SlideShare a Scribd company logo
1 of 76
First Degree Functions
First Degree Functions
Most mathematical functions y = f(x) used in the real
world are “composed” with members from the following
three groups of formulas.
Most mathematical functions y = f(x) used in the real
world are “composed” with members from the following
three groups of formulas.
* The algebraic family – these are polynomials,
rational expressions and roots, etc..
First Degree Functions
Most mathematical functions y = f(x) used in the real
world are “composed” with members from the following
three groups of formulas.
* The algebraic family – these are polynomials,
rational expressions and roots, etc..
* The trigonometric family – these are sin(x),
cos(x), .. etc that come from line measurements.
First Degree Functions
Most mathematical functions y = f(x) used in the real
world are “composed” with members from the following
three groups of formulas.
* The algebraic family – these are polynomials,
rational expressions and roots, etc..
* The trigonometric family – these are sin(x),
cos(x), .. etc that come from line measurements.
* The exponential–log family – these are ex and ln(x)
that come from exponential contexts.
First Degree Functions
Most mathematical functions y = f(x) used in the real
world are “composed” with members from the following
three groups of formulas.
* The algebraic family – these are polynomials,
rational expressions and roots, etc..
* The trigonometric family – these are sin(x),
cos(x), .. etc that come from line measurements.
* The exponential–log family – these are ex and ln(x)
that come from exponential contexts.
Degree 1 or linear functions: f(x) = mx + b and
degree 2 or quadratic functions: f(x) = ax2 + bx + c
are especially important.
First Degree Functions
First Degree Functions
The algebraic family
The exponential–log family
The trigonometric family
Below is the MS Win-10 desktop scientific calculator,
a typical scientific calculator input panel:
Most mathematical functions y = f(x) used in the real
world are “composed” with members from the following
three groups of formulas.
* The algebraic family – these are polynomials,
rational expressions and roots, etc..
* The trigonometric family – these are sin(x),
cos(x), .. etc that come from line measurements.
* The exponential–log family – these are ex and ln(x)
that come from exponential contexts.
Degree 1 or linear functions: f(x) = mx + b and
degree 2 or quadratic functions: f(x) = ax2 + bx + c
are especially important.
First Degree Functions
Most mathematical functions y = f(x) used in the real
world are “composed” with members from the following
three groups of formulas.
* The algebraic family – these are polynomials,
rational expressions and roots, etc..
* The trigonometric family – these are sin(x),
cos(x), .. etc that come from line measurements.
* The exponential–log family – these are ex and ln(x)
that come from exponential contexts.
Degree 1 or linear functions: f(x) = mx + b and
degree 2 or quadratic functions: f(x) = ax2 + bx + c
are especially important.
First Degree Functions
We review below the basics of linear equations and
linear functions.
The graphs of the equations Ax + By = C are straight
lines.
First Degree Functions
The graphs of the equations Ax + By = C are straight
lines. It's easy to graph lines by graphing the x and y
intercepts,
First Degree Functions
a.2x – 3y = 12
The graphs of the equations Ax + By = C are straight
lines. It's easy to graph lines by graphing the x and y
intercepts,
First Degree Functions
a.2x – 3y = 12
The graphs of the equations Ax + By = C are straight
lines. It's easy to graph lines by graphing the x and y
intercepts, i.e. set x = 0 to get the y–intercept,
(0,–4)
First Degree Functions
a.2x – 3y = 12
The graphs of the equations Ax + By = C are straight
lines. It's easy to graph lines by graphing the x and y
intercepts, i.e. set x = 0 to get the y–intercept, and set
y = 0 for the x–intercept.
(6,0)
(0,–4)
First Degree Functions
a.2x – 3y = 12
The graphs of the equations Ax + By = C are straight
lines. It's easy to graph lines by graphing the x and y
intercepts, i.e. set x = 0 to get the y–intercept, and set
y = 0 for the x–intercept.
(6,0)
(0,–4)
First Degree Functions
a.2x – 3y = 12
The graphs of the equations Ax + By = C are straight
lines. It's easy to graph lines by graphing the x and y
intercepts, i.e. set x = 0 to get the y–intercept, and set
y = 0 for the x–intercept. If there is only one variable
in the equation, we get a vertical or a horizontal line.
(6,0)
(0,–4)
First Degree Functions
a.2x – 3y = 12 b. –3y = 12
The graphs of the equations Ax + By = C are straight
lines. It's easy to graph lines by graphing the x and y
intercepts, i.e. set x = 0 to get the y–intercept, and set
y = 0 for the x–intercept. If there is only one variable
in the equation, we get a vertical or a horizontal line.
(6,0)
(0,–4)
First Degree Functions
a.2x – 3y = 12 b. –3y = 12
The graphs of the equations Ax + By = C are straight
lines. It's easy to graph lines by graphing the x and y
intercepts, i.e. set x = 0 to get the y–intercept, and set
y = 0 for the x–intercept. If there is only one variable
in the equation, we get a vertical or a horizontal line.
(6,0)
(0,–4) y = –4
First Degree Functions
a.2x – 3y = 12 b. –3y = 12 c. 2x = 12
The graphs of the equations Ax + By = C are straight
lines. It's easy to graph lines by graphing the x and y
intercepts, i.e. set x = 0 to get the y–intercept, and set
y = 0 for the x–intercept. If there is only one variable
in the equation, we get a vertical or a horizontal line.
(6,0)
(0,–4) y = –4
First Degree Functions
a.2x – 3y = 12 b. –3y = 12 c. 2x = 12
The graphs of the equations Ax + By = C are straight
lines. It's easy to graph lines by graphing the x and y
intercepts, i.e. set x = 0 to get the y–intercept, and set
y = 0 for the x–intercept. If there is only one variable
in the equation, we get a vertical or a horizontal line.
(6,0)
(0,–4) y = –4
x = 6
First Degree Functions
a.2x – 3y = 12 b. –3y = 12 c. 2x = 12
If both x and y are
present, we get a
tilted line.
The graphs of the equations Ax + By = C are straight
lines. It's easy to graph lines by graphing the x and y
intercepts, i.e. set x = 0 to get the y–intercept, and set
y = 0 for the x–intercept. If there is only one variable
in the equation, we get a vertical or a horizontal line.
(6,0)
(0,–4) y = –4
x = 6
First Degree Functions
a.2x – 3y = 12 b. –3y = 12 c. 2x = 12
If both x and y are
present, we get a
tilted line.
If the equation is
y = c, we get a
horizontal line.
The graphs of the equations Ax + By = C are straight
lines. It's easy to graph lines by graphing the x and y
intercepts, i.e. set x = 0 to get the y–intercept, and set
y = 0 for the x–intercept. If there is only one variable
in the equation, we get a vertical or a horizontal line.
(6,0)
(0,–4) y = –4
x = 6
First Degree Functions
a.2x – 3y = 12 b. –3y = 12 c. 2x = 12
If both x and y are
present, we get a
tilted line.
If the equation is
y = c, we get a
horizontal line.
The graphs of the equations Ax + By = C are straight
lines. It's easy to graph lines by graphing the x and y
intercepts, i.e. set x = 0 to get the y–intercept, and set
y = 0 for the x–intercept. If there is only one variable
in the equation, we get a vertical or a horizontal line.
(6,0)
(0,–4) y = –4
x = 6
If the equation is
x = c, we get a
vertical line.
First Degree Functions
First Degree Functions
Given Ax + By = C with B = 0,
First Degree Functions
Given Ax + By = C with B = 0, treating x as the input
and y as the output, we may solve for y and put the
equation in a function form: y = f(x) = mx + b,
First Degree Functions
Given Ax + By = C with B = 0, treating x as the input
and y as the output, we may solve for y and put the
equation in a function form: y = f(x) = mx + b,
m is called the slope and b is the y intercept,
First Degree Functions
Given Ax + By = C with B = 0, treating x as the input
and y as the output, we may solve for y and put the
equation in a function form: y = f(x) = mx + b,
m is called the slope and b is the y intercept, and the
form is called the slope–intercept form.
First Degree Functions
Given Ax + By = C with B = 0, treating x as the input
and y as the output, we may solve for y and put the
equation in a function form: y = f(x) = mx + b,
m is called the slope and b is the y intercept, and the
form is called the slope–intercept form.
