Wir haben unsere Datenschutzbestimmungen aktualisiert. Klicke hier, um dir die _Einzelheiten anzusehen. Tippe hier, um dir die Einzelheiten anzusehen.
Aktiviere deine kostenlose 30-tägige Testversion, um unbegrenzt zu lesen.
Erstelle deine kostenlose 30-tägige Testversion, um weiterzulesen.
Herunterladen, um offline zu lesen
NIH BD2K all-hands meeting poster November 12, 2015.
Attempts at correlating phenotypic aspects of disease with causal genetic influences are often confounded by the challenges of interpreting diverse data distributed across numerous resources. New approaches to data modeling, integration, tooling, and community practices are needed to make efficient use of these data. The Monarch Initiative is an international consortium working on the development of shared data, tools, and standards to enable direct translation of integrated genotype, phenotype, and environmental data from human and model organisms to enhance our understanding of human disease. We utilize sophisticated semantic mapping techniques across a diverse set of standardized ontologies to deeply integrate data across species, sources, and modalities. Using phenotype similarity matching algorithms across these data enables disorder prediction, variant prioritization, and patient matching against known diseases and model organisms. These similarity algorithms form the core of several innovative tools. The Exomiser, which enables exome variant prioritization by combining pathogenicity, frequency, inheritance, protein interaction, and cross-species phenotype data. Our Phenotype Sufficiency tool provides clinicians the ability to compare patient phenotypic profiles using the Human Phenotype Ontology to determine uniqueness and specificity in support of variant prioritization. The PhenoGrid visualization widget illustrates phenotype similarity between patients, known diseases, and model organisms. Monarch develops models in collaboration with the community in support of the burgeoning genotype-phenotype disease research community. We have successfully used Exomiser to solve a number of undiagnosed patient cases in collaboration with the NIH Undiagnosed Disease Program. Ongoing development in coordination with the Global Alliance for Genetic Health (GA4GH) and other groups will catalyze the realization of our goal of a vital translational community focused on the collaborative application of integrated genotype, phenotype, and environmental data to human disease.
NIH BD2K all-hands meeting poster November 12, 2015.
Attempts at correlating phenotypic aspects of disease with causal genetic influences are often confounded by the challenges of interpreting diverse data distributed across numerous resources. New approaches to data modeling, integration, tooling, and community practices are needed to make efficient use of these data. The Monarch Initiative is an international consortium working on the development of shared data, tools, and standards to enable direct translation of integrated genotype, phenotype, and environmental data from human and model organisms to enhance our understanding of human disease. We utilize sophisticated semantic mapping techniques across a diverse set of standardized ontologies to deeply integrate data across species, sources, and modalities. Using phenotype similarity matching algorithms across these data enables disorder prediction, variant prioritization, and patient matching against known diseases and model organisms. These similarity algorithms form the core of several innovative tools. The Exomiser, which enables exome variant prioritization by combining pathogenicity, frequency, inheritance, protein interaction, and cross-species phenotype data. Our Phenotype Sufficiency tool provides clinicians the ability to compare patient phenotypic profiles using the Human Phenotype Ontology to determine uniqueness and specificity in support of variant prioritization. The PhenoGrid visualization widget illustrates phenotype similarity between patients, known diseases, and model organisms. Monarch develops models in collaboration with the community in support of the burgeoning genotype-phenotype disease research community. We have successfully used Exomiser to solve a number of undiagnosed patient cases in collaboration with the NIH Undiagnosed Disease Program. Ongoing development in coordination with the Global Alliance for Genetic Health (GA4GH) and other groups will catalyze the realization of our goal of a vital translational community focused on the collaborative application of integrated genotype, phenotype, and environmental data to human disease.
Sie haben diese Folie bereits ins Clipboard „“ geclippt.
Sie haben Ihre erste Folie geclippt!
Durch Clippen können Sie wichtige Folien sammeln, die Sie später noch einmal ansehen möchten. Passen Sie den Namen des Clipboards an, um Ihre Clips zu speichern.Die SlideShare-Familie hat sich gerade vergrößert. Genießen Sie nun Zugriff auf Millionen eBooks, Bücher, Hörbücher, Zeitschriften und mehr von Scribd.
Jederzeit kündbar.Unbegrenztes Lesevergnügen
Lerne schneller und intelligenter von Spitzenfachleuten
Unbegrenzte Downloads
Lade es dir zum Lernen offline und unterwegs herunter
Außerdem erhältst du auch kostenlosen Zugang zu Scribd!
Sofortiger Zugriff auf Millionen von E-Books, Hörbüchern, Zeitschriften, Podcasts und mehr.
Lese und höre offline mit jedem Gerät.
Kostenloser Zugang zu Premium-Diensten wie TuneIn, Mubi und mehr.
Wir haben unsere Datenschutzbestimmungen aktualisiert, um den neuen globalen Regeln zum Thema Datenschutzbestimmungen gerecht zu werden und dir einen Einblick in die begrenzten Möglichkeiten zu geben, wie wir deine Daten nutzen.
Die Einzelheiten findest du unten. Indem du sie akzeptierst, erklärst du dich mit den aktualisierten Datenschutzbestimmungen einverstanden.
Vielen Dank!