.1K views
Introduction to Polynomial Functions von kshoskey
Introduction to Polynomial FunctionsIntroduction to Polynomial Functions
Introduction to Polynomial Functions
kshoskey17.7K views
11.4 The Binomial Theorem von smiller5
11.4 The Binomial Theorem11.4 The Binomial Theorem
11.4 The Binomial Theorem
smiller5147 views

Similar a Algebra 2 Section 4-6

Algebra unit 8.7 von
Algebra unit 8.7Algebra unit 8.7
Algebra unit 8.7Mark Ryder
2.7K views40 Folien
Polynomial operations (1) von
Polynomial operations (1)Polynomial operations (1)
Polynomial operations (1)swartzje
5.6K views42 Folien
G8 Math Q1- Week 1-2 Special Products and Factors (1).pptx von
G8 Math Q1- Week 1-2 Special Products and Factors (1).pptxG8 Math Q1- Week 1-2 Special Products and Factors (1).pptx
G8 Math Q1- Week 1-2 Special Products and Factors (1).pptxCatherineGanLabaro
26 views33 Folien
Special Products and Factors.pptx von
Special Products and Factors.pptxSpecial Products and Factors.pptx
Special Products and Factors.pptxJanineCaleon
34 views33 Folien
Mathnasium Presentation (1) von
Mathnasium Presentation (1)Mathnasium Presentation (1)
Mathnasium Presentation (1)Muhammad Arslan
209 views54 Folien
March 6 von
March 6March 6
March 6khyps13
262 views15 Folien

Similar a Algebra 2 Section 4-6(20)

Algebra unit 8.7 von Mark Ryder
Algebra unit 8.7Algebra unit 8.7
Algebra unit 8.7
Mark Ryder2.7K views
Polynomial operations (1) von swartzje
Polynomial operations (1)Polynomial operations (1)
Polynomial operations (1)
swartzje5.6K views
G8 Math Q1- Week 1-2 Special Products and Factors (1).pptx von CatherineGanLabaro
G8 Math Q1- Week 1-2 Special Products and Factors (1).pptxG8 Math Q1- Week 1-2 Special Products and Factors (1).pptx
G8 Math Q1- Week 1-2 Special Products and Factors (1).pptx
Special Products and Factors.pptx von JanineCaleon
Special Products and Factors.pptxSpecial Products and Factors.pptx
Special Products and Factors.pptx
JanineCaleon34 views
March 6 von khyps13
March 6March 6
March 6
khyps13262 views
Algebra unit 8.8 von Mark Ryder
Algebra unit 8.8Algebra unit 8.8
Algebra unit 8.8
Mark Ryder1.4K views
Algebra 2 Section 0-3 von Jimbo Lamb
Algebra 2 Section 0-3Algebra 2 Section 0-3
Algebra 2 Section 0-3
Jimbo Lamb139 views
Multiplying Polynomials von nina
Multiplying PolynomialsMultiplying Polynomials
Multiplying Polynomials
nina812 views
Algebra 2 Section 3-6 von Jimbo Lamb
Algebra 2 Section 3-6Algebra 2 Section 3-6
Algebra 2 Section 3-6
Jimbo Lamb292 views
4 4 more on algebra of radicals-x von math123b
4 4 more on algebra of radicals-x4 4 more on algebra of radicals-x
4 4 more on algebra of radicals-x
math123b441 views
3 more on algebra of radicals von Tzenma
3 more on algebra of radicals3 more on algebra of radicals
3 more on algebra of radicals
Tzenma127 views
0.3 Factoring Polynomials von smiller5
0.3 Factoring Polynomials0.3 Factoring Polynomials
0.3 Factoring Polynomials
smiller5363 views
4 4 more on algebra of radicals von math123b
4 4 more on algebra of radicals4 4 more on algebra of radicals
4 4 more on algebra of radicals
math123b868 views
Lesson 5.3 honors von morrobea
Lesson 5.3 honorsLesson 5.3 honors
Lesson 5.3 honors
morrobea486 views