From the examples above,
a. 2x – 3y = 12 
First Degree Functions
Given Ax + By = C with B = 0, treating x as the input
and y as the output, we may solve for y and put the
equation in a function form: y = f(x) = mx + b,
m is called the slope and b is the y intercept, and the
form is called the slope–intercept form.
2
3
2
3
From the examples above,
a. 2x – 3y = 12  y = x – 4, so the slope =
First Degree Functions
Given Ax + By = C with B = 0, treating x as the input
and y as the output, we may solve for y and put the
equation in a function form: y = f(x) = mx + b,
m is called the slope and b is the y intercept, and the
form is called the slope–intercept form.
2
3
2
3
From the examples above,
a. 2x – 3y = 12  y = x – 4, so the slope =
b. –3y = 12
First Degree Functions
Given Ax + By = C with B = 0, treating x as the input
and y as the output, we may solve for y and put the
equation in a function form: y = f(x) = mx + b,
m is called the slope and b is the y intercept, and the
form is called the slope–intercept form.
2
3
2
3
From the examples above,
a. 2x – 3y = 12  y = x – 4, so the slope =
b. –3y = 12  y = 0x – 4, so the slope = 0
First Degree Functions
Given Ax + By = C with B = 0, treating x as the input
and y as the output, we may solve for y and put the
equation in a function form: y = f(x) = mx + b,
m is called the slope and b is the y intercept, and the
form is called the slope–intercept form.
2
3
2
3
From the examples above,
a. 2x – 3y = 12  y = x – 4, so the slope =
b. –3y = 12  y = 0x – 4, so the slope = 0
c. 2x = 12,
First Degree Functions
Given Ax + By = C with B = 0, treating x as the input
and y as the output, we may solve for y and put the
equation in a function form: y = f(x) = mx + b,
m is called the slope and b is the y intercept, and the
form is called the slope–intercept form.
2
3
2
3
From the examples above,
a. 2x – 3y = 12  y = x – 4, so the slope =
b. –3y = 12  y = 0x – 4, so the slope = 0
c. 2x = 12, the slope is undefined since we can't
solve for y.
First Degree Functions
Given Ax + By = C with B = 0, treating x as the input
and y as the output, we may solve for y and put the
equation in a function form: y = f(x) = mx + b,
m is called the slope and b is the y intercept, and the
form is called the slope–intercept form.
The slope m is also the ratio of the change in the
output vs. the change in the input.
2
3
2
3
From the examples above,
a. 2x – 3y = 12  y = x – 4, so the slope =
b. –3y = 12  y = 0x – 4, so the slope = 0
c. 2x = 12, the slope is undefined since we can't
solve for y.
First Degree Functions
Given Ax + By = C with B = 0, treating x as the input
and y as the output, we may solve for y and put the
equation in a function form: y = f(x) = mx + b,
m is called the slope and b is the y intercept, and the
form is called the slope–intercept form.
The slope m is also the ratio of the amounts of
change in the output : the change in the input.
If two points on the line are given,
the slope is defined via the following formula.
2
3
2
3
From the examples above,
a. 2x – 3y = 12  y = x – 4, so the slope =
b. –3y = 12  y = 0x – 4, so the slope = 0
c. 2x = 12, the slope is undefined since we can't
solve for y.
Slope Formula: Let (x1, y1) and (x2, y2) be two points
on a line,
First Degree Functions
(x1, y1)
(x2, y2)
Slope Formula: Let (x1, y1) and (x2, y2) be two points
on a line, then the slope
Δy
Δx
m =
First Degree Functions
(x1, y1)
(x2, y2)
Slope Formula: Let (x1, y1) and (x2, y2) be two points
on a line, then the slope
Δy
Δx
m =
First Degree Functions
(The Greek letter Δ means "the difference".)
(x1, y1)
(x2, y2)
Slope Formula: Let (x1, y1) and (x2, y2) be two points
on a line, then the slope
Δy
Δx
y2 – y1
x2 – x1
m = =
First Degree Functions
(The Greek letter Δ means "the difference".)
(x1, y1)
(x2, y2)
Slope Formula: Let (x1, y1) and (x2, y2) be two points
on a line, then the slope
Δy
Δx
y2 – y1
x2 – x1
m =
rise
run
=
=
First Degree Functions
(The Greek letter Δ means "the difference".)
(x1, y1)
(x2, y2)
Slope Formula: Let (x1, y1) and (x2, y2) be two points
on a line, then the slope
Δy
Δx
y2 – y1
x2 – x1
m =
rise
run
=
= (x1, y1)
(x2, y2)
First Degree Functions
(The Greek letter Δ means "the difference".)
Slope Formula: Let (x1, y1) and (x2, y2) be two points
on a line, then the slope
Δy
Δx
y2 – y1
x2 – x1
m =
rise
run
=
= (x1, y1)
(x2, y2)
Δy=y2–y1=rise
First Degree Functions
(The Greek letter Δ means "the difference".)
Slope Formula: Let (x1, y1) and (x2, y2) be two points
on a line, then the slope
Δy
Δx
y2 – y1
x2 – x1
m =
rise
run
=
= (x1, y1)
(x2, y2)
Δy=y2–y1=rise
Δx=x2–x1=run
First Degree Functions
(The Greek letter Δ means "the difference".)
Slope Formula: Let (x1, y1) and (x2, y2) be two points
on a line, then the slope
Δy
Δx
y2 – y1
x2 – x1
m =
rise
run
=
= (x1, y1)
(x2, y2)
Δy=y2–y1=rise
Δx=x2–x1=run
The Point Slope Formula: Let y = f(x) be a first
degree equation with slope m, and (x1, y1) is a point
on the line, then y = f(x) = m(x – x1) + y1
First Degree Functions
(The Greek letter Δ means "the difference".)
Slope Formula: Let (x1, y1) and (x2, y2) be two points
on a line, then the slope
Δy
Δx
y2 – y1
x2 – x1
m =
rise
run
=
= (x1, y1)
(x2, y2)
Δy=y2–y1=rise
Δx=x2–x1=run
The Point Slope Formula: Let y = f(x) be a first
degree equation with slope m, and (x1, y1) is a point
on the line, then y = f(x) = m(x – x1) + y1
First degree functions are also called linear functions
because their graphs are straight lines.
First Degree Functions
(The Greek letter Δ means "the difference".)
Slope Formula: Let (x1, y1) and (x2, y2) be two points
on a line, then the slope
Δy
Δx
y2 – y1
x2 – x1
m =
rise
run
=
= (x1, y1)
(x2, y2)
Δy=y2–y1=rise
Δx=x2–x1=run
The Point Slope Formula: Let y = f(x) be a first
degree equation with slope m, and (x1, y1) is a point
on the line, then y = f(x) = m(x – x1) + y1
First degree functions are also called linear functions
because their graphs are straight lines. We will use
linear functions to approximate other functions just like
we use line segments to approximate a curve.
First Degree Functions
(The Greek letter Δ means "the difference".)
Linear Equations and Lines
Example A. A river floods regularly, and on a rock by
the river there is a mark indicating the highest point
the water level ever recorded.
At 12 pm July 11, the water level is 28 inches below
this mark. At 8 am July 12 the water is 18 inches
below this mark.
Linear Equations and Lines
Example A. A river floods regularly, and on a rock by
the river there is a mark indicating the highest point
the water level ever recorded.
At 12 pm July 11, the water level is 28 inches below
this mark. At 8 am July 12 the water is 18 inches
below this mark. Let x = time,
y = distance between the water level and the mark.
Find the linear function y = f(x) = mx + b
of the distance y in terms of time x.
Linear Equations and Lines
Example A. A river floods regularly, and on a rock by
the river there is a mark indicating the highest point
the water level ever recorded.
At 12 pm July 11, the water level is 28 inches below
this mark. At 8 am July 12 the water is 18 inches
below this mark. Let x = time,
y = distance between the water level and the mark.
Find the linear function y = f(x) = mx + b
of the distance y in terms of time x.
Since how the time was measured is not specified,
we may select the stating time 0 to be time of the
first observation.
Linear Equations and Lines
Example A. A river floods regularly, and on a rock by
the river there is a mark indicating the highest point
the water level ever recorded.
At 12 pm July 11, the water level is 28 inches below
this mark. At 8 am July 12 the water is 18 inches
below this mark. Let x = time,
y = distance between the water level and the mark.
Find the linear function y = f(x) = mx + b
of the distance y in terms of time x.
Since how the time was measured is not specified,
we may select the stating time 0 to be time of the
first observation.
By setting x = 0 (hr) at 12 pm July 11,
then x = 20 at 8 am of July 12.
Equations of Lines
In particular, we are given that at x = 0 →y = 28,
and at x = 20 → y = 18
Equations of Lines
In particular, we are given that at x = 0 →y = 28,
and at x = 20 → y = 18 and that we want the
equation y = m(x – x1) + y1 of the line that contains
the points (0, 28) and (20, 18).
Δy
Δx
28 – 18
0 – 20
Equations of Lines
In particular, we are given that at x = 0 →y = 28,
and at x = 20 → y = 18 and that we want the
