SlideShare a Scribd company logo
1 of 44
Download to read offline
Introduction
Results
May the force not be with you
Screening Modifications of Gravity and Disformal Couplings
Miguel Zumalac´arregui
Instituto de F´ısica Te´orica (IFT-UAM-CSIC) → ITP - Uni. Heidelberg
Refs: PRL 109 241102 (1205.3167) and PRD 87 083010 (1210.8016)
with Tomi S. Koivisto and David F. Mota
University of Geneva (May 2013)
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Theories of Gravity
Screening Mechanisms
The Frontiers of Gravity
Ostrogradski’s Theorem (1850)
Theories with L ⊃
∂nq
∂tn
, n ≥ 2 are unstable∗
L(q(t), ˙q, ¨q) →
∂L
∂q
−
d
dt
∂L
∂ ˙q
+
d2
dt2
∂L
∂¨q
= 0
q, ˙q, ¨q,
...
q → Q1, Q2, P1,P2
H = P1Q2 + terms independent of P1
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Theories of Gravity
Screening Mechanisms
The Frontiers of Gravity
Ostrogradski’s Theorem (1850)
Theories with L ⊃
∂nq
∂tn
, n ≥ 2 are unstable∗
L(q(t), ˙q, ¨q) →
∂L
∂q
−
d
dt
∂L
∂ ˙q
+
d2
dt2
∂L
∂¨q
= 0
q, ˙q, ¨q,
...
q → Q1, Q2, P1,P2
H = P1Q2 + terms independent of P1
∗ Loophole: Th’s with second order equations of motion
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Theories of Gravity
Screening Mechanisms
Einstein’s Theory
Lovelock’s Theorem (1971)
gµν + Local + 4-D + Lorentz Theory with 2nd order Eqs.
√
−g
1
16πG
(R − 2Λ)
Ways out - Clifton et al. (Phys.Rept. 2012)
Additional fields −→
£
¢
 
¡
φ , Aµ, hµν...
“Higher derivatives” −→ f(R)...
Extra dimensions −→ DGP, Kaluza-Klein...
Weird stuff −→ Non-local, Lorentz violating...
Scalars fields: Simple + certain limits from other theories
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Theories of Gravity
Screening Mechanisms
Scalar Tensor-Theories
Horndenski’s Theory (1974)
gµν +
£
¢
 
¡
φ + Local + 4-D + Lorentz Theory with 2nd order Eqs.
⇒ 4 free functions Gi(φ, X), X ≡ −1
2φ,µφ,µ
LH = G2 − G3 φ + G4R + G4,X ( φ)2
− φ;µνφ;µν
+ G5Gµνφ;µν
−
G5,X
6
( φ)3
− 3( φ)φ;µνφ;µν
+ 2φ ;ν
;µ φ ;λ
;ν φ ;µ
;λ
Jordan-Brans-Dicke: G4 = φ
16πG, G2 = X
ω(φ) − V (φ)
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Theories of Gravity
Screening Mechanisms
Scalar Tensor-Theories
Horndenski’s Theory (1974)
gµν +
£
¢
 
¡
φ + Local + 4-D + Lorentz Theory with 2nd order Eqs.
⇒ 4 free functions Gi(φ, X), X ≡ −1
2φ,µφ,µ
LH = G2 − G3 φ + G4R + G4,X ( φ)2
− φ;µνφ;µν
+ G5Gµνφ;µν
−
G5,X
6
( φ)3
− 3( φ)φ;µνφ;µν
+ 2φ ;ν
;µ φ ;λ
;ν φ ;µ
;λ
Jordan-Brans-Dicke: G4 = φ
16πG, G2 = X
ω(φ) − V (φ)
Kinetic Gravity Braiding - Deffayet et al. JCAP 2010
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Theories of Gravity
Screening Mechanisms
Scalar Tensor-Theories
Horndenski’s Theory (1974)
gµν +
£
¢
 
¡
φ + Local + 4-D + Lorentz Theory with 2nd order Eqs.
⇒ 4 free functions Gi(φ, X), X ≡ −1
2φ,µφ,µ
LH = G2 − G3 φ + G4R + G4,X ( φ)2
− φ;µνφ;µν
+ G5Gµνφ;µν
−
G5,X
6
( φ)3
− 3( φ)φ;µνφ;µν
+ 2φ ;ν
;µ φ ;λ
;ν φ ;µ
;λ
Jordan-Brans-Dicke: G4 = φ
16πG, G2 = X
ω(φ) − V (φ)
Kinetic Gravity Braiding - Deffayet et al. JCAP 2010
Deriv. couplings G4(X)
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Theories of Gravity
Screening Mechanisms
Scalar Tensor-Theories
Horndenski’s Theory (1974)
gµν +
£
¢
 