Más de Jimbo Lamb

Geometry Section 1-5 von
Geometry Section 1-5Geometry Section 1-5
Geometry Section 1-5Jimbo Lamb
1.5K views62 Folien
Geometry Section 1-4 von
Geometry Section 1-4Geometry Section 1-4
Geometry Section 1-4Jimbo Lamb
305 views46 Folien
Geometry Section 1-3 von
Geometry Section 1-3Geometry Section 1-3
Geometry Section 1-3Jimbo Lamb
1.1K views13 Folien
Geometry Section 1-2 von
Geometry Section 1-2Geometry Section 1-2
Geometry Section 1-2Jimbo Lamb
149 views78 Folien
Geometry Section 1-2 von
Geometry Section 1-2Geometry Section 1-2
Geometry Section 1-2Jimbo Lamb
106 views78 Folien
Geometry Section 1-1 von
Geometry Section 1-1Geometry Section 1-1
Geometry Section 1-1Jimbo Lamb
183 views31 Folien

Más de Jimbo Lamb(20)

Geometry Section 1-5 von Jimbo Lamb
Geometry Section 1-5Geometry Section 1-5
Geometry Section 1-5
Jimbo Lamb1.5K views
Geometry Section 1-4 von Jimbo Lamb
Geometry Section 1-4Geometry Section 1-4
Geometry Section 1-4
Jimbo Lamb305 views
Geometry Section 1-3 von Jimbo Lamb
Geometry Section 1-3Geometry Section 1-3
Geometry Section 1-3
Jimbo Lamb1.1K views
Geometry Section 1-2 von Jimbo Lamb
Geometry Section 1-2Geometry Section 1-2
Geometry Section 1-2
Jimbo Lamb149 views
Geometry Section 1-2 von Jimbo Lamb
Geometry Section 1-2Geometry Section 1-2
Geometry Section 1-2
Jimbo Lamb106 views
Geometry Section 1-1 von Jimbo Lamb
Geometry Section 1-1Geometry Section 1-1
Geometry Section 1-1
Jimbo Lamb183 views
Algebra 2 Section 5-3 von Jimbo Lamb
Algebra 2 Section 5-3Algebra 2 Section 5-3
Algebra 2 Section 5-3
Jimbo Lamb277 views
Algebra 2 Section 5-2 von Jimbo Lamb
Algebra 2 Section 5-2Algebra 2 Section 5-2
Algebra 2 Section 5-2
Jimbo Lamb138 views
Algebra 2 Section 5-1 von Jimbo Lamb
Algebra 2 Section 5-1Algebra 2 Section 5-1
Algebra 2 Section 5-1
Jimbo Lamb161 views
Algebra 2 Section 4-9 von Jimbo Lamb
Algebra 2 Section 4-9Algebra 2 Section 4-9
Algebra 2 Section 4-9
Jimbo Lamb284 views
Algebra 2 Section 4-8 von Jimbo Lamb
Algebra 2 Section 4-8Algebra 2 Section 4-8
Algebra 2 Section 4-8
Jimbo Lamb187 views
Geometry Section 6-6 von Jimbo Lamb
Geometry Section 6-6Geometry Section 6-6
Geometry Section 6-6
Jimbo Lamb801 views
Geometry Section 6-5 von Jimbo Lamb
Geometry Section 6-5Geometry Section 6-5
Geometry Section 6-5
Jimbo Lamb408 views
Geometry Section 6-4 von Jimbo Lamb
Geometry Section 6-4Geometry Section 6-4
Geometry Section 6-4
Jimbo Lamb512 views
Geometry Section 6-3 von Jimbo Lamb
Geometry Section 6-3Geometry Section 6-3
Geometry Section 6-3
Jimbo Lamb715 views
Geometry Section 6-2 von Jimbo Lamb
Geometry Section 6-2Geometry Section 6-2
Geometry Section 6-2
Jimbo Lamb245 views
Geometry Section 6-1 von Jimbo Lamb
Geometry Section 6-1Geometry Section 6-1
Geometry Section 6-1
Jimbo Lamb312 views
Algebra 2 Section 4-5 von Jimbo Lamb
Algebra 2 Section 4-5Algebra 2 Section 4-5
Algebra 2 Section 4-5
Jimbo Lamb763 views
Algebra 2 Section 4-4 von Jimbo Lamb
Algebra 2 Section 4-4Algebra 2 Section 4-4
Algebra 2 Section 4-4
Jimbo Lamb285 views
Algebra 2 Section 4-2 von Jimbo Lamb
Algebra 2 Section 4-2Algebra 2 Section 4-2
Algebra 2 Section 4-2
Jimbo Lamb86 views