equation y = m(x – x1) + y1 of the line that contains
the points (0, 28) and (20, 18).
=
The slope m = = –1/2
Using the point (0, 28) and the point–slope formula,
y = – ½ (x – 0) + 28 or
Δy
Δx
28 – 18
0 – 20
Equations of Lines
In particular, we are given that at x = 0 →y = 28,
and at x = 20 → y = 18 and that we want the
equation y = m(x – x1) + y1 of the line that contains
the points (0, 28) and (20, 18).
=
The slope m = = –1/2
– x
y = + 28
2
Using the point (0, 28) and the point–slope formula,
y = – ½ (x – 0) + 28 or
Δy
Δx
28 – 18
0 – 20
Equations of Lines
In particular, we are given that at x = 0 →y = 28,
and at x = 20 → y = 18 and that we want the
equation y = m(x – x1) + y1 of the line that contains
the points (0, 28) and (20, 18).
=
The slope m = = –1/2
– x
y = + 28
2
The linear equation that we found is also called the
trend line.
Using the point (0, 28) and the point–slope formula,
y = – ½ (x – 0) + 28 or
Δy
Δx
28 – 18
0 – 20
Equations of Lines
In particular, we are given that at x = 0 →y = 28,
and at x = 20 → y = 18 and that we want the
equation y = m(x – x1) + y1 of the line that contains
the points (0, 28) and (20, 18).
=
The slope m = = –1/2
– x
y = + 28
2
The linear equation that we found is also called the
trend line. So if at 4 pm July 12, i.e. when x = 28,
we measured that y = 12”
Using the point (0, 28) and the point–slope formula,
y = – ½ (x – 0) + 28 or
Δy
Δx
28 – 18
0 – 20
Equations of Lines
In particular, we are given that at x = 0 →y = 28,
and at x = 20 → y = 18 and that we want the
equation y = m(x – x1) + y1 of the line that contains
the points (0, 28) and (20, 18).
=
The slope m = = –1/2
– x
y = + 28
2
The linear equation that we found is also called the
trend line. So if at 4 pm July 12, i.e. when x = 28,
we measured that y = 12” but based on the formula
prediction that y should be – 28/2 + 28 = 14”,
Using the point (0, 28) and the point–slope formula,
y = – ½ (x – 0) + 28 or
Δy
Δx
28 – 18
0 – 20
Equations of Lines
In particular, we are given that at x = 0 →y = 28,
and at x = 20 → y = 18 and that we want the
equation y = m(x – x1) + y1 of the line that contains
the points (0, 28) and (20, 18).
=
The slope m = = –1/2
– x
y = + 28
2
The linear equation that we found is also called the
trend line. So if at 4 pm July 12, i.e. when x = 28,
we measured that y = 12” but based on the formula
prediction that y should be – 28/2 + 28 = 14”, we may
conclude that the flood is intensifying.
More Facts on Slopes:
First Degree Functions
More Facts on Slopes:
• Parallel lines have the same slope.
First Degree Functions
More Facts on Slopes:
• Parallel lines have the same slope.
• Slopes of perpendicular lines are the negative
reciprocal of each other.
First Degree Functions
More Facts on Slopes:
• Parallel lines have the same slope.
• Slopes of perpendicular lines are the negative
reciprocal of each other.
Example B. Find the equation of the line L that
passes through (2, –4) and is perpendicular to
4x – 3y = 5.
First Degree Functions
More Facts on Slopes:
• Parallel lines have the same slope.
• Slopes of perpendicular lines are the negative
reciprocal of each other.
Example B. Find the equation of the line L that
passes through (2, –4) and is perpendicular to
4x – 3y = 5.
Solve for y to find the slope of 4x – 3y = 5
First Degree Functions
More Facts on Slopes:
• Parallel lines have the same slope.
• Slopes of perpendicular lines are the negative
reciprocal of each other.
Example B. Find the equation of the line L that
passes through (2, –4) and is perpendicular to
4x – 3y = 5.
Solve for y to find the slope of 4x – 3y = 5
4x – 5 = 3y
First Degree Functions
More Facts on Slopes:
• Parallel lines have the same slope.
• Slopes of perpendicular lines are the negative
reciprocal of each other.
Example B. Find the equation of the line L that
passes through (2, –4) and is perpendicular to
4x – 3y = 5.
Solve for y to find the slope of 4x – 3y = 5
4x – 5 = 3y
4x/3 – 5/3 = y
First Degree Functions
More Facts on Slopes:
• Parallel lines have the same slope.
• Slopes of perpendicular lines are the negative
reciprocal of each other.
Example B. Find the equation of the line L that
passes through (2, –4) and is perpendicular to
4x – 3y = 5.
Solve for y to find the slope of 4x – 3y = 5
4x – 5 = 3y
4x/3 – 5/3 = y
Hence the slope of 4x – 2y = 5 is 4/3.
First Degree Functions
More Facts on Slopes:
• Parallel lines have the same slope.
• Slopes of perpendicular lines are the negative
reciprocal of each other.
Example B. Find the equation of the line L that
passes through (2, –4) and is perpendicular to
4x – 3y = 5.
Solve for y to find the slope of 4x – 3y = 5
4x – 5 = 3y
4x/3 – 5/3 = y
Hence the slope of 4x – 2y = 5 is 4/3.
Therefore L has slope –3/4.
First Degree Functions
More Facts on Slopes:
• Parallel lines have the same slope.
• Slopes of perpendicular lines are the negative
reciprocal of each other.
Example B. Find the equation of the line L that
passes through (2, –4) and is perpendicular to
4x – 3y = 5.
Solve for y to find the slope of 4x – 3y = 5
4x – 5 = 3y
4x/3 – 5/3 = y
Hence the slope of 4x – 2y = 5 is 4/3.
Therefore L has slope –3/4. So the equation of L is
First Degree Functions
y = (–3/4)(x – 2) + (–4) or y = –3x/4 – 5/2.
Linear Equations and Lines
Exercise A. Estimate the slope by eyeballing two points,
then find an equation of each line below.
1. 2. 3. 4.
5. 6. 7. 8.
Linear Equations and Lines
B. Draw each line that passes through the given two points.
Find the slope and an equation of the line.
Again Identify the vertical lines and the horizontal lines by
inspection and solve for them first.
(Fraction Review: slide 99 of 1.2)
1. (0, –1), (–2, 1) 2. (3, –1), (3, 1)
4. (1, –2), (–2, 3)
3. (2, –1), (3, –1)
6. (4, –2), (4, 0)
5. (7, –2), (–2, –6)
7. (3/2, –1), (3/2, 1) 8. (3/4, –1/3), (1/3, 3/2)
9. (–1/4, –3/2), (2/3, –3/2) 10. (–1/3, –1/6), (–3/4, 1/2)
11. (2/5, –3/10), (–1/2, –3/5) 12. (–3/4, 5/6), (–3/4, –4/3)
Linear Equations and Lines
2. It’s perpendicular to 2x – 4y = 1 and passes through (–2, 1)
6. It’s perpendicular to 3y = x with x–intercept at x = –3.
12. It has y–intercept at y = 3 and is parallel to 3y + 4x = 1.
8. It’s perpendicular to the y–axis with y–intercept at 4.
9. It has y–intercept at y = 3 and is parallel to the x axis.
10. It’s perpendicular to the x– axis containing the point (4, –3).
11. It is parallel to the y axis has x–intercept at x = –7.
5. It is parallel to the x axis and has y–intercept at y = 7.
C. Find the equations of the following lines.
1. The line that passes through (0, 1) and has slope 3.
7. The line that passes through (–2 ,1) and has slope –1/2.
3. The line that passes through (5, 2) and is parallel to y = x.
4. The line that passes through (–3, 2) and is perpendicular
to –x = 2y.
Linear Equations and Lines
The cost y of renting a tour boat consists of a base–cost plus
the number of tourists x. With 4 tourists the total cost is $65,
with 11 tourists the total is $86.
1. What is the base cost and what is the charge per tourist?
2. Find the equation of y in terms of x.
3. What is the total cost if there are 28 tourists?
The temperature y of water in a glass is rising slowly.
After 4 min. the temperature is 30 Co, and after 11 min. the
temperature is up to 65 Co. Answer 4–6 assuming the
temperature is rising linearly.
4. What is the temperature at time 0 and what is the rate of
the temperature rise?
5. Find the equation of y in terms of time.
6. How long will it take to bring the water to a boil at 100 Co?
D. Find the equations of the following lines.
Linear Equations and Lines
The cost of gas y on May 3 is $3.58 and on May 9 is $4.00.
Answer 7–9 assuming the price is rising linearly.
7. Let x be the date in May, what is the rate of increase in
price in terms of x?
8. Find the equation of the price in term of the date x in May.
9. What is the projected price on May 20?
(Answers to odd problems) Exercise A.
1. 𝑚 = 1/3, 𝑦 = 1/3𝑥 3. 𝑚 = 1, 𝑦 = 𝑥 + 3
5. 𝑚 = 0, 𝑦 = 4 7. 𝑚 = −
3
2
, 𝑦 = −
3
2
𝑥 + 3
1. 𝑚 = −1, 𝑦 = −𝑥 − 1 3. 𝑚 = 0, 𝑦 = −1
Exercise B.
Linear Equations and Lines
5. 𝑚 =
4
9
, 𝑦 =
4
9
𝑥 − 46/9 7. 𝑚 = 0, 𝑥 = 3/2
9. 𝑚 = 0, 𝑦 = −3/2 11. 𝑚 = 1/3, 𝑦 = 𝑥/3 − 13/30
Linear Equations and Lines
9. 𝑦 = 3 11. 𝑥 =– 7
5. 𝑦 = 7
Exercise C.
1. 𝑦 = 3𝑥 + 1
7. 𝑦 =– 1/2𝑥
3. 𝑦 = 𝑥 − 3
1. The base cost is $53 and the charge per tourist is $3.
3. $137
Exercise D.
5. 𝑦 = 5𝑥 + 10
9. $4.77
7. The rate of increase is 0.07
Linear Equations and Lines