¡
φ + Local + 4-D + Lorentz Theory with 2nd order Eqs.
⇒ 4 free functions Gi(φ, X), X ≡ −1
2φ,µφ,µ
LH = G2 − G3 φ + G4R + G4,X ( φ)2
− φ;µνφ;µν
+ G5Gµνφ;µν
−
G5,X
6
( φ)3
− 3( φ)φ;µνφ;µν
+ 2φ ;ν
;µ φ ;λ
;ν φ ;µ
;λ
Jordan-Brans-Dicke: G4 = φ
16πG, G2 = X
ω(φ) − V (φ)
Kinetic Gravity Braiding - Deffayet et al. JCAP 2010
Deriv. couplings G4(X), G5 = 0
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Theories of Gravity
Screening Mechanisms
Frames and Forces
f(R) + Lm ,
vv
φ=f , V =R
((
φR + Lm + Lφ ,
uu
gµν ↔φ−1˜gµν
**
˜R + Lm[φ−1
˜gµν] + ˜Lφ
Jordan frame Einstein frame
√
−g
R
16πG
+
√
−γLm γµν[φ, gµν]
matter metric
, · · · +
√
−gLφ
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Theories of Gravity
Screening Mechanisms
Frames and Forces
f(R) + Lm ,
vv
φ=f , V =R
((
φR + Lm + Lφ ,
uu
gµν ↔φ−1˜gµν
**
˜R + Lm[φ−1
˜gµν] + ˜Lφ
Jordan frame Einstein frame
√
−g
R
16πG
+
√
−γLm γµν[φ, gµν]
matter metric
, · · · +
√
−gLφ
Point Particle:
¨xα
= − Γα
µν + Kα
µν
γαλ
( (µγν)λ−1
2 λγµν )
˙xµ
˙xν
⇒ Fi
φ = Ki
00 +O(vi
/c) ≈ f[φ] i
φ
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Theories of Gravity
Screening Mechanisms
Subtle the Force can be
Fi
φ ≈ f[φ] iφ
“You must feel the Force around you;
here, between you, me, the tree, the rock,
everywhere, yes”
Master Yoda
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Theories of Gravity
Screening Mechanisms
Subtle the Force can be
Fi
φ ≈ f[φ] iφ
“You must feel the Force around you;
here, between you, me, the tree, the rock,
everywhere, yes”
Master Yoda
No Fφ observed in Solar System
Screening Mechanisms
Fφ
FG
1 when
ρ ρ0
r H−1
0
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Theories of Gravity
Screening Mechanisms
Screening Mechanisms
§
¦
¤
¥
ρ ρ0 Chameleon Screening - Khoury & Veltman (PRL 2004)
Yukawa force: φ ∝ 1
r e−φ/mφ with mφ(ρ) increases with ρ
(cf. Symmetron - Hinterbichler & Khoury PRL 2010)
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Theories of Gravity
Screening Mechanisms
Screening Mechanisms
§
¦
¤
¥
ρ ρ0 Chameleon Screening - Khoury & Veltman (PRL 2004)
Yukawa force: φ ∝ 1
r e−φ/mφ with mφ(ρ) increases with ρ
(cf. Symmetron - Hinterbichler & Khoury PRL 2010)
§
¦
¤
¥
r H−1
0 Vainshtein Screening - Vainshtein (PLB 1972)
L ⊃ (∂φ) + φX/m2
+ αφTm Non-linear derivative interactions
⇒ φ + m−2
( φ)2
− φ;µν φ;µν
= αMδ(r)
φ ∝
r−1 if r rV
√
r if r rV
Vainshtein radius rV ∝ (GM/m2)1/3
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Theories of Gravity
Screening Mechanisms
Screening Mechanisms
§
¦
¤
¥
ρ ρ0 Chameleon Screening - Khoury & Veltman (PRL 2004)
Yukawa force: φ ∝ 1
r e−φ/mφ with mφ(ρ) increases with ρ
(cf. Symmetron - Hinterbichler & Khoury PRL 2010)
§
¦
¤
¥
r H−1
0 Vainshtein Screening - Vainshtein (PLB 1972)
L ⊃ (∂φ) + φX/m2
+ αφTm Non-linear derivative interactions
⇒ φ + m−2
( φ)2
− φ;µν φ;µν
= αMδ(r)
φ ∝
r−1 if r rV
√
r if r rV
Vainshtein radius rV ∝ (GM/m2)1/3
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Theories of Gravity
Screening Mechanisms
Screening Mechanisms
§
¦
¤
¥
ρ ρ0 Chameleon Screening - Khoury & Veltman (PRL 2004)
Yukawa force: φ ∝ 1
r e−φ/mφ with mφ(ρ) increases with ρ
(cf. Symmetron - Hinterbichler & Khoury PRL 2010)
§
¦
¤
¥
r H−1
0 Vainshtein Screening - Vainshtein (PLB 1972)
L ⊃ (∂φ) + φX/m2
+ αφTm Non-linear derivative interactions
⇒ φ + m−2
( φ)2
− φ;µν φ;µν
= αMδ(r)
φ ∝
r−1 if r rV
√
r if r rV
Vainshtein radius rV ∝ (GM/m2)1/3
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Theories of Gravity
Screening Mechanisms
Form of the Matter Metric
√
−g R
16πG +
√
−γLm γµν[φ, gµν]
matter metric
, · · · +
√
−gLφ
Disformal Relations - Bekenstein (PRD 1992)
γµν = C(φ)gµν
conformal
+ D(φ)φ,µφ,ν
disformal
d¯s2
γ = Cds2
g + D(φ,µdxµ
)2
C = 1 local rescaling, same causal structure
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Theories of Gravity
Screening Mechanisms
Form of the Matter Metric
√
−g R
16πG +
√
−γLm γµν[φ, gµν]
matter metric
, · · · +
√
−gLφ
Disformal Relations - Bekenstein (PRD 1992)
γµν = C(φ)gµν
conformal
+ D(φ)φ,µφ,ν
disformal
d¯s2
γ = Cds2
g + D(φ,µdxµ
)2
C = 1 local rescaling, same causal structure
D = 0 modified causal structure
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Theories of Gravity
Screening Mechanisms
Form of the Matter Metric
√
−g R
16πG +
√
−γLm γµν[φ, gµν]
matter metric
, · · · +
√
−gLφ
Disformal Relations - Bekenstein (PRD 1992)
γµν = C(φ)gµν
conformal
+ D(φ)φ,µφ,ν
disformal
d¯s2
γ = Cds2
g + D(φ,µdxµ
)2
C = 1 local rescaling, same causal structure
D = 0 modified causal structure
¯γ00 ∝ 1 − D
C
˙φ2 → Slow roll - MZ, Koivisto et al. (JCAP 2010)
+ relativistic MOND, VSL, Galileons...
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
Disformally Related Theories - MZ, Koivisto, Mota (PRD 2013)
γµν = C(φ)gµν + D(φ)φ,µφ,ν
Einstein Frame: LEF =
√
−gR[gµν] +
√
−γLM (γµν, ψ)
Einstein
gµν → 1
C gµν − D
C φ,µφ,ν

Jordan
Jordan Frame: LJF =
√
−γR[γµν] +
√
−gLM (gµν, ψ)
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
Disformally Related Theories - MZ, Koivisto, Mota (PRD 2013)
γµν = C(φ)gµν + D(φ)φ,µφ,ν
Einstein Frame: LEF =
√
−gR[gµν] +
√
−γLM (γµν, ψ)
Einstein
gµν → 1
C gµν − D
C φ,µφ,ν

Jordan
Jordan Frame: LJF =
√
−γR[γµν] +
√
−gLM (gµν, ψ)
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
Disformally Related Theories - MZ, Koivisto, Mota (PRD 2013)
γµν = C(φ)gµν + D(φ)φ,µφ,ν
Einstein Frame: LEF =
√
−gR[gµν] +
√
−γLM (γµν, ψ)
Einstein
gµν →C−1gµν
))
gµν →gµν − D
C
φ,µφ,ν
uu
gµν → 1
C gµν − D
C φ,µφ,ν

D ⊂ matteroo
§
¦
¤
¥Galileon
))
Disformal
uu
D ⊂ gravity //
OO
Jordan
Jordan Frame: LJF =
√
−γR[γµν] +
√
−gLM (gµν, ψ)
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
The Galileon Frame
Compute
√
−γ ¯R[γµν] for
§
¦
¤
¥
γµν = gµν + π,µπ,ν (π ≡ D(φ)dφ)
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
The Galileon Frame
Compute
√
−γ ¯R[γµν] for
§
¦
¤
¥
γµν = gµν + π,µπ,ν (π ≡ D(φ)dφ)
Disformal Curvature
√
−γR[γµν] =
√
−g
1
˜γ
R[gµν] − ˜γ ( π)2
− π;µνπ;µν
+ µξµ
with ˜γ−1 ≡ g/γ = 1 + π,µπ,µ
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
The Galileon Frame
Compute
√
−γ ¯R[γµν] for
§
¦
¤
¥
γµν = gµν + π,µπ,ν (π ≡ D(φ)dφ)
Disformal Curvature
√
−γR[γµν] =
√
−g
1
˜γ
R[gµν] − ˜γ ( π)2
− π;µνπ;µν
+ µξµ
with ˜γ−1 ≡ g/γ = 1 + π,µπ,µ
Quartic DBI Galileon
π = brane coordinate in 5th dim.
- De Rham  Tolley (JCAP 2010)
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
Disformally Related Theories - MZ, Koivisto, Mota (PRD 2013)
γµν = C(φ)gµν + D(φ)φ,µφ,ν
Einstein Frame: LEF =
√
−gR[gµν] +
√
−γLM (γµν, ψ)
§
¦
¤
¥Einstein
gµν →C−1gµν
))
gµν →gµν − D
C
φ,µφ,ν
uu
gµν → 1
C gµν − D
C φ,µφ,ν