Último

Create a Structure in VBNet.pptx von
Create a Structure in VBNet.pptxCreate a Structure in VBNet.pptx
Create a Structure in VBNet.pptxBreach_P
72 views8 Folien
Are we onboard yet University of Sussex.pptx von
Are we onboard yet University of Sussex.pptxAre we onboard yet University of Sussex.pptx
Are we onboard yet University of Sussex.pptxJisc
93 views7 Folien
ANATOMY AND PHYSIOLOGY UNIT 1 { PART-1} von
ANATOMY AND PHYSIOLOGY UNIT 1 { PART-1}ANATOMY AND PHYSIOLOGY UNIT 1 { PART-1}
ANATOMY AND PHYSIOLOGY UNIT 1 { PART-1}DR .PALLAVI PATHANIA
244 views195 Folien
Sociology KS5 von
Sociology KS5Sociology KS5
Sociology KS5WestHatch
65 views23 Folien
Narration lesson plan.docx von
Narration lesson plan.docxNarration lesson plan.docx
Narration lesson plan.docxTARIQ KHAN
108 views11 Folien
Psychology KS4 von
Psychology KS4Psychology KS4
Psychology KS4WestHatch
76 views4 Folien

Último(20)

Create a Structure in VBNet.pptx von Breach_P
Create a Structure in VBNet.pptxCreate a Structure in VBNet.pptx
Create a Structure in VBNet.pptx
Breach_P72 views
Are we onboard yet University of Sussex.pptx von Jisc
Are we onboard yet University of Sussex.pptxAre we onboard yet University of Sussex.pptx
Are we onboard yet University of Sussex.pptx
Jisc93 views
Sociology KS5 von WestHatch
Sociology KS5Sociology KS5
Sociology KS5
WestHatch65 views
Narration lesson plan.docx von TARIQ KHAN
Narration lesson plan.docxNarration lesson plan.docx
Narration lesson plan.docx
TARIQ KHAN108 views
Psychology KS4 von WestHatch
Psychology KS4Psychology KS4
Psychology KS4
WestHatch76 views
7 NOVEL DRUG DELIVERY SYSTEM.pptx von Sachin Nitave
7 NOVEL DRUG DELIVERY SYSTEM.pptx7 NOVEL DRUG DELIVERY SYSTEM.pptx
7 NOVEL DRUG DELIVERY SYSTEM.pptx
Sachin Nitave59 views
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx von ISSIP
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptxEIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx
ISSIP359 views
Dance KS5 Breakdown von WestHatch
Dance KS5 BreakdownDance KS5 Breakdown
Dance KS5 Breakdown
WestHatch69 views
Scope of Biochemistry.pptx von shoba shoba
Scope of Biochemistry.pptxScope of Biochemistry.pptx
Scope of Biochemistry.pptx
shoba shoba126 views
REPRESENTATION - GAUNTLET.pptx von iammrhaywood
REPRESENTATION - GAUNTLET.pptxREPRESENTATION - GAUNTLET.pptx
REPRESENTATION - GAUNTLET.pptx
iammrhaywood91 views
American Psychological Association 7th Edition.pptx von SamiullahAfridi4
American Psychological Association  7th Edition.pptxAmerican Psychological Association  7th Edition.pptx
American Psychological Association 7th Edition.pptx
SamiullahAfridi482 views
Community-led Open Access Publishing webinar.pptx von Jisc
Community-led Open Access Publishing webinar.pptxCommunity-led Open Access Publishing webinar.pptx
Community-led Open Access Publishing webinar.pptx
Jisc91 views
Use of Probiotics in Aquaculture.pptx von AKSHAY MANDAL
Use of Probiotics in Aquaculture.pptxUse of Probiotics in Aquaculture.pptx
Use of Probiotics in Aquaculture.pptx
AKSHAY MANDAL95 views
The basics - information, data, technology and systems.pdf von JonathanCovena1
The basics - information, data, technology and systems.pdfThe basics - information, data, technology and systems.pdf
The basics - information, data, technology and systems.pdf
JonathanCovena1106 views