More Related Content

What's hot

2.4 grapgs of second degree functions
2.4 grapgs of second degree functions2.4 grapgs of second degree functions
2.4 grapgs of second degree functionsmath260
 
5 3 the graphs of quadratic equations-x
5 3 the graphs of quadratic equations-x5 3 the graphs of quadratic equations-x
5 3 the graphs of quadratic equations-xmath123b
 
4.2 stem parabolas revisited
4.2 stem parabolas revisited4.2 stem parabolas revisited
4.2 stem parabolas revisitedmath123c
 
11 graphs of first degree functions x
11 graphs of first degree functions x11 graphs of first degree functions x
11 graphs of first degree functions xmath260
 
5 3 the graphs of quadratic equations
5 3 the graphs of quadratic equations5 3 the graphs of quadratic equations
5 3 the graphs of quadratic equationsmath123b
 
5 2 solving 2nd degree equations
5 2 solving 2nd degree equations5 2 solving 2nd degree equations
5 2 solving 2nd degree equationsmath123b
 
8 inequalities and sign charts x
8 inequalities and sign charts x8 inequalities and sign charts x
8 inequalities and sign charts xmath260
 
1.2 the graphs of quadratic equations
1.2 the graphs of quadratic equations1.2 the graphs of quadratic equations
1.2 the graphs of quadratic equationsmath123c
 
Class xii practice questions
Class xii practice questionsClass xii practice questions
Class xii practice questionsindu psthakur
 
Linear ineqns. and statistics
Linear ineqns. and statisticsLinear ineqns. and statistics
Linear ineqns. and statisticsindu psthakur
 
2 graphs of first degree functions x
2 graphs of first degree functions x2 graphs of first degree functions x
2 graphs of first degree functions xTzenma
 
2.9 graphs of factorable polynomials
2.9 graphs of factorable polynomials2.9 graphs of factorable polynomials
2.9 graphs of factorable polynomialsmath260
 
16 slopes and difference quotient x
16 slopes and difference quotient x16 slopes and difference quotient x
16 slopes and difference quotient xmath260
 
Assignments for class XII
Assignments for class XIIAssignments for class XII
Assignments for class XIIindu thakur
 
Quadratic function
Quadratic functionQuadratic function
Quadratic functionvickytg123
 
Question bank -xi (hots)
Question bank -xi (hots)Question bank -xi (hots)
Question bank -xi (hots)indu psthakur
 
Module 3 polynomial functions
Module 3   polynomial functionsModule 3   polynomial functions
Module 3 polynomial functionsdionesioable
 

What's hot (20)

2.4 grapgs of second degree functions
2.4 grapgs of second degree functions2.4 grapgs of second degree functions
2.4 grapgs of second degree functions
 
5 3 the graphs of quadratic equations-x
5 3 the graphs of quadratic equations-x5 3 the graphs of quadratic equations-x
5 3 the graphs of quadratic equations-x
 
4.2 stem parabolas revisited
4.2 stem parabolas revisited4.2 stem parabolas revisited
4.2 stem parabolas revisited
 
11 graphs of first degree functions x
11 graphs of first degree functions x11 graphs of first degree functions x
11 graphs of first degree functions x
 
5 3 the graphs of quadratic equations
5 3 the graphs of quadratic equations5 3 the graphs of quadratic equations
5 3 the graphs of quadratic equations
 
5 2 solving 2nd degree equations
5 2 solving 2nd degree equations5 2 solving 2nd degree equations
5 2 solving 2nd degree equations
 
8 inequalities and sign charts x
8 inequalities and sign charts x8 inequalities and sign charts x
8 inequalities and sign charts x
 
1.2 the graphs of quadratic equations
1.2 the graphs of quadratic equations1.2 the graphs of quadratic equations
1.2 the graphs of quadratic equations
 
Class xii practice questions
Class xii practice questionsClass xii practice questions
Class xii practice questions
 
Linear ineqns. and statistics
Linear ineqns. and statisticsLinear ineqns. and statistics
Linear ineqns. and statistics
 
2 graphs of first degree functions x
2 graphs of first degree functions x2 graphs of first degree functions x
2 graphs of first degree functions x
 
2.9 graphs of factorable polynomials
2.9 graphs of factorable polynomials2.9 graphs of factorable polynomials
2.9 graphs of factorable polynomials
 
QUADRATIC FUNCTIONS
QUADRATIC FUNCTIONSQUADRATIC FUNCTIONS
QUADRATIC FUNCTIONS
 
16 slopes and difference quotient x
16 slopes and difference quotient x16 slopes and difference quotient x
16 slopes and difference quotient x
 
Quadratic functions
Quadratic functionsQuadratic functions
Quadratic functions
 
Assignments for class XII
Assignments for class XIIAssignments for class XII
Assignments for class XII
 
Quadratic function
Quadratic functionQuadratic function
Quadratic function
 
Question bank -xi (hots)
Question bank -xi (hots)Question bank -xi (hots)
Question bank -xi (hots)
 
Quadratic function
Quadratic functionQuadratic function
Quadratic function
 
Module 3 polynomial functions
Module 3   polynomial functionsModule 3   polynomial functions
Module 3 polynomial functions
 

Similar to 11 graphs of first degree functions x

17 conic sections circles-x
17 conic sections circles-x17 conic sections circles-x
17 conic sections circles-xmath260
 
2.5 conic sections circles-x
2.5 conic sections circles-x2.5 conic sections circles-x
2.5 conic sections circles-xmath260
 
2.5 conic sections circles-x
2.5 conic sections circles-x2.5 conic sections circles-x
2.5 conic sections circles-xmath260
 