D ⊂ matteroo

Galileon
))
Disformal
uu
D ⊂ gravity //
OO
Jordan
Jordan Frame: LJF =
√
−γR[γµν] +
√
−gLM (gµν, ψ)
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
The Einstein Frame
LEF =
√
−g
R
16πG
+ Lφ +
√
−γLM (γµν, ψ)
γµν = C(φ)gµν + D(φ)φ,µφ,ν
Gµν = 8πG(Tµν
m + Tµν
φ )
Matter-field interaction: µTµν
m = −Qφ,ν
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
The Einstein Frame
LEF =
√
−g
R
16πG
+ Lφ +
√
−γLM (γµν, ψ)
γµν = C(φ)gµν + D(φ)φ,µφ,ν
Gµν = 8πG(Tµν
m + Tµν
φ )
Matter-field interaction: µTµν
m = −Qφ,ν
Q =
D
C
µ (Tµν
m φ,ν) −
C
2C
Tm +
D
2C
−
DC
C2
φ,µφ,νTµν
m
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
The Einstein Frame
LEF =
√
−g
R
16πG
+ Lφ +
√
−γLM (γµν, ψ)
γµν = C(φ)gµν + D(φ)φ,µφ,ν
Gµν = 8πG(Tµν
m + Tµν
φ )
Matter-field interaction: µTµν
m = −Qφ,ν
Q =
D
C
µ (Tµν
m φ,ν) −
C
2C
Tm +
D
2C
−
DC
C2
φ,µφ,νTµν
m
Kinetic mixing Conformal Disformal
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
Consequences of Kinetic Mixing - Koivisto, Mota, MZ (PRL 2012)
Static matter ρ(x) + non-rel. p = 0
1 +
Dρ
C − 2DX
¨φ + F( φ,µ, φ,µ, ρ) = 0
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
Consequences of Kinetic Mixing - Koivisto, Mota, MZ (PRL 2012)
Static matter ρ(x) + non-rel. p = 0
1 +
Dρ
C − 2DX
¨φ + F( φ,µ, φ,µ, ρ) = 0
Disformal Screening Mechanism
¨φ ≈ −
D
2D
˙φ2
+ C
˙φ2
C
−
1
2D
(If Dρ → ∞)
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
Consequences of Kinetic Mixing - Koivisto, Mota, MZ (PRL 2012)
Static matter ρ(x) + non-rel. p = 0
1 +
Dρ
C − 2DX
¨φ + F( φ,µ, φ,µ, ρ) = 0
Disformal Screening Mechanism
¨φ ≈ −
D
2D
˙φ2
+ C
˙φ2
C
−
1
2D
(If Dρ → ∞)
φ(x, t)
§
¦
¤
¥
independent of ρ(x) and ∂iφ
⇒ No φ between M1, M2 ⇒
§
¦
¤
¥No fifth force!
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
Disformal Screening: Potential Signatures
Assumptions:
Static ∂tρ = 0
Pressureless Dp  X ≡ C − 2DX
Neglect p
ρ , p
ρ
∂φ
∂tφ
2
, X
Dρ , X
DρV /¨φ , Γµ
00φ,µ/¨φ ∼ 0
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
Disformal Screening: Potential Signatures
Assumptions:
Static ∂tρ = 0
Pressureless Dp  X ≡ C − 2DX
Neglect p
ρ , p
ρ
∂φ
∂tφ
2
, X
Dρ , X
DρV /¨φ , Γµ
00φ,µ/¨φ ∼ 0
Potential Signatures
Matter velocity flows: T0i → Terms ∝ φ;0i and ˙φ φ,i
Suppressed by v/c → Binary pulsars?
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
Disformal Screening: Potential Signatures
Assumptions:
Static ∂tρ = 0
Pressureless Dp  X ≡ C − 2DX
Neglect p
ρ , p
ρ
∂φ
∂tφ
2
, X
Dρ , X
DρV /¨φ , Γµ
00φ,µ/¨φ ∼ 0
Potential Signatures
Matter velocity flows: T0i → Terms ∝ φ;0i and ˙φ φ,i
Suppressed by v/c → Binary pulsars?
Pressure: Instability and effects on radiation
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
Disformal Screening: Potential Signatures
Assumptions:
Static ∂tρ = 0
Pressureless Dp  X ≡ C − 2DX
Neglect p
ρ , p
ρ
∂φ
∂tφ
2
, X
Dρ , X
DρV /¨φ , Γµ
00φ,µ/¨φ ∼ 0
Potential Signatures
Matter velocity flows: T0i → Terms ∝ φ;0i and ˙φ φ,i
Suppressed by v/c → Binary pulsars?
Pressure: Instability and effects on radiation
Strong gravitational fields: Γµ
00φ,µ not suppressed by Dρ
Γr
00 = GM
r3 (r − 2GM) → Black holes?
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
Disformal Screening: Potential Signatures
Assumptions:
Static ∂tρ = 0
Pressureless Dp  X ≡ C − 2DX
Neglect p
ρ , p
ρ
∂φ
∂tφ
2
, X
Dρ , X
DρV /¨φ , Γµ
00φ,µ/¨φ ∼ 0
Potential Signatures
Matter velocity flows: T0i → Terms ∝ φ;0i and ˙φ φ,i
Suppressed by v/c → Binary pulsars?
Pressure: Instability and effects on radiation
Strong gravitational fields: Γµ
00φ,µ not suppressed by Dρ
Γr
00 = GM
r3 (r − 2GM) → Black holes?
Spatial Field Gradients: Evolution independent of ∂iφ
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
The Vainshtein Radius - Vainshtein (PLB 1972)
Non-linear derivative interactions L ⊃ + φX/m2
+ αφTm
⇒ φ + m−2
( φ)2
− φ;µν φ;µν
= αMδ(r)
φ ∝
r−1 if r rV
√
r if r rV
Vainshtein radius rV ∝ (GM/m2)1/3
Disformal coupling: L ⊃ −˜γ ( φ)2
− φ;µν φ;µν
(Jordan Fr.)
φ = 0 ⇒ φ =
S
r
Einstein Fr.
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
The Vainshtein Radius - Vainshtein (PLB 1972)
Non-linear derivative interactions L ⊃ + φX/m2
+ αφTm
⇒ φ + m−2
( φ)2
− φ;µν φ;µν
= αMδ(r)
φ ∝
r−1 if r rV
√
r if r rV
Vainshtein radius rV ∝ (GM/m2)1/3
Disformal coupling: L ⊃ −˜γ ( φ)2
− φ;µν φ;µν
(Jordan Fr.)
φ =
−QµνδTµν
m
C + D(φ,r)2
⇒ φ =
S
r
(if r → ∞)
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Disformally Related Frames
Screening the Force
The Vainshtein Radius - Vainshtein (PLB 1972)
Non-linear derivative interactions L ⊃ + φX/m2
+ αφTm
⇒ φ + m−2
( φ)2
− φ;µν φ;µν
= αMδ(r)
φ ∝
r−1 if r rV
√
r if r rV
Vainshtein radius rV ∝ (GM/m2)1/3
Disformal coupling: L ⊃ −˜γ ( φ)2
− φ;µν φ;µν
(Jordan Fr.)
φ =
−QµνδTµν
m
C + D(φ,r)2
⇒ φ =
S
r
(if r → ∞)
D  0 ⇒ asymptotic φ0 = S
r breaks down at ˜rV = DS2
C
1/4
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Conclusions
Life beyond the conformal coupling: Dφ,µφ,ν
→ don’t be a conformist!
New frames: Galileon  Disformal
Einstein Frame: simpler Eqs.  physical insight
Screening mechanisms:
Disformal: Dρ → ∞ field eq. independent of ρ
Vainshtein: r rV ⇒ Fφ FG
Open questions  potential applications (e.g. Cosmology)
May the force not be with you!
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Backup Slides
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
Properties of the Field Equation
Canonical scalar field Lφ = X − V , solve for φ
Mµν
µ νφ +
C
C − 2DX
QµνTµν
m − V = 0
Mµν
≡ gµν
−
D Tµν
m
C − 2DX
, Qµν ≡
C
2C
gµν +
C D
C2
−
D
2C
φ,µφ,ν
Coupling to (Einstein F) perfect fluid Tµ
ν = diag(ρ, p, p, p)
M0
0 = 1 + Dρ
C−2DX , D, ρ  0 ⇒ no ghosts
Mi
i = 1 − Dp
C−2DX , ⇒ potential instability if p  C/D − X
- Does it occur dynamically?
- Consider non-relativistic coupled species Mi
i  0
Miguel Zumalac´arregui May the force not be with you
Introduction
Results
(Some) Cosmology
˙ρ + 3Hρ = Q0
˙φ ,
- Pure Conformal Q
(c)
0 = C
2C ρ
- Pure Disformal Q
(d)
0 ≈ ρφ
D
2D (1 + wφ) − V
2V (1 − wφ)
Simple models give
good background expansion with Λ = 0
too much growth:
Geff
G
− 1 =
Q2
0
4πGρ2
But much room for viable models
Miguel Zumalac´arregui May the force not be with you