Algebra 2 Section 4-6

  • 2. Essential Questions • How do you factor polynomials? • How do you solve polynomial equations by factoring?
  • 4. Vocabulary 1. Prime Polynomials: Polynomials that cannot be factored 2. Quadratic Form:
  • 5. Vocabulary 1. Prime Polynomials: Polynomials that cannot be factored 2. Quadratic Form: Rewriting a polynomial so that it fits the pattern of a standard form quadratic; occurs with the degree of the first term is twice that of the second, with a constant third term
  • 6. Number of Terms Factoring Technique General Case Any Greatest Common Factor (GCF) 2 Difference of Squares 2 Sum of Cubes 2 Difference of Cubes 3 Perfect Square Trinomial 3 General Trinomials 4+ Grouping
  • 7. Number of Terms Factoring Technique General Case Any Greatest Common Factor (GCF) 2 Difference of Squares 2 Sum of Cubes 2 Difference of Cubes 3 Perfect Square Trinomial 3 General Trinomials 4+ Grouping 4a5 b7 +12ab = 4ab(a4 b6 + 3)
  • 8. Number of Terms Factoring Technique General Case Any Greatest Common Factor (GCF) 2 Difference of Squares 2 Sum of Cubes 2 Difference of Cubes 3 Perfect Square Trinomial 3 General Trinomials 4+ Grouping 4a5 b7 +12ab = 4ab(a4 b6 + 3) a2 − b2 = (a + b)(a − b)
  • 9. Number of Terms Factoring Technique General Case Any Greatest Common Factor (GCF) 2 Difference of Squares 2 Sum of Cubes 2 Difference of Cubes 3 Perfect Square Trinomial 3 General Trinomials 4+ Grouping 4a5 b7 +12ab = 4ab(a4 b6 + 3) a2 − b2 = (a + b)(a − b) a3 + b3 = (a + b)(a2 − ab + b2 )
  • 10. Number of Terms Factoring Technique General Case Any Greatest Common Factor (GCF) 2 Difference of Squares 2 Sum of Cubes 2 Difference of Cubes 3 Perfect Square Trinomial 3 General Trinomials 4+ Grouping 4a5 b7 +12ab = 4ab(a4 b6 + 3) a2 − b2 = (a + b)(a − b) a3 + b3 = (a + b)(a2 − ab + b2 ) a3 − b3 = (a − b)(a2 + ab + b2 )
  • 11. Number of Terms Factoring Technique General Case Any Greatest Common Factor (GCF) 2 Difference of Squares 2 Sum of Cubes 2 Difference of Cubes 3 Perfect Square Trinomial 3 General Trinomials 4+ Grouping 4a5 b7 +12ab = 4ab(a4 b6 + 3) a2 − b2 = (a + b)(a − b) a3 + b3 = (a + b)(a2 − ab + b2 ) a3 − b3 = (a − b)(a2 + ab + b2 ) a2 + 2ab + b2 = (a + b)2
  • 12. Number of Terms Factoring Technique General Case Any Greatest Common Factor (GCF) 2 Difference of Squares 2 Sum of Cubes 2 Difference of Cubes 3 Perfect Square Trinomial 3 General Trinomials 4+ Grouping 4a5 b7 +12ab = 4ab(a4 b6 + 3) a2 − b2 = (a + b)(a − b) a3 + b3 = (a + b)(a2 − ab + b2 ) a3 − b3 = (a − b)(a2 + ab + b2 ) a2 + 2ab + b2 = (a + b)2 a2 − 2ab + b2 = (a − b)2
  • 13. Number of Terms Factoring Technique General Case Any Greatest Common Factor (GCF) 2 Difference of Squares 2 Sum of Cubes 2 Difference of Cubes 3 Perfect Square Trinomial 3 General Trinomials 4+ Grouping 4a5 b7 +12ab = 4ab(a4 b6 + 3) a2 − b2 = (a + b)(a − b) a3 + b3 = (a + b)(a2 − ab + b2 ) a3 − b3 = (a − b)(a2 + ab + b2 ) a2 + 2ab + b2 = (a + b)2 a2 − 2ab + b2 = (a − b)2 acx 2 + (ad + bc)x + bd = (ax + b)(cx + d )