February 11 2016
February 11 2016February 11 2016
February 11 2016khyps13
 
02.21.2020 Algebra I Quadraic Functions.ppt
02.21.2020  Algebra I Quadraic Functions.ppt02.21.2020  Algebra I Quadraic Functions.ppt
02.21.2020 Algebra I Quadraic Functions.pptjannelewlawas
 
Graphing quadratic equations
Graphing quadratic equationsGraphing quadratic equations
Graphing quadratic equationsswartzje
 
Graphing y = ax^2 + bx + c
Graphing  y = ax^2 + bx + cGraphing  y = ax^2 + bx + c
Graphing y = ax^2 + bx + cDaisyListening
 
Pptpersamaankuadrat 150205080445-conversion-gate02
Pptpersamaankuadrat 150205080445-conversion-gate02Pptpersamaankuadrat 150205080445-conversion-gate02
Pptpersamaankuadrat 150205080445-conversion-gate02MasfuahFuah
 
Mathematics 8 Linear Functions
Mathematics 8 Linear FunctionsMathematics 8 Linear Functions
Mathematics 8 Linear FunctionsJuan Miguel Palero
 
Solution 3
Solution 3Solution 3
Solution 3aldrins
 
Solution 3
Solution 3Solution 3
Solution 3aldrins
 
WRITING AND GRAPHING LINEAR EQUATIONS 1.pptx
WRITING AND GRAPHING LINEAR EQUATIONS 1.pptxWRITING AND GRAPHING LINEAR EQUATIONS 1.pptx
WRITING AND GRAPHING LINEAR EQUATIONS 1.pptxKristenHathcock
 
Families of curves
Families of curvesFamilies of curves
Families of curvesTarun Gehlot
 
2 3 Bzca5e
2 3 Bzca5e2 3 Bzca5e
2 3 Bzca5esilvia
 

Similar to 11 graphs of first degree functions x (20)

17 conic sections circles-x
17 conic sections circles-x17 conic sections circles-x
17 conic sections circles-x
 
2.5 conic sections circles-x
2.5 conic sections circles-x2.5 conic sections circles-x
2.5 conic sections circles-x
 
2.5 conic sections circles-x
2.5 conic sections circles-x2.5 conic sections circles-x
2.5 conic sections circles-x
 
Grph quad fncts
Grph quad fnctsGrph quad fncts
Grph quad fncts
 
Graphs Of Equations
Graphs Of EquationsGraphs Of Equations
Graphs Of Equations
 
February 11 2016
February 11 2016February 11 2016
February 11 2016
 
02.21.2020 Algebra I Quadraic Functions.ppt
02.21.2020  Algebra I Quadraic Functions.ppt02.21.2020  Algebra I Quadraic Functions.ppt
02.21.2020 Algebra I Quadraic Functions.ppt
 
Graphing quadratic equations
Graphing quadratic equationsGraphing quadratic equations
Graphing quadratic equations
 
M8AL- IIf-2
M8AL- IIf-2M8AL- IIf-2
M8AL- IIf-2
 
Math project
Math projectMath project
Math project
 
Graphing y = ax^2 + bx + c
Graphing  y = ax^2 + bx + cGraphing  y = ax^2 + bx + c
Graphing y = ax^2 + bx + c
 
Pptpersamaankuadrat 150205080445-conversion-gate02
Pptpersamaankuadrat 150205080445-conversion-gate02Pptpersamaankuadrat 150205080445-conversion-gate02
Pptpersamaankuadrat 150205080445-conversion-gate02
 
Mathematics 8 Linear Functions
Mathematics 8 Linear FunctionsMathematics 8 Linear Functions
Mathematics 8 Linear Functions
 
Solution 3
Solution 3Solution 3
Solution 3
 
Solution 3
Solution 3Solution 3
Solution 3
 
WRITING AND GRAPHING LINEAR EQUATIONS 1.pptx
WRITING AND GRAPHING LINEAR EQUATIONS 1.pptxWRITING AND GRAPHING LINEAR EQUATIONS 1.pptx
WRITING AND GRAPHING LINEAR EQUATIONS 1.pptx
 
identities1.2
identities1.2identities1.2
identities1.2
 
Straight line
Straight line Straight line
Straight line
 
Families of curves
Families of curvesFamilies of curves
Families of curves
 
2 3 Bzca5e
2 3 Bzca5e2 3 Bzca5e
2 3 Bzca5e
 

More from math260

36 Matrix Algebra-x.pptx
36 Matrix Algebra-x.pptx36 Matrix Algebra-x.pptx
36 Matrix Algebra-x.pptxmath260
 
35 Special Cases System of Linear Equations-x.pptx
35 Special Cases System of Linear Equations-x.pptx35 Special Cases System of Linear Equations-x.pptx
35 Special Cases System of Linear Equations-x.pptxmath260
 
18Ellipses-x.pptx
18Ellipses-x.pptx18Ellipses-x.pptx
18Ellipses-x.pptxmath260
 
10.5 more on language of functions x
10.5 more on language of functions x10.5 more on language of functions x
10.5 more on language of functions xmath260
 
1 exponents yz
1 exponents yz1 exponents yz
1 exponents yzmath260
 
9 the basic language of functions x
9 the basic language of functions x9 the basic language of functions x
9 the basic language of functions xmath260
 
7 sign charts of factorable formulas y
7 sign charts of factorable formulas y7 sign charts of factorable formulas y
7 sign charts of factorable formulas ymath260
 
18 ellipses x
18 ellipses x18 ellipses x
18 ellipses xmath260
 
15 translations of graphs x
15 translations of graphs x15 translations of graphs x
15 translations of graphs xmath260
 
14 graphs of factorable rational functions x
14 graphs of factorable rational functions x14 graphs of factorable rational functions x
14 graphs of factorable rational functions xmath260
 
9 the basic language of functions x
9 the basic language of functions x9 the basic language of functions x
9 the basic language of functions xmath260
 
29 inverse functions x
29 inverse functions  x29 inverse functions  x
29 inverse functions xmath260
 
28 more on log and exponential equations x
28 more on log and exponential equations x28 more on log and exponential equations x
28 more on log and exponential equations xmath260
 
27 calculation with log and exp x
27 calculation with log and exp x27 calculation with log and exp x
27 calculation with log and exp xmath260
 
26 the logarithm functions x
26 the logarithm functions x26 the logarithm functions x
26 the logarithm functions xmath260
 
25 continuous compound interests perta x
25 continuous compound interests perta  x25 continuous compound interests perta  x
25 continuous compound interests perta xmath260
 
24 exponential functions and periodic compound interests pina x
24 exponential functions and periodic compound interests pina x24 exponential functions and periodic compound interests pina x
24 exponential functions and periodic compound interests pina xmath260
 
23 looking for real roots of real polynomials x
23 looking for real roots of real polynomials x23 looking for real roots of real polynomials x
23 looking for real roots of real polynomials xmath260
 
22 the fundamental theorem of algebra x
22 the fundamental theorem of algebra x22 the fundamental theorem of algebra x
22 the fundamental theorem of algebra xmath260
 
21 properties of division and roots x
21 properties of division and roots x21 properties of division and roots x
21 properties of division and roots xmath260
 

More from math260 (20)

36 Matrix Algebra-x.pptx
36 Matrix Algebra-x.pptx36 Matrix Algebra-x.pptx
36 Matrix Algebra-x.pptx
 
35 Special Cases System of Linear Equations-x.pptx
35 Special Cases System of Linear Equations-x.pptx35 Special Cases System of Linear Equations-x.pptx
35 Special Cases System of Linear Equations-x.pptx
 
18Ellipses-x.pptx
18Ellipses-x.pptx18Ellipses-x.pptx
18Ellipses-x.pptx
 
10.5 more on language of functions x
10.5 more on language of functions x10.5 more on language of functions x
10.5 more on language of functions x
 
1 exponents yz
1 exponents yz1 exponents yz
1 exponents yz
 
9 the basic language of functions x
9 the basic language of functions x9 the basic language of functions x
9 the basic language of functions x
 
7 sign charts of factorable formulas y
7 sign charts of factorable formulas y7 sign charts of factorable formulas y
7 sign charts of factorable formulas y
 
18 ellipses x
18 ellipses x18 ellipses x
18 ellipses x
 
15 translations of graphs x
15 translations of graphs x15 translations of graphs x
15 translations of graphs x
 