More Related Content

What's hot

Boundedness of the Twisted Paraproduct
Boundedness of the Twisted ParaproductBoundedness of the Twisted Paraproduct
Boundedness of the Twisted ParaproductVjekoslavKovac1
 
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...Rene Kotze
 
Bellman functions and Lp estimates for paraproducts
Bellman functions and Lp estimates for paraproductsBellman functions and Lp estimates for paraproducts
Bellman functions and Lp estimates for paraproductsVjekoslavKovac1
 
Multilinear Twisted Paraproducts
Multilinear Twisted ParaproductsMultilinear Twisted Paraproducts
Multilinear Twisted ParaproductsVjekoslavKovac1
 
Estimates for a class of non-standard bilinear multipliers
Estimates for a class of non-standard bilinear multipliersEstimates for a class of non-standard bilinear multipliers
Estimates for a class of non-standard bilinear multipliersVjekoslavKovac1
 
Hiroyuki Sato
Hiroyuki SatoHiroyuki Sato
Hiroyuki SatoSuurist
 
Scattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisScattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisVjekoslavKovac1
 
Tales on two commuting transformations or flows
Tales on two commuting transformations or flowsTales on two commuting transformations or flows
Tales on two commuting transformations or flowsVjekoslavKovac1
 
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...VjekoslavKovac1
 
Tetsunao Matsuta
Tetsunao MatsutaTetsunao Matsuta
Tetsunao MatsutaSuurist
 
Stochastic Frank-Wolfe for Constrained Finite Sum Minimization @ Montreal Opt...
Stochastic Frank-Wolfe for Constrained Finite Sum Minimization @ Montreal Opt...Stochastic Frank-Wolfe for Constrained Finite Sum Minimization @ Montreal Opt...
Stochastic Frank-Wolfe for Constrained Finite Sum Minimization @ Montreal Opt...Geoffrey Négiar
 
Solovay Kitaev theorem
Solovay Kitaev theoremSolovay Kitaev theorem
Solovay Kitaev theoremJamesMa54
 
A Note on the Derivation of the Variational Inference Updates for DILN
A Note on the Derivation of the Variational Inference Updates for DILNA Note on the Derivation of the Variational Inference Updates for DILN
A Note on the Derivation of the Variational Inference Updates for DILNTomonari Masada
 

What's hot (20)

QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Boundedness of the Twisted Paraproduct
Boundedness of the Twisted ParaproductBoundedness of the Twisted Paraproduct
Boundedness of the Twisted Paraproduct
 
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
 
CMU_13
CMU_13CMU_13
CMU_13
 
Bellman functions and Lp estimates for paraproducts
Bellman functions and Lp estimates for paraproductsBellman functions and Lp estimates for paraproducts
Bellman functions and Lp estimates for paraproducts
 
Multilinear Twisted Paraproducts
Multilinear Twisted ParaproductsMultilinear Twisted Paraproducts
Multilinear Twisted Paraproducts
 
Estimates for a class of non-standard bilinear multipliers
Estimates for a class of non-standard bilinear multipliersEstimates for a class of non-standard bilinear multipliers
Estimates for a class of non-standard bilinear multipliers
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Hiroyuki Sato
Hiroyuki SatoHiroyuki Sato
Hiroyuki Sato
 
Scattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisScattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysis
 
Tales on two commuting transformations or flows
Tales on two commuting transformations or flowsTales on two commuting transformations or flows
Tales on two commuting transformations or flows
 
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Tetsunao Matsuta
Tetsunao MatsutaTetsunao Matsuta
Tetsunao Matsuta
 
Matrices ii
Matrices iiMatrices ii
Matrices ii
 
Stochastic Frank-Wolfe for Constrained Finite Sum Minimization @ Montreal Opt...
Stochastic Frank-Wolfe for Constrained Finite Sum Minimization @ Montreal Opt...Stochastic Frank-Wolfe for Constrained Finite Sum Minimization @ Montreal Opt...
Stochastic Frank-Wolfe for Constrained Finite Sum Minimization @ Montreal Opt...
 
Solovay Kitaev theorem
Solovay Kitaev theoremSolovay Kitaev theorem
Solovay Kitaev theorem
 
A Note on the Derivation of the Variational Inference Updates for DILN
A Note on the Derivation of the Variational Inference Updates for DILNA Note on the Derivation of the Variational Inference Updates for DILN
A Note on the Derivation of the Variational Inference Updates for DILN
 
Tables
TablesTables
Tables
 

Similar to May the Force NOT be with you

Spectral sum rules for conformal field theories
Spectral sum rules for conformal field theoriesSpectral sum rules for conformal field theories
Spectral sum rules for conformal field theoriesSubham Dutta Chowdhury
 
Maximum likelihood estimation of regularisation parameters in inverse problem...
Maximum likelihood estimation of regularisation parameters in inverse problem...Maximum likelihood estimation of regularisation parameters in inverse problem...
Maximum likelihood estimation of regularisation parameters in inverse problem...Valentin De Bortoli
 
[DL輪読会]GANとエネルギーベースモデル
[DL輪読会]GANとエネルギーベースモデル[DL輪読会]GANとエネルギーベースモデル
[DL輪読会]GANとエネルギーベースモデルDeep Learning JP
 
Alexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present statusAlexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present statusSEENET-MTP
 
Numerical integration based on the hyperfunction theory
Numerical integration based on the hyperfunction theoryNumerical integration based on the hyperfunction theory
Numerical integration based on the hyperfunction theoryHidenoriOgata
 
Accelerating Pseudo-Marginal MCMC using Gaussian Processes
Accelerating Pseudo-Marginal MCMC using Gaussian ProcessesAccelerating Pseudo-Marginal MCMC using Gaussian Processes
Accelerating Pseudo-Marginal MCMC using Gaussian ProcessesMatt Moores
 
Linear response theory and TDDFT
Linear response theory and TDDFT Linear response theory and TDDFT
Linear response theory and TDDFT Claudio Attaccalite
 
Talk in BayesComp 2018
Talk in BayesComp 2018Talk in BayesComp 2018
Talk in BayesComp 2018JeremyHeng10
 
New Insights and Perspectives on the Natural Gradient Method
New Insights and Perspectives on the Natural Gradient MethodNew Insights and Perspectives on the Natural Gradient Method
New Insights and Perspectives on the Natural Gradient MethodYoonho Lee
 
Bayesian Inference and Uncertainty Quantification for Inverse Problems
Bayesian Inference and Uncertainty Quantification for Inverse ProblemsBayesian Inference and Uncertainty Quantification for Inverse Problems
Bayesian Inference and Uncertainty Quantification for Inverse ProblemsMatt Moores
 
Neutrosophic Soft Topological Spaces on New Operations
Neutrosophic Soft Topological Spaces on New OperationsNeutrosophic Soft Topological Spaces on New Operations
Neutrosophic Soft Topological Spaces on New OperationsIJSRED
 
Problem for the gravitational field
 Problem for the gravitational field Problem for the gravitational field
Problem for the gravitational fieldAlexander Decker
 
Stochastic Alternating Direction Method of Multipliers
Stochastic Alternating Direction Method of MultipliersStochastic Alternating Direction Method of Multipliers
Stochastic Alternating Direction Method of MultipliersTaiji Suzuki
 
Controlled sequential Monte Carlo
Controlled sequential Monte Carlo Controlled sequential Monte Carlo
Controlled sequential Monte Carlo JeremyHeng10
 
A Fast Algorithm for Solving Scalar Wave Scattering Problem by Billions of Pa...
A Fast Algorithm for Solving Scalar Wave Scattering Problem by Billions of Pa...A Fast Algorithm for Solving Scalar Wave Scattering Problem by Billions of Pa...
A Fast Algorithm for Solving Scalar Wave Scattering Problem by Billions of Pa...A G
 

Similar to May the Force NOT be with you (20)

MUMS Opening Workshop - An Overview of Reduced-Order Models and Emulators (ED...
MUMS Opening Workshop - An Overview of Reduced-Order Models and Emulators (ED...MUMS Opening Workshop - An Overview of Reduced-Order Models and Emulators (ED...
MUMS Opening Workshop - An Overview of Reduced-Order Models and Emulators (ED...
 