  • 14. Number of Terms Factoring Technique General Case Any Greatest Common Factor (GCF) 2 Difference of Squares 2 Sum of Cubes 2 Difference of Cubes 3 Perfect Square Trinomial 3 General Trinomials 4+ Grouping 4a5 b7 +12ab = 4ab(a4 b6 + 3) a2 − b2 = (a + b)(a − b) a3 + b3 = (a + b)(a2 − ab + b2 ) a3 − b3 = (a − b)(a2 + ab + b2 ) a2 + 2ab + b2 = (a + b)2 a2 − 2ab + b2 = (a − b)2 acx 2 + (ad + bc)x + bd = (ax + b)(cx + d ) ax + bx + ay + by = (a + b)(x + y )
  • 15. Example 1 Factor each polynomial. If the polynomial cannot be factored, write prime. a. x 3 −1000 b. 24x 5 + 3x 2 y 3 c. x 3 + 400
  • 16. Example 1 Factor each polynomial. If the polynomial cannot be factored, write prime. a. x 3 −1000 (x −10)(x 2 +10x +100) b. 24x 5 + 3x 2 y 3 c. x 3 + 400
  • 17. Example 1 Factor each polynomial. If the polynomial cannot be factored, write prime. a. x 3 −1000 (x −10)(x 2 +10x +100) b. 24x 5 + 3x 2 y 3 3x 2 (8x 3 + y 3 ) c. x 3 + 400
  • 18. Example 1 Factor each polynomial. If the polynomial cannot be factored, write prime. a. x 3 −1000 (x −10)(x 2 +10x +100) b. 24x 5 + 3x 2 y 3 3x 2 (8x 3 + y 3 ) 3x 2 (2x + y )(4x 2 − 2xy + y 2 ) c. x 3 + 400
  • 19. Example 1 Factor each polynomial. If the polynomial cannot be factored, write prime. a. x 3 −1000 (x −10)(x 2 +10x +100) b. 24x 5 + 3x 2 y 3 3x 2 (8x 3 + y 3 ) 3x 2 (2x + y )(4x 2 − 2xy + y 2 ) c. x 3 + 400 Prime
  • 20. Example 2 Factor each polynomial. If the polynomial cannot be factored, write prime. a. x 3 + 5x 2 − 2x −10
  • 21. Example 2 Factor each polynomial. If the polynomial cannot be factored, write prime. a. x 3 + 5x 2 − 2x −10 (x 3 + 5x 2 )+ (−2x −10)
  • 22. Example 2 Factor each polynomial. If the polynomial cannot be factored, write prime. a. x 3 + 5x 2 − 2x −10 (x 3 + 5x 2 )+ (−2x −10) x 2 (x + 5)− 2(x + 5)
  • 23. Example 2 Factor each polynomial. If the polynomial cannot be factored, write prime. a. x 3 + 5x 2 − 2x −10 (x 3 + 5x 2 )+ (−2x −10) x 2 (x + 5)− 2(x + 5) (x + 5)(x 2 − 2)
  • 24. Example 2 Factor each polynomial. If the polynomial cannot be factored, write prime. b. a2 + 3ay + 2ay 2 + 6y 3
  • 25. Example 2 Factor each polynomial. If the polynomial cannot be factored, write prime. b. a2 + 3ay + 2ay 2 + 6y 3 (a2 + 3ay )+ (2ay 2 + 6y 3 )
  • 26. Example 2 Factor each polynomial. If the polynomial cannot be factored, write prime. b. a2 + 3ay + 2ay 2 + 6y 3 (a2 + 3ay )+ (2ay 2 + 6y 3 ) a(a + 3y )+ 2y 2 (a + 3y )
  • 27. Example 2 Factor each polynomial. If the polynomial cannot be factored, write prime. b. a2 + 3ay + 2ay 2 + 6y 3 (a2 + 3ay )+ (2ay 2 + 6y 3 ) a(a + 3y )+ 2y 2 (a + 3y ) (a + 3y )(a + 2y 2 )