14 graphs of factorable rational functions x
14 graphs of factorable rational functions x14 graphs of factorable rational functions x
14 graphs of factorable rational functions x
 
9 the basic language of functions x
9 the basic language of functions x9 the basic language of functions x
9 the basic language of functions x
 
29 inverse functions x
29 inverse functions  x29 inverse functions  x
29 inverse functions x
 
28 more on log and exponential equations x
28 more on log and exponential equations x28 more on log and exponential equations x
28 more on log and exponential equations x
 
27 calculation with log and exp x
27 calculation with log and exp x27 calculation with log and exp x
27 calculation with log and exp x
 
26 the logarithm functions x
26 the logarithm functions x26 the logarithm functions x
26 the logarithm functions x
 
25 continuous compound interests perta x
25 continuous compound interests perta  x25 continuous compound interests perta  x
25 continuous compound interests perta x
 
24 exponential functions and periodic compound interests pina x
24 exponential functions and periodic compound interests pina x24 exponential functions and periodic compound interests pina x
24 exponential functions and periodic compound interests pina x
 
23 looking for real roots of real polynomials x
23 looking for real roots of real polynomials x23 looking for real roots of real polynomials x
23 looking for real roots of real polynomials x
 
22 the fundamental theorem of algebra x
22 the fundamental theorem of algebra x22 the fundamental theorem of algebra x
22 the fundamental theorem of algebra x
 
21 properties of division and roots x
21 properties of division and roots x21 properties of division and roots x
21 properties of division and roots x
 

Recently uploaded

HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfPatidar M
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management SystemChristalin Nelson
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Seán Kennedy
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptxmary850239
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
Food processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture honsFood processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture honsManeerUddin
 

Recently uploaded (20)

HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdf
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management System
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptxYOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
Food processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture honsFood processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture hons
 