Spectral sum rules for conformal field theories
Spectral sum rules for conformal field theoriesSpectral sum rules for conformal field theories
Spectral sum rules for conformal field theories
 
Maximum likelihood estimation of regularisation parameters in inverse problem...
Maximum likelihood estimation of regularisation parameters in inverse problem...Maximum likelihood estimation of regularisation parameters in inverse problem...
Maximum likelihood estimation of regularisation parameters in inverse problem...
 
QMC: Operator Splitting Workshop, Perturbed (accelerated) Proximal-Gradient A...
QMC: Operator Splitting Workshop, Perturbed (accelerated) Proximal-Gradient A...QMC: Operator Splitting Workshop, Perturbed (accelerated) Proximal-Gradient A...
QMC: Operator Splitting Workshop, Perturbed (accelerated) Proximal-Gradient A...
 
ENFPC 2010
ENFPC 2010ENFPC 2010
ENFPC 2010
 
[DL輪読会]GANとエネルギーベースモデル
[DL輪読会]GANとエネルギーベースモデル[DL輪読会]GANとエネルギーベースモデル
[DL輪読会]GANとエネルギーベースモデル
 
Alexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present statusAlexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present status
 
CLIM Transition Workshop - Semiparametric Models for Extremes - Surya Tokdar,...
CLIM Transition Workshop - Semiparametric Models for Extremes - Surya Tokdar,...CLIM Transition Workshop - Semiparametric Models for Extremes - Surya Tokdar,...
CLIM Transition Workshop - Semiparametric Models for Extremes - Surya Tokdar,...
 
Numerical integration based on the hyperfunction theory
Numerical integration based on the hyperfunction theoryNumerical integration based on the hyperfunction theory
Numerical integration based on the hyperfunction theory
 
Accelerating Pseudo-Marginal MCMC using Gaussian Processes
Accelerating Pseudo-Marginal MCMC using Gaussian ProcessesAccelerating Pseudo-Marginal MCMC using Gaussian Processes
Accelerating Pseudo-Marginal MCMC using Gaussian Processes
 
QMC: Operator Splitting Workshop, Proximal Algorithms in Probability Spaces -...
QMC: Operator Splitting Workshop, Proximal Algorithms in Probability Spaces -...QMC: Operator Splitting Workshop, Proximal Algorithms in Probability Spaces -...
QMC: Operator Splitting Workshop, Proximal Algorithms in Probability Spaces -...
 
Linear response theory and TDDFT
Linear response theory and TDDFT Linear response theory and TDDFT
Linear response theory and TDDFT
 
Talk in BayesComp 2018
Talk in BayesComp 2018Talk in BayesComp 2018
Talk in BayesComp 2018
 
New Insights and Perspectives on the Natural Gradient Method
New Insights and Perspectives on the Natural Gradient MethodNew Insights and Perspectives on the Natural Gradient Method
New Insights and Perspectives on the Natural Gradient Method
 
Bayesian Inference and Uncertainty Quantification for Inverse Problems
Bayesian Inference and Uncertainty Quantification for Inverse ProblemsBayesian Inference and Uncertainty Quantification for Inverse Problems
Bayesian Inference and Uncertainty Quantification for Inverse Problems
 
Neutrosophic Soft Topological Spaces on New Operations
Neutrosophic Soft Topological Spaces on New OperationsNeutrosophic Soft Topological Spaces on New Operations
Neutrosophic Soft Topological Spaces on New Operations
 
Problem for the gravitational field
 Problem for the gravitational field Problem for the gravitational field
Problem for the gravitational field
 
Stochastic Alternating Direction Method of Multipliers
Stochastic Alternating Direction Method of MultipliersStochastic Alternating Direction Method of Multipliers
Stochastic Alternating Direction Method of Multipliers
 
Controlled sequential Monte Carlo
Controlled sequential Monte Carlo Controlled sequential Monte Carlo
Controlled sequential Monte Carlo
 
A Fast Algorithm for Solving Scalar Wave Scattering Problem by Billions of Pa...
A Fast Algorithm for Solving Scalar Wave Scattering Problem by Billions of Pa...A Fast Algorithm for Solving Scalar Wave Scattering Problem by Billions of Pa...
A Fast Algorithm for Solving Scalar Wave Scattering Problem by Billions of Pa...
 

Recently uploaded

CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...RKavithamani
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 

Recently uploaded (20)

CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 

May the Force NOT be with you

  • 1. Introduction Results May the force not be with you Screening Modifications of Gravity and Disformal Couplings Miguel Zumalac´arregui Instituto de F´ısica Te´orica (IFT-UAM-CSIC) → ITP - Uni. Heidelberg Refs: PRL 109 241102 (1205.3167) and PRD 87 083010 (1210.8016) with Tomi S. Koivisto and David F. Mota University of Geneva (May 2013) Miguel Zumalac´arregui May the force not be with you
  • 2. Introduction Results Theories of Gravity Screening Mechanisms The Frontiers of Gravity Ostrogradski’s Theorem (1850) Theories with L ⊃ ∂nq ∂tn , n ≥ 2 are unstable∗ L(q(t), ˙q, ¨q) → ∂L ∂q − d dt ∂L ∂ ˙q + d2 dt2 ∂L ∂¨q = 0 q, ˙q, ¨q, ... q → Q1, Q2, P1,P2 H = P1Q2 + terms independent of P1 Miguel Zumalac´arregui May the force not be with you
  • 3. Introduction Results Theories of Gravity Screening Mechanisms The Frontiers of Gravity Ostrogradski’s Theorem (1850) Theories with L ⊃ ∂nq ∂tn , n ≥ 2 are unstable∗ L(q(t), ˙q, ¨q) → ∂L ∂q − d dt ∂L ∂ ˙q + d2 dt2 ∂L ∂¨q = 0 q, ˙q, ¨q, ... q → Q1, Q2, P1,P2 H = P1Q2 + terms independent of P1 ∗ Loophole: Th’s with second order equations of motion Miguel Zumalac´arregui May the force not be with you
  • 4. Introduction Results Theories of Gravity Screening Mechanisms Einstein’s Theory Lovelock’s Theorem (1971) gµν + Local + 4-D + Lorentz Theory with 2nd order Eqs. √ −g 1 16πG (R − 2Λ) Ways out - Clifton et al. (Phys.Rept. 2012) Additional fields −→ £ ¢   ¡ φ , Aµ, hµν... “Higher derivatives” −→ f(R)... Extra dimensions −→ DGP, Kaluza-Klein... Weird stuff −→ Non-local, Lorentz violating... Scalars fields: Simple + certain limits from other theories Miguel Zumalac´arregui May the force not be with you
  • 5. Introduction Results Theories of Gravity Screening Mechanisms Scalar Tensor-Theories Horndenski’s Theory (1974) gµν + £ ¢   ¡ φ + Local + 4-D + Lorentz Theory with 2nd order Eqs. ⇒ 4 free functions Gi(φ, X), X ≡ −1 2φ,µφ,µ LH = G2 − G3 φ + G4R + G4,X ( φ)2 − φ;µνφ;µν + G5Gµνφ;µν − G5,X 6 ( φ)3 − 3( φ)φ;µνφ;µν + 2φ ;ν ;µ φ ;λ ;ν φ ;µ ;λ Jordan-Brans-Dicke: G4 = φ 16πG, G2 = X ω(φ) − V (φ) Miguel Zumalac´arregui May the force not be with you
  • 6. Introduction Results Theories of Gravity Screening Mechanisms Scalar Tensor-Theories Horndenski’s Theory (1974) gµν + £ ¢   ¡ φ + Local + 4-D + Lorentz Theory with 2nd order Eqs. ⇒ 4 free functions Gi(φ, X), X ≡ −1 2φ,µφ,µ LH = G2 − G3 φ + G4R + G4,X ( φ)2 − φ;µνφ;µν + G5Gµνφ;µν − G5,X 6 ( φ)3 − 3( φ)φ;µνφ;µν + 2φ ;ν ;µ φ ;λ ;ν φ ;µ ;λ Jordan-Brans-Dicke: G4 = φ 16πG, G2 = X ω(φ) − V (φ) Kinetic Gravity Braiding - Deffayet et al. JCAP 2010 Miguel Zumalac´arregui May the force not be with you
  • 7. Introduction Results Theories of Gravity Screening Mechanisms Scalar Tensor-Theories Horndenski’s Theory (1974) gµν + £ ¢   ¡ φ + Local + 4-D + Lorentz Theory with 2nd order Eqs. ⇒ 4 free functions Gi(φ, X), X ≡ −1 2φ,µφ,µ LH = G2 − G3 φ + G4R + G4,X ( φ)2 − φ;µνφ;µν + G5Gµνφ;µν − G5,X 6 ( φ)3 − 3( φ)φ;µνφ;µν + 2φ ;ν ;µ φ ;λ ;ν φ ;µ ;λ Jordan-Brans-Dicke: G4 = φ 16πG, G2 = X ω(φ) − V (φ) Kinetic Gravity Braiding - Deffayet et al. JCAP 2010 Deriv. couplings G4(X) Miguel Zumalac´arregui May the force not be with you
  • 8. Introduction Results Theories of Gravity Screening Mechanisms Scalar Tensor-Theories Horndenski’s Theory (1974) gµν + £ ¢   ¡ φ + Local + 4-D + Lorentz Theory with 2nd order Eqs. ⇒ 4 free functions Gi(φ, X), X ≡ −1 2φ,µφ,µ LH = G2 − G3 φ + G4R + G4,X ( φ)2 − φ;µνφ;µν + G5Gµνφ;µν − G5,X 6 ( φ)3 − 3( φ)φ;µνφ;µν + 2φ ;ν ;µ φ ;λ ;ν φ ;µ ;λ Jordan-Brans-Dicke: G4 = φ 16πG, G2 = X ω(φ) − V (φ) Kinetic Gravity Braiding - Deffayet et al. JCAP 2010 Deriv. couplings G4(X), G5 = 0 Miguel Zumalac´arregui May the force not be with you
  • 9. Introduction Results Theories of Gravity Screening Mechanisms Frames and Forces f(R) + Lm , vv φ=f , V =R (( φR + Lm + Lφ , uu gµν ↔φ−1˜gµν ** ˜R + Lm[φ−1 ˜gµν] + ˜Lφ Jordan frame Einstein frame √ −g R 16πG + √ −γLm γµν[φ, gµν] matter metric , · · · + √ −gLφ Miguel Zumalac´arregui May the force not be with you
  • 10. Introduction Results Theories of Gravity Screening Mechanisms Frames and Forces f(R) + Lm , vv φ=f , V =R (( φR + Lm + Lφ , uu gµν ↔φ−1˜gµν ** ˜R + Lm[φ−1 ˜gµν] + ˜Lφ Jordan frame Einstein frame √ −g R 16πG + √ −γLm γµν[φ, gµν] matter metric , · · · + √ −gLφ Point Particle: ¨xα = − Γα µν + Kα µν γαλ ( (µγν)λ−1 2 λγµν ) ˙xµ ˙xν ⇒ Fi φ = Ki 00 +O(vi /c) ≈ f[φ] i φ Miguel Zumalac´arregui May the force not be with you
  • 11. Introduction Results Theories of Gravity Screening Mechanisms Subtle the Force can be Fi φ ≈ f[φ] iφ “You must feel the Force around you; here, between you, me, the tree, the rock, everywhere, yes” Master Yoda Miguel Zumalac´arregui May the force not be with you
  • 12. Introduction Results Theories of Gravity Screening Mechanisms Subtle the Force can be Fi φ ≈ f[φ] iφ “You must feel the Force around you; here, between you, me, the tree, the rock, everywhere, yes” Master Yoda No Fφ observed in Solar System Screening Mechanisms Fφ FG 1 when ρ ρ0 r H−1 0 Miguel Zumalac´arregui May the force not be with you
  • 13. Introduction Results Theories of Gravity Screening Mechanisms Screening Mechanisms § ¦ ¤ ¥ ρ ρ0 Chameleon Screening - Khoury & Veltman (PRL 2004) Yukawa force: φ ∝ 1 r e−φ/mφ with mφ(ρ) increases with ρ (cf. Symmetron - Hinterbichler & Khoury PRL 2010) Miguel Zumalac´arregui May the force not be with you
  • 14. Introduction Results Theories of Gravity Screening Mechanisms Screening Mechanisms § ¦ ¤ ¥ ρ ρ0 Chameleon Screening - Khoury & Veltman (PRL 2004) Yukawa force: φ ∝ 1 r e−φ/mφ with mφ(ρ) increases with ρ (cf. Symmetron - Hinterbichler & Khoury PRL 2010) § ¦ ¤ ¥ r H−1 0 Vainshtein Screening - Vainshtein (PLB 1972) L ⊃ (∂φ) + φX/m2 + αφTm Non-linear derivative interactions ⇒ φ + m−2 ( φ)2 − φ;µν φ;µν = αMδ(r) φ ∝ r−1 if r rV √ r if r rV Vainshtein radius rV ∝ (GM/m2)1/3 Miguel Zumalac´arregui May the force not be with you