  • 28. Example 3 Factor each polynomial. If the polynomial cannot be factored, write prime. a. x 2 y 3 − 3xy 3 + 2y 3 + x 2 z3 − 3xz3 + 2z3
  • 29. Example 3 Factor each polynomial. If the polynomial cannot be factored, write prime. a. x 2 y 3 − 3xy 3 + 2y 3 + x 2 z3 − 3xz3 + 2z3 (x 2 y 3 − 3xy 3 + 2y 3 )+ (x 2 z3 − 3xz3 + 2z3 )
  • 30. Example 3 Factor each polynomial. If the polynomial cannot be factored, write prime. a. x 2 y 3 − 3xy 3 + 2y 3 + x 2 z3 − 3xz3 + 2z3 (x 2 y 3 − 3xy 3 + 2y 3 )+ (x 2 z3 − 3xz3 + 2z3 ) y 3 (x 2 − 3x + 2)+ z3 (x 2 − 3x + 2)
  • 31. Example 3 Factor each polynomial. If the polynomial cannot be factored, write prime. a. x 2 y 3 − 3xy 3 + 2y 3 + x 2 z3 − 3xz3 + 2z3 (x 2 y 3 − 3xy 3 + 2y 3 )+ (x 2 z3 − 3xz3 + 2z3 ) y 3 (x 2 − 3x + 2)+ z3 (x 2 − 3x + 2) (x 2 − 3x + 2)(y 3 + z3 )
  • 32. Example 3 Factor each polynomial. If the polynomial cannot be factored, write prime. a. x 2 y 3 − 3xy 3 + 2y 3 + x 2 z3 − 3xz3 + 2z3 (x 2 y 3 − 3xy 3 + 2y 3 )+ (x 2 z3 − 3xz3 + 2z3 ) y 3 (x 2 − 3x + 2)+ z3 (x 2 − 3x + 2) (x 2 − 3x + 2)(y 3 + z3 ) (x − 2)(x −1)(y + z)(y 2 − yz + z2 )
  • 33. Example 3 Factor each polynomial. If the polynomial cannot be factored, write prime. b. 64x 6 − y 6
  • 34. Example 3 Factor each polynomial. If the polynomial cannot be factored, write prime. b. 64x 6 − y 6 (8x 3 + y 3 )(8x 3 − y 3 )
  • 35. Example 3 Factor each polynomial. If the polynomial cannot be factored, write prime. b. 64x 6 − y 6 (8x 3 + y 3 )(8x 3 − y 3 ) (2x + y )(4x 2 − 2xy + y 2 )(2x − y )(4x 2 + 2xy + y 2 )
  • 36. Example 4 A small cube is cut from a larger cube. Determine the dimensions of the cubes if the length of the smaller cube is is one half the length of the larger cube, and the volume of the object is 23,625 cubic centimeters.
  • 37. Example 4 A small cube is cut from a larger cube. Determine the dimensions of the cubes if the length of the smaller cube is is one half the length of the larger cube, and the volume of the object is 23,625 cubic centimeters. x x x
  • 38. Example 4 A small cube is cut from a larger cube. Determine the dimensions of the cubes if the length of the smaller cube is is one half the length of the larger cube, and the volume of the object is 23,625 cubic centimeters. x 3 − x 2 ⎛ ⎝⎜ ⎞ ⎠⎟ 3 = 23625 x x x
  • 39. Example 4 A small cube is cut from a larger cube. Determine the dimensions of the cubes if the length of the smaller cube is is one half the length of the larger cube, and the volume of the object is 23,625 cubic centimeters. x 3 − x 2 ⎛ ⎝⎜ ⎞ ⎠⎟ 3 = 23625 x x x x 3 − 1 8 x 3 = 23625
  • 40. Example 4 A small cube is cut from a larger cube. Determine the dimensions of the cubes if the length of the smaller cube is is one half the length of the larger cube, and the volume of the object is 23,625 cubic centimeters. x 3 − x 2 ⎛ ⎝⎜ ⎞ ⎠⎟ 3 = 23625 x x x x 3 − 1 8 x 3 = 23625 7 8 x 3 = 23625