11 graphs of first degree functions x

  • 2. First Degree Functions Most mathematical functions y = f(x) used in the real world are “composed” with members from the following three groups of formulas.
  • 3. Most mathematical functions y = f(x) used in the real world are “composed” with members from the following three groups of formulas. * The algebraic family – these are polynomials, rational expressions and roots, etc.. First Degree Functions
  • 4. Most mathematical functions y = f(x) used in the real world are “composed” with members from the following three groups of formulas. * The algebraic family – these are polynomials, rational expressions and roots, etc.. * The trigonometric family – these are sin(x), cos(x), .. etc that come from line measurements. First Degree Functions
  • 5. Most mathematical functions y = f(x) used in the real world are “composed” with members from the following three groups of formulas. * The algebraic family – these are polynomials, rational expressions and roots, etc.. * The trigonometric family – these are sin(x), cos(x), .. etc that come from line measurements. * The exponential–log family – these are ex and ln(x) that come from exponential contexts. First Degree Functions
  • 6. Most mathematical functions y = f(x) used in the real world are “composed” with members from the following three groups of formulas. * The algebraic family – these are polynomials, rational expressions and roots, etc.. * The trigonometric family – these are sin(x), cos(x), .. etc that come from line measurements. * The exponential–log family – these are ex and ln(x) that come from exponential contexts. Degree 1 or linear functions: f(x) = mx + b and degree 2 or quadratic functions: f(x) = ax2 + bx + c are especially important. First Degree Functions
  • 7. First Degree Functions The algebraic family The exponential–log family The trigonometric family Below is the MS Win-10 desktop scientific calculator, a typical scientific calculator input panel:
  • 8. Most mathematical functions y = f(x) used in the real world are “composed” with members from the following three groups of formulas. * The algebraic family – these are polynomials, rational expressions and roots, etc.. * The trigonometric family – these are sin(x), cos(x), .. etc that come from line measurements. * The exponential–log family – these are ex and ln(x) that come from exponential contexts. Degree 1 or linear functions: f(x) = mx + b and degree 2 or quadratic functions: f(x) = ax2 + bx + c are especially important. First Degree Functions
  • 9. Most mathematical functions y = f(x) used in the real world are “composed” with members from the following three groups of formulas. * The algebraic family – these are polynomials, rational expressions and roots, etc.. * The trigonometric family – these are sin(x), cos(x), .. etc that come from line measurements. * The exponential–log family – these are ex and ln(x) that come from exponential contexts. Degree 1 or linear functions: f(x) = mx + b and degree 2 or quadratic functions: f(x) = ax2 + bx + c are especially important. First Degree Functions We review below the basics of linear equations and linear functions.
  • 10. The graphs of the equations Ax + By = C are straight lines. First Degree Functions
  • 11. The graphs of the equations Ax + By = C are straight lines. It's easy to graph lines by graphing the x and y intercepts, First Degree Functions
  • 12. a.2x – 3y = 12 The graphs of the equations Ax + By = C are straight lines. It's easy to graph lines by graphing the x and y intercepts, First Degree Functions
  • 13. a.2x – 3y = 12 The graphs of the equations Ax + By = C are straight lines. It's easy to graph lines by graphing the x and y intercepts, i.e. set x = 0 to get the y–intercept, (0,–4) First Degree Functions
  • 14. a.2x – 3y = 12 The graphs of the equations Ax + By = C are straight lines. It's easy to graph lines by graphing the x and y intercepts, i.e. set x = 0 to get the y–intercept, and set y = 0 for the x–intercept. (6,0) (0,–4) First Degree Functions
  • 15. a.2x – 3y = 12 The graphs of the equations Ax + By = C are straight lines. It's easy to graph lines by graphing the x and y intercepts, i.e. set x = 0 to get the y–intercept, and set y = 0 for the x–intercept. (6,0) (0,–4) First Degree Functions
  • 16. a.2x – 3y = 12 The graphs of the equations Ax + By = C are straight lines. It's easy to graph lines by graphing the x and y intercepts, i.e. set x = 0 to get the y–intercept, and set y = 0 for the x–intercept. If there is only one variable in the equation, we get a vertical or a horizontal line. (6,0) (0,–4) First Degree Functions
  • 17. a.2x – 3y = 12 b. –3y = 12 The graphs of the equations Ax + By = C are straight lines. It's easy to graph lines by graphing the x and y intercepts, i.e. set x = 0 to get the y–intercept, and set y = 0 for the x–intercept. If there is only one variable in the equation, we get a vertical or a horizontal line. (6,0) (0,–4) First Degree Functions
  • 18. a.2x – 3y = 12 b. –3y = 12 The graphs of the equations Ax + By = C are straight lines. It's easy to graph lines by graphing the x and y intercepts, i.e. set x = 0 to get the y–intercept, and set y = 0 for the x–intercept. If there is only one variable in the equation, we get a vertical or a horizontal line. (6,0) (0,–4) y = –4 First Degree Functions
  • 19. a.2x – 3y = 12 b. –3y = 12 c. 2x = 12 The graphs of the equations Ax + By = C are straight lines. It's easy to graph lines by graphing the x and y intercepts, i.e. set x = 0 to get the y–intercept, and set y = 0 for the x–intercept. If there is only one variable in the equation, we get a vertical or a horizontal line. (6,0) (0,–4) y = –4 First Degree Functions
  • 20. a.2x – 3y = 12 b. –3y = 12 c. 2x = 12 The graphs of the equations Ax + By = C are straight lines. It's easy to graph lines by graphing the x and y intercepts, i.e. set x = 0 to get the y–intercept, and set y = 0 for the x–intercept. If there is only one variable in the equation, we get a vertical or a horizontal line. (6,0) (0,–4) y = –4 x = 6 First Degree Functions
  • 21. a.2x – 3y = 12 b. –3y = 12 c. 2x = 12 If both x and y are present, we get a tilted line. The graphs of the equations Ax + By = C are straight lines. It's easy to graph lines by graphing the x and y intercepts, i.e. set x = 0 to get the y–intercept, and set y = 0 for the x–intercept. If there is only one variable in the equation, we get a vertical or a horizontal line. (6,0) (0,–4) y = –4 x = 6 First Degree Functions
  • 22. a.2x – 3y = 12 b. –3y = 12 c. 2x = 12 If both x and y are present, we get a tilted line. If the equation is y = c, we get a horizontal line. The graphs of the equations Ax + By = C are straight lines. It's easy to graph lines by graphing the x and y intercepts, i.e. set x = 0 to get the y–intercept, and set y = 0 for the x–intercept. If there is only one variable in the equation, we get a vertical or a horizontal line. (6,0) (0,–4) y = –4 x = 6 First Degree Functions
  • 23. a.2x – 3y = 12 b. –3y = 12 c. 2x = 12 If both x and y are present, we get a tilted line. If the equation is y = c, we get a horizontal line. The graphs of the equations Ax + By = C are straight lines. It's easy to graph lines by graphing the x and y intercepts, i.e. set x = 0 to get the y–intercept, and set y = 0 for the x–intercept. If there is only one variable in the equation, we get a vertical or a horizontal line. (6,0) (0,–4) y = –4 x = 6 If the equation is x = c, we get a vertical line. First Degree Functions
  • 24. First Degree Functions Given Ax + By = C with B = 0,
  • 25. First Degree Functions Given Ax + By = C with B = 0, treating x as the input and y as the output, we may solve for y and put the equation in a function form: y = f(x) = mx + b,
  • 26. First Degree Functions Given Ax + By = C with B = 0, treating x as the input and y as the output, we may solve for y and put the equation in a function form: y = f(x) = mx + b, m is called the slope and b is the y intercept,
  • 27. First Degree Functions Given Ax + By = C with B = 0, treating x as the input and y as the output, we may solve for y and put the equation in a function form: y = f(x) = mx + b, m is called the slope and b is the y intercept, and the form is called the slope–intercept form.
  • 28. First Degree Functions Given Ax + By = C with B = 0, treating x as the input and y as the output, we may solve for y and put the equation in a function form: y = f(x) = mx + b, m is called the slope and b is the y intercept, and the form is called the slope–intercept form. From the examples above, a. 2x – 3y = 12 
  • 29. First Degree Functions Given Ax + By = C with B = 0, treating x as the input and y as the output, we may solve for y and put the equation in a function form: y = f(x) = mx + b, m is called the slope and b is the y intercept, and the form is called the slope–intercept form. 2 3 2 3 From the examples above, a. 2x – 3y = 12  y = x – 4, so the slope =
  • 30. First Degree Functions Given Ax + By = C with B = 0, treating x as the input and y as the output, we may solve for y and put the equation in a function form: y = f(x) = mx + b, m is called the slope and b is the y intercept, and the form is called the slope–intercept form. 2 3 2 3 From the examples above, a. 2x – 3y = 12  y = x – 4, so the slope = b. –3y = 12
  • 31. First Degree Functions Given Ax + By = C with B = 0, treating x as the input and y as the output, we may solve for y and put the equation in a function form: y = f(x) = mx + b, m is called the slope and b is the y intercept, and the form is called the slope–intercept form. 2 3 2 3 From the examples above, a. 2x – 3y = 12  y = x – 4, so the slope = b. –3y = 12  y = 0x – 4, so the slope = 0
  • 32. First Degree Functions Given Ax + By = C with B = 0, treating x as the input and y as the output, we may solve for y and put the equation in a function form: y = f(x) = mx + b, m is called the slope and b is the y intercept, and the form is called the slope–intercept form. 2 3 2 3 From the examples above, a. 2x – 3y = 12  y = x – 4, so the slope = b. –3y = 12  y = 0x – 4, so the slope = 0 c. 2x = 12,
  • 33. First Degree Functions Given Ax + By = C with B = 0, treating x as the input and y as the output, we may solve for y and put the equation in a function form: y = f(x) = mx + b, m is called the slope and b is the y intercept, and the form is called the slope–intercept form. 2 3 2 3 From the examples above, a. 2x – 3y = 12  y = x – 4, so the slope = b. –3y = 12  y = 0x – 4, so the slope = 0 c. 2x = 12, the slope is undefined since we can't solve for y.
  • 34. First Degree Functions Given Ax + By = C with B = 0, treating x as the input and y as the output, we may solve for y and put the equation in a function form: y = f(x) = mx + b, m is called the slope and b is the y intercept, and the form is called the slope–intercept form. The slope m is also the ratio of the change in the output vs. the change in the input. 2 3 2 3 From the examples above, a. 2x – 3y = 12  y = x – 4, so the slope = b. –3y = 12  y = 0x – 4, so the slope = 0 c. 2x = 12, the slope is undefined since we can't solve for y.