  • 15. Introduction Results Theories of Gravity Screening Mechanisms Screening Mechanisms § ¦ ¤ ¥ ρ ρ0 Chameleon Screening - Khoury & Veltman (PRL 2004) Yukawa force: φ ∝ 1 r e−φ/mφ with mφ(ρ) increases with ρ (cf. Symmetron - Hinterbichler & Khoury PRL 2010) § ¦ ¤ ¥ r H−1 0 Vainshtein Screening - Vainshtein (PLB 1972) L ⊃ (∂φ) + φX/m2 + αφTm Non-linear derivative interactions ⇒ φ + m−2 ( φ)2 − φ;µν φ;µν = αMδ(r) φ ∝ r−1 if r rV √ r if r rV Vainshtein radius rV ∝ (GM/m2)1/3 Miguel Zumalac´arregui May the force not be with you
  • 16. Introduction Results Theories of Gravity Screening Mechanisms Screening Mechanisms § ¦ ¤ ¥ ρ ρ0 Chameleon Screening - Khoury & Veltman (PRL 2004) Yukawa force: φ ∝ 1 r e−φ/mφ with mφ(ρ) increases with ρ (cf. Symmetron - Hinterbichler & Khoury PRL 2010) § ¦ ¤ ¥ r H−1 0 Vainshtein Screening - Vainshtein (PLB 1972) L ⊃ (∂φ) + φX/m2 + αφTm Non-linear derivative interactions ⇒ φ + m−2 ( φ)2 − φ;µν φ;µν = αMδ(r) φ ∝ r−1 if r rV √ r if r rV Vainshtein radius rV ∝ (GM/m2)1/3 Miguel Zumalac´arregui May the force not be with you
  • 17. Introduction Results Theories of Gravity Screening Mechanisms Form of the Matter Metric √ −g R 16πG + √ −γLm γµν[φ, gµν] matter metric , · · · + √ −gLφ Disformal Relations - Bekenstein (PRD 1992) γµν = C(φ)gµν conformal + D(φ)φ,µφ,ν disformal d¯s2 γ = Cds2 g + D(φ,µdxµ )2 C = 1 local rescaling, same causal structure Miguel Zumalac´arregui May the force not be with you
  • 18. Introduction Results Theories of Gravity Screening Mechanisms Form of the Matter Metric √ −g R 16πG + √ −γLm γµν[φ, gµν] matter metric , · · · + √ −gLφ Disformal Relations - Bekenstein (PRD 1992) γµν = C(φ)gµν conformal + D(φ)φ,µφ,ν disformal d¯s2 γ = Cds2 g + D(φ,µdxµ )2 C = 1 local rescaling, same causal structure D = 0 modified causal structure Miguel Zumalac´arregui May the force not be with you
  • 19. Introduction Results Theories of Gravity Screening Mechanisms Form of the Matter Metric √ −g R 16πG + √ −γLm γµν[φ, gµν] matter metric , · · · + √ −gLφ Disformal Relations - Bekenstein (PRD 1992) γµν = C(φ)gµν conformal + D(φ)φ,µφ,ν disformal d¯s2 γ = Cds2 g + D(φ,µdxµ )2 C = 1 local rescaling, same causal structure D = 0 modified causal structure ¯γ00 ∝ 1 − D C ˙φ2 → Slow roll - MZ, Koivisto et al. (JCAP 2010) + relativistic MOND, VSL, Galileons... Miguel Zumalac´arregui May the force not be with you
  • 20. Introduction Results Disformally Related Frames Screening the Force Disformally Related Theories - MZ, Koivisto, Mota (PRD 2013) γµν = C(φ)gµν + D(φ)φ,µφ,ν Einstein Frame: LEF = √ −gR[gµν] + √ −γLM (γµν, ψ) Einstein gµν → 1 C gµν − D C φ,µφ,ν Jordan Jordan Frame: LJF = √ −γR[γµν] + √ −gLM (gµν, ψ) Miguel Zumalac´arregui May the force not be with you
  • 21. Introduction Results Disformally Related Frames Screening the Force Disformally Related Theories - MZ, Koivisto, Mota (PRD 2013) γµν = C(φ)gµν + D(φ)φ,µφ,ν Einstein Frame: LEF = √ −gR[gµν] + √ −γLM (γµν, ψ) Einstein gµν → 1 C gµν − D C φ,µφ,ν Jordan Jordan Frame: LJF = √ −γR[γµν] + √ −gLM (gµν, ψ) Miguel Zumalac´arregui May the force not be with you
  • 22. Introduction Results Disformally Related Frames Screening the Force Disformally Related Theories - MZ, Koivisto, Mota (PRD 2013) γµν = C(φ)gµν + D(φ)φ,µφ,ν Einstein Frame: LEF = √ −gR[gµν] + √ −γLM (γµν, ψ) Einstein gµν →C−1gµν )) gµν →gµν − D C φ,µφ,ν uu gµν → 1 C gµν − D C φ,µφ,ν D ⊂ matteroo § ¦ ¤ ¥Galileon )) Disformal uu D ⊂ gravity // OO Jordan Jordan Frame: LJF = √ −γR[γµν] + √ −gLM (gµν, ψ) Miguel Zumalac´arregui May the force not be with you
  • 23. Introduction Results Disformally Related Frames Screening the Force The Galileon Frame Compute √ −γ ¯R[γµν] for § ¦ ¤ ¥ γµν = gµν + π,µπ,ν (π ≡ D(φ)dφ) Miguel Zumalac´arregui May the force not be with you
  • 24. Introduction Results Disformally Related Frames Screening the Force The Galileon Frame Compute √ −γ ¯R[γµν] for § ¦ ¤ ¥ γµν = gµν + π,µπ,ν (π ≡ D(φ)dφ) Disformal Curvature √ −γR[γµν] = √ −g 1 ˜γ R[gµν] − ˜γ ( π)2 − π;µνπ;µν + µξµ with ˜γ−1 ≡ g/γ = 1 + π,µπ,µ Miguel Zumalac´arregui May the force not be with you
  • 25. Introduction Results Disformally Related Frames Screening the Force The Galileon Frame Compute √ −γ ¯R[γµν] for § ¦ ¤ ¥ γµν = gµν + π,µπ,ν (π ≡ D(φ)dφ) Disformal Curvature √ −γR[γµν] = √ −g 1 ˜γ R[gµν] − ˜γ ( π)2 − π;µνπ;µν + µξµ with ˜γ−1 ≡ g/γ = 1 + π,µπ,µ Quartic DBI Galileon π = brane coordinate in 5th dim. - De Rham Tolley (JCAP 2010) Miguel Zumalac´arregui May the force not be with you
  • 26. Introduction Results Disformally Related Frames Screening the Force Disformally Related Theories - MZ, Koivisto, Mota (PRD 2013) γµν = C(φ)gµν + D(φ)φ,µφ,ν Einstein Frame: LEF = √ −gR[gµν] + √ −γLM (γµν, ψ) § ¦ ¤ ¥Einstein gµν →C−1gµν )) gµν →gµν − D C φ,µφ,ν uu gµν → 1 C gµν − D C φ,µφ,ν D ⊂ matteroo Galileon )) Disformal uu D ⊂ gravity // OO Jordan Jordan Frame: LJF = √ −γR[γµν] + √ −gLM (gµν, ψ) Miguel Zumalac´arregui May the force not be with you
  • 27. Introduction Results Disformally Related Frames Screening the Force The Einstein Frame LEF = √ −g R 16πG + Lφ + √ −γLM (γµν, ψ) γµν = C(φ)gµν + D(φ)φ,µφ,ν Gµν = 8πG(Tµν m + Tµν φ ) Matter-field interaction: µTµν m = −Qφ,ν Miguel Zumalac´arregui May the force not be with you
  • 28. Introduction Results Disformally Related Frames Screening the Force The Einstein Frame LEF = √ −g R 16πG + Lφ + √ −γLM (γµν, ψ) γµν = C(φ)gµν + D(φ)φ,µφ,ν Gµν = 8πG(Tµν m + Tµν φ ) Matter-field interaction: µTµν m = −Qφ,ν Q = D C µ (Tµν m φ,ν) − C 2C Tm + D 2C − DC C2 φ,µφ,νTµν m Miguel Zumalac´arregui May the force not be with you
  • 29. Introduction Results Disformally Related Frames Screening the Force The Einstein Frame LEF = √ −g R 16πG + Lφ + √ −γLM (γµν, ψ) γµν = C(φ)gµν + D(φ)φ,µφ,ν Gµν = 8πG(Tµν m + Tµν φ ) Matter-field interaction: µTµν m = −Qφ,ν Q = D C µ (Tµν m φ,ν) − C 2C Tm + D 2C − DC C2 φ,µφ,νTµν m Kinetic mixing Conformal Disformal Miguel Zumalac´arregui May the force not be with you