  • 41. Example 4 A small cube is cut from a larger cube. Determine the dimensions of the cubes if the length of the smaller cube is is one half the length of the larger cube, and the volume of the object is 23,625 cubic centimeters. x 3 − x 2 ⎛ ⎝⎜ ⎞ ⎠⎟ 3 = 23625 x x x x 3 − 1 8 x 3 = 23625 7 8 x 3 = 23625 x 3 = 27000
  • 42. Example 4 A small cube is cut from a larger cube. Determine the dimensions of the cubes if the length of the smaller cube is is one half the length of the larger cube, and the volume of the object is 23,625 cubic centimeters. x 3 − x 2 ⎛ ⎝⎜ ⎞ ⎠⎟ 3 = 23625 x x x x 3 − 1 8 x 3 = 23625 7 8 x 3 = 23625 x 3 = 27000 x 33 = 270003
  • 43. Example 4 A small cube is cut from a larger cube. Determine the dimensions of the cubes if the length of the smaller cube is is one half the length of the larger cube, and the volume of the object is 23,625 cubic centimeters. x 3 − x 2 ⎛ ⎝⎜ ⎞ ⎠⎟ 3 = 23625 x x x x 3 − 1 8 x 3 = 23625 7 8 x 3 = 23625 x 3 = 27000 x 33 = 270003 x = 30
  • 44. Example 4 A small cube is cut from a larger cube. Determine the dimensions of the cubes if the length of the smaller cube is is one half the length of the larger cube, and the volume of the object is 23,625 cubic centimeters. x 3 − x 2 ⎛ ⎝⎜ ⎞ ⎠⎟ 3 = 23625 x x x x 3 − 1 8 x 3 = 23625 7 8 x 3 = 23625 x 3 = 27000 x 33 = 270003 x = 30 The larger cube has a length of 30cm. The smaller cube has a length of 15 cm.
  • 45. Example 5 Write each expression in quadratic form, if possible. a. 2x 6 − x 3 + 9 b. x 4 + 2x 3 −1
  • 46. Example 5 Write each expression in quadratic form, if possible. a. 2x 6 − x 3 + 9 2(x 3 )2 − (x 3 )+ 9 b. x 4 + 2x 3 −1
  • 47. Example 5 Write each expression in quadratic form, if possible. a. 2x 6 − x 3 + 9 2(x 3 )2 − (x 3 )+ 9 Let u = x 3 b. x 4 + 2x 3 −1
  • 48. Example 5 Write each expression in quadratic form, if possible. a. 2x 6 − x 3 + 9 2(x 3 )2 − (x 3 )+ 9 2u2 −u + 9 Let u = x 3 b. x 4 + 2x 3 −1
  • 49. Example 5 Write each expression in quadratic form, if possible. a. 2x 6 − x 3 + 9 2(x 3 )2 − (x 3 )+ 9 2u2 −u + 9 Let u = x 3 b. x 4 + 2x 3 −1 Not possible
  • 50. Example 6 Solve. x 4 − 29x 2 +100 = 0
  • 51. Example 6 Solve. x 4 − 29x 2 +100 = 0 Let u = x 2
  • 52. Example 6 Solve. x 4 − 29x 2 +100 = 0 Let u = x 2 u2 − 29u +100 = 0
  • 53. Example 6 Solve. x 4 − 29x 2 +100 = 0 Let u = x 2 u2 − 29u +100 = 0 (u − 25)(u − 4) = 0
  • 54. Example 6 Solve. x 4 − 29x 2 +100 = 0 Let u = x 2 u2 − 29u +100 = 0 (u − 25)(u − 4) = 0 (x 2 − 25)(x 2 − 4) = 0
  • 55. Example 6 Solve. x 4 − 29x 2 +100 = 0 Let u = x 2 u2 − 29u +100 = 0 (u − 25)(u − 4) = 0 (x 2 − 25)(x 2 − 4) = 0 (x + 5)(x − 5)(x + 2)(x − 2) = 0
  • 56. Example 6 Solve. x 4 − 29x 2 +100 = 0 Let u = x 2 u2 − 29u +100 = 0 (u − 25)(u − 4) = 0 (x 2 − 25)(x 2 − 4) = 0 (x + 5)(x − 5)(x + 2)(x − 2) = 0 x = −5,x = 5,x = −2,x = 2