  • 35. First Degree Functions Given Ax + By = C with B = 0, treating x as the input and y as the output, we may solve for y and put the equation in a function form: y = f(x) = mx + b, m is called the slope and b is the y intercept, and the form is called the slope–intercept form. The slope m is also the ratio of the amounts of change in the output : the change in the input. If two points on the line are given, the slope is defined via the following formula. 2 3 2 3 From the examples above, a. 2x – 3y = 12  y = x – 4, so the slope = b. –3y = 12  y = 0x – 4, so the slope = 0 c. 2x = 12, the slope is undefined since we can't solve for y.
  • 36. Slope Formula: Let (x1, y1) and (x2, y2) be two points on a line, First Degree Functions (x1, y1) (x2, y2)
  • 37. Slope Formula: Let (x1, y1) and (x2, y2) be two points on a line, then the slope Δy Δx m = First Degree Functions (x1, y1) (x2, y2)
  • 38. Slope Formula: Let (x1, y1) and (x2, y2) be two points on a line, then the slope Δy Δx m = First Degree Functions (The Greek letter Δ means "the difference".) (x1, y1) (x2, y2)
  • 39. Slope Formula: Let (x1, y1) and (x2, y2) be two points on a line, then the slope Δy Δx y2 – y1 x2 – x1 m = = First Degree Functions (The Greek letter Δ means "the difference".) (x1, y1) (x2, y2)
  • 40. Slope Formula: Let (x1, y1) and (x2, y2) be two points on a line, then the slope Δy Δx y2 – y1 x2 – x1 m = rise run = = First Degree Functions (The Greek letter Δ means "the difference".) (x1, y1) (x2, y2)
  • 41. Slope Formula: Let (x1, y1) and (x2, y2) be two points on a line, then the slope Δy Δx y2 – y1 x2 – x1 m = rise run = = (x1, y1) (x2, y2) First Degree Functions (The Greek letter Δ means "the difference".)
  • 42. Slope Formula: Let (x1, y1) and (x2, y2) be two points on a line, then the slope Δy Δx y2 – y1 x2 – x1 m = rise run = = (x1, y1) (x2, y2) Δy=y2–y1=rise First Degree Functions (The Greek letter Δ means "the difference".)
  • 43. Slope Formula: Let (x1, y1) and (x2, y2) be two points on a line, then the slope Δy Δx y2 – y1 x2 – x1 m = rise run = = (x1, y1) (x2, y2) Δy=y2–y1=rise Δx=x2–x1=run First Degree Functions (The Greek letter Δ means "the difference".)
  • 44. Slope Formula: Let (x1, y1) and (x2, y2) be two points on a line, then the slope Δy Δx y2 – y1 x2 – x1 m = rise run = = (x1, y1) (x2, y2) Δy=y2–y1=rise Δx=x2–x1=run The Point Slope Formula: Let y = f(x) be a first degree equation with slope m, and (x1, y1) is a point on the line, then y = f(x) = m(x – x1) + y1 First Degree Functions (The Greek letter Δ means "the difference".)
  • 45. Slope Formula: Let (x1, y1) and (x2, y2) be two points on a line, then the slope Δy Δx y2 – y1 x2 – x1 m = rise run = = (x1, y1) (x2, y2) Δy=y2–y1=rise Δx=x2–x1=run The Point Slope Formula: Let y = f(x) be a first degree equation with slope m, and (x1, y1) is a point on the line, then y = f(x) = m(x – x1) + y1 First degree functions are also called linear functions because their graphs are straight lines. First Degree Functions (The Greek letter Δ means "the difference".)
  • 46. Slope Formula: Let (x1, y1) and (x2, y2) be two points on a line, then the slope Δy Δx y2 – y1 x2 – x1 m = rise run = = (x1, y1) (x2, y2) Δy=y2–y1=rise Δx=x2–x1=run The Point Slope Formula: Let y = f(x) be a first degree equation with slope m, and (x1, y1) is a point on the line, then y = f(x) = m(x – x1) + y1 First degree functions are also called linear functions because their graphs are straight lines. We will use linear functions to approximate other functions just like we use line segments to approximate a curve. First Degree Functions (The Greek letter Δ means "the difference".)
  • 47. Linear Equations and Lines Example A. A river floods regularly, and on a rock by the river there is a mark indicating the highest point the water level ever recorded. At 12 pm July 11, the water level is 28 inches below this mark. At 8 am July 12 the water is 18 inches below this mark.
  • 48. Linear Equations and Lines Example A. A river floods regularly, and on a rock by the river there is a mark indicating the highest point the water level ever recorded. At 12 pm July 11, the water level is 28 inches below this mark. At 8 am July 12 the water is 18 inches below this mark. Let x = time, y = distance between the water level and the mark. Find the linear function y = f(x) = mx + b of the distance y in terms of time x.
  • 49. Linear Equations and Lines Example A. A river floods regularly, and on a rock by the river there is a mark indicating the highest point the water level ever recorded. At 12 pm July 11, the water level is 28 inches below this mark. At 8 am July 12 the water is 18 inches below this mark. Let x = time, y = distance between the water level and the mark. Find the linear function y = f(x) = mx + b of the distance y in terms of time x. Since how the time was measured is not specified, we may select the stating time 0 to be time of the first observation.
  • 50. Linear Equations and Lines Example A. A river floods regularly, and on a rock by the river there is a mark indicating the highest point the water level ever recorded. At 12 pm July 11, the water level is 28 inches below this mark. At 8 am July 12 the water is 18 inches below this mark. Let x = time, y = distance between the water level and the mark. Find the linear function y = f(x) = mx + b of the distance y in terms of time x. Since how the time was measured is not specified, we may select the stating time 0 to be time of the first observation. By setting x = 0 (hr) at 12 pm July 11, then x = 20 at 8 am of July 12.
  • 51. Equations of Lines In particular, we are given that at x = 0 →y = 28, and at x = 20 → y = 18
  • 52. Equations of Lines In particular, we are given that at x = 0 →y = 28, and at x = 20 → y = 18 and that we want the equation y = m(x – x1) + y1 of the line that contains the points (0, 28) and (20, 18).
  • 53. Δy Δx 28 – 18 0 – 20 Equations of Lines In particular, we are given that at x = 0 →y = 28, and at x = 20 → y = 18 and that we want the equation y = m(x – x1) + y1 of the line that contains the points (0, 28) and (20, 18). = The slope m = = –1/2
  • 54. Using the point (0, 28) and the point–slope formula, y = – ½ (x – 0) + 28 or Δy Δx 28 – 18 0 – 20 Equations of Lines In particular, we are given that at x = 0 →y = 28, and at x = 20 → y = 18 and that we want the equation y = m(x – x1) + y1 of the line that contains the points (0, 28) and (20, 18). = The slope m = = –1/2 – x y = + 28 2
  • 55. Using the point (0, 28) and the point–slope formula, y = – ½ (x – 0) + 28 or Δy Δx 28 – 18 0 – 20 Equations of Lines In particular, we are given that at x = 0 →y = 28, and at x = 20 → y = 18 and that we want the equation y = m(x – x1) + y1 of the line that contains the points (0, 28) and (20, 18). = The slope m = = –1/2 – x y = + 28 2 The linear equation that we found is also called the trend line.
  • 56. Using the point (0, 28) and the point–slope formula, y = – ½ (x – 0) + 28 or Δy Δx 28 – 18 0 – 20 Equations of Lines In particular, we are given that at x = 0 →y = 28, and at x = 20 → y = 18 and that we want the equation y = m(x – x1) + y1 of the line that contains the points (0, 28) and (20, 18). = The slope m = = –1/2 – x y = + 28 2 The linear equation that we found is also called the trend line. So if at 4 pm July 12, i.e. when x = 28, we measured that y = 12”
  • 57. Using the point (0, 28) and the point–slope formula, y = – ½ (x – 0) + 28 or Δy Δx 28 – 18 0 – 20 Equations of Lines In particular, we are given that at x = 0 →y = 28, and at x = 20 → y = 18 and that we want the equation y = m(x – x1) + y1 of the line that contains the points (0, 28) and (20, 18). = The slope m = = –1/2 – x y = + 28 2 The linear equation that we found is also called the trend line. So if at 4 pm July 12, i.e. when x = 28, we measured that y = 12” but based on the formula prediction that y should be – 28/2 + 28 = 14”,
  • 58. Using the point (0, 28) and the point–slope formula, y = – ½ (x – 0) + 28 or Δy Δx 28 – 18 0 – 20 Equations of Lines In particular, we are given that at x = 0 →y = 28, and at x = 20 → y = 18 and that we want the equation y = m(x – x1) + y1 of the line that contains the points (0, 28) and (20, 18). = The slope m = = –1/2 – x y = + 28 2 The linear equation that we found is also called the trend line. So if at 4 pm July 12, i.e. when x = 28, we measured that y = 12” but based on the formula prediction that y should be – 28/2 + 28 = 14”, we may conclude that the flood is intensifying.
  • 59. More Facts on Slopes: First Degree Functions
  • 60. More Facts on Slopes: • Parallel lines have the same slope. First Degree Functions
  • 61. More Facts on Slopes: • Parallel lines have the same slope. • Slopes of perpendicular lines are the negative reciprocal of each other. First Degree Functions
  • 62. More Facts on Slopes: • Parallel lines have the same slope. • Slopes of perpendicular lines are the negative reciprocal of each other. Example B. Find the equation of the line L that passes through (2, –4) and is perpendicular to 4x – 3y = 5. First Degree Functions
  • 63. More Facts on Slopes: • Parallel lines have the same slope. • Slopes of perpendicular lines are the negative reciprocal of each other. Example B. Find the equation of the line L that passes through (2, –4) and is perpendicular to 4x – 3y = 5. Solve for y to find the slope of 4x – 3y = 5 First Degree Functions
  • 64. More Facts on Slopes: • Parallel lines have the same slope. • Slopes of perpendicular lines are the negative reciprocal of each other. Example B. Find the equation of the line L that passes through (2, –4) and is perpendicular to 4x – 3y = 5. Solve for y to find the slope of 4x – 3y = 5 4x – 5 = 3y First Degree Functions
  • 65. More Facts on Slopes: • Parallel lines have the same slope. • Slopes of perpendicular lines are the negative reciprocal of each other. Example B. Find the equation of the line L that passes through (2, –4) and is perpendicular to 4x – 3y = 5. Solve for y to find the slope of 4x – 3y = 5 4x – 5 = 3y 4x/3 – 5/3 = y First Degree Functions
  • 66. More Facts on Slopes: • Parallel lines have the same slope. • Slopes of perpendicular lines are the negative reciprocal of each other. Example B. Find the equation of the line L that passes through (2, –4) and is perpendicular to 4x – 3y = 5. Solve for y to find the slope of 4x – 3y = 5 4x – 5 = 3y 4x/3 – 5/3 = y Hence the slope of 4x – 2y = 5 is 4/3. First Degree Functions
  • 67. More Facts on Slopes: • Parallel lines have the same slope. • Slopes of perpendicular lines are the negative reciprocal of each other. Example B. Find the equation of the line L that passes through (2, –4) and is perpendicular to 4x – 3y = 5. Solve for y to find the slope of 4x – 3y = 5 4x – 5 = 3y 4x/3 – 5/3 = y Hence the slope of 4x – 2y = 5 is 4/3. Therefore L has slope –3/4. First Degree Functions
  • 68. More Facts on Slopes: • Parallel lines have the same slope. • Slopes of perpendicular lines are the negative reciprocal of each other. Example B. Find the equation of the line L that passes through (2, –4) and is perpendicular to 4x – 3y = 5. Solve for y to find the slope of 4x – 3y = 5 4x – 5 = 3y 4x/3 – 5/3 = y Hence the slope of 4x – 2y = 5 is 4/3. Therefore L has slope –3/4. So the equation of L is First Degree Functions y = (–3/4)(x – 2) + (–4) or y = –3x/4 – 5/2.
  • 69. Linear Equations and Lines Exercise A. Estimate the slope by eyeballing two points, then find an equation of each line below. 1. 2. 3. 4. 5. 6. 7. 8.
  • 70. Linear Equations and Lines B