  • 30. Introduction Results Disformally Related Frames Screening the Force Consequences of Kinetic Mixing - Koivisto, Mota, MZ (PRL 2012) Static matter ρ(x) + non-rel. p = 0 1 + Dρ C − 2DX ¨φ + F( φ,µ, φ,µ, ρ) = 0 Miguel Zumalac´arregui May the force not be with you
  • 31. Introduction Results Disformally Related Frames Screening the Force Consequences of Kinetic Mixing - Koivisto, Mota, MZ (PRL 2012) Static matter ρ(x) + non-rel. p = 0 1 + Dρ C − 2DX ¨φ + F( φ,µ, φ,µ, ρ) = 0 Disformal Screening Mechanism ¨φ ≈ − D 2D ˙φ2 + C ˙φ2 C − 1 2D (If Dρ → ∞) Miguel Zumalac´arregui May the force not be with you
  • 32. Introduction Results Disformally Related Frames Screening the Force Consequences of Kinetic Mixing - Koivisto, Mota, MZ (PRL 2012) Static matter ρ(x) + non-rel. p = 0 1 + Dρ C − 2DX ¨φ + F( φ,µ, φ,µ, ρ) = 0 Disformal Screening Mechanism ¨φ ≈ − D 2D ˙φ2 + C ˙φ2 C − 1 2D (If Dρ → ∞) φ(x, t) § ¦ ¤ ¥ independent of ρ(x) and ∂iφ ⇒ No φ between M1, M2 ⇒ § ¦ ¤ ¥No fifth force! Miguel Zumalac´arregui May the force not be with you
  • 33. Introduction Results Disformally Related Frames Screening the Force Disformal Screening: Potential Signatures Assumptions: Static ∂tρ = 0 Pressureless Dp X ≡ C − 2DX Neglect p ρ , p ρ ∂φ ∂tφ 2 , X Dρ , X DρV /¨φ , Γµ 00φ,µ/¨φ ∼ 0 Miguel Zumalac´arregui May the force not be with you
  • 34. Introduction Results Disformally Related Frames Screening the Force Disformal Screening: Potential Signatures Assumptions: Static ∂tρ = 0 Pressureless Dp X ≡ C − 2DX Neglect p ρ , p ρ ∂φ ∂tφ 2 , X Dρ , X DρV /¨φ , Γµ 00φ,µ/¨φ ∼ 0 Potential Signatures Matter velocity flows: T0i → Terms ∝ φ;0i and ˙φ φ,i Suppressed by v/c → Binary pulsars? Miguel Zumalac´arregui May the force not be with you
  • 35. Introduction Results Disformally Related Frames Screening the Force Disformal Screening: Potential Signatures Assumptions: Static ∂tρ = 0 Pressureless Dp X ≡ C − 2DX Neglect p ρ , p ρ ∂φ ∂tφ 2 , X Dρ , X DρV /¨φ , Γµ 00φ,µ/¨φ ∼ 0 Potential Signatures Matter velocity flows: T0i → Terms ∝ φ;0i and ˙φ φ,i Suppressed by v/c → Binary pulsars? Pressure: Instability and effects on radiation Miguel Zumalac´arregui May the force not be with you
  • 36. Introduction Results Disformally Related Frames Screening the Force Disformal Screening: Potential Signatures Assumptions: Static ∂tρ = 0 Pressureless Dp X ≡ C − 2DX Neglect p ρ , p ρ ∂φ ∂tφ 2 , X Dρ , X DρV /¨φ , Γµ 00φ,µ/¨φ ∼ 0 Potential Signatures Matter velocity flows: T0i → Terms ∝ φ;0i and ˙φ φ,i Suppressed by v/c → Binary pulsars? Pressure: Instability and effects on radiation Strong gravitational fields: Γµ 00φ,µ not suppressed by Dρ Γr 00 = GM r3 (r − 2GM) → Black holes? Miguel Zumalac´arregui May the force not be with you
  • 37. Introduction Results Disformally Related Frames Screening the Force Disformal Screening: Potential Signatures Assumptions: Static ∂tρ = 0 Pressureless Dp X ≡ C − 2DX Neglect p ρ , p ρ ∂φ ∂tφ 2 , X Dρ , X DρV /¨φ , Γµ 00φ,µ/¨φ ∼ 0 Potential Signatures Matter velocity flows: T0i → Terms ∝ φ;0i and ˙φ φ,i Suppressed by v/c → Binary pulsars? Pressure: Instability and effects on radiation Strong gravitational fields: Γµ 00φ,µ not suppressed by Dρ Γr 00 = GM r3 (r − 2GM) → Black holes? Spatial Field Gradients: Evolution independent of ∂iφ Miguel Zumalac´arregui May the force not be with you
  • 38. Introduction Results Disformally Related Frames Screening the Force The Vainshtein Radius - Vainshtein (PLB 1972) Non-linear derivative interactions L ⊃ + φX/m2 + αφTm ⇒ φ + m−2 ( φ)2 − φ;µν φ;µν = αMδ(r) φ ∝ r−1 if r rV √ r if r rV Vainshtein radius rV ∝ (GM/m2)1/3 Disformal coupling: L ⊃ −˜γ ( φ)2 − φ;µν φ;µν (Jordan Fr.) φ = 0 ⇒ φ = S r Einstein Fr. Miguel Zumalac´arregui May the force not be with you
  • 39. Introduction Results Disformally Related Frames Screening the Force The Vainshtein Radius - Vainshtein (PLB 1972) Non-linear derivative interactions L ⊃ + φX/m2 + αφTm ⇒ φ + m−2 ( φ)2 − φ;µν φ;µν = αMδ(r) φ ∝ r−1 if r rV √ r if r rV Vainshtein radius rV ∝ (GM/m2)1/3 Disformal coupling: L ⊃ −˜γ ( φ)2 − φ;µν φ;µν (Jordan Fr.) φ = −QµνδTµν m C + D(φ,r)2 ⇒ φ = S r (if r → ∞) Miguel Zumalac´arregui May the force not be with you
  • 40. Introduction Results Disformally Related Frames Screening the Force The Vainshtein Radius - Vainshtein (PLB 1972) Non-linear derivative interactions L ⊃ + φX/m2 + αφTm ⇒ φ + m−2 ( φ)2 − φ;µν φ;µν = αMδ(r) φ ∝ r−1 if r rV √ r if r rV Vainshtein radius rV ∝ (GM/m2)1/3 Disformal coupling: L ⊃ −˜γ ( φ)2 − φ;µν φ;µν (Jordan Fr.) φ = −QµνδTµν m C + D(φ,r)2 ⇒ φ = S r (if r → ∞) D 0 ⇒ asymptotic φ0 = S r breaks down at ˜rV = DS2 C 1/4 Miguel Zumalac´arregui May the force not be with you
  • 41. Introduction Results Conclusions Life beyond the conformal coupling: Dφ,µφ,ν → don’t be a conformist! New frames: Galileon Disformal Einstein Frame: simpler Eqs. physical insight Screening mechanisms: Disformal: Dρ → ∞ field eq. independent of ρ Vainshtein: r rV ⇒ Fφ FG Open questions potential applications (e.g. Cosmology) May the force not be with you! Miguel Zumalac´arregui May the force not be with you
  • 43. Introduction Results Properties of the Field Equation Canonical scalar field Lφ = X − V , solve for φ Mµν µ νφ + C C − 2DX QµνTµν m − V = 0 Mµν ≡ gµν − D Tµν m C − 2DX , Qµν ≡ C 2C gµν + C D C2 − D 2C φ,µφ,ν Coupling to (Einstein F) perfect fluid Tµ ν = diag(ρ, p, p, p) M0 0 = 1 + Dρ C−2DX , D, ρ 0 ⇒ no ghosts Mi i = 1 − Dp C−2DX , ⇒ potential instability if p C/D − X - Does it occur dynamically? - Consider non-relativistic coupled species Mi i 0 Miguel Zumalac´arregui May the force not be with you
  • 44. Introduction Results (Some) Cosmology ˙ρ + 3Hρ = Q0 ˙φ , - Pure Conformal Q (c) 0 = C 2C ρ - Pure Disformal Q (d) 0 ≈ ρφ D 2D (1 + wφ) − V 2V (1 − wφ) Simple models give good background expansion with Λ = 0 too much growth: Geff G − 1 = Q2 0 4πGρ2 But much room for viable models Miguel Zumalac´arregui May the force not be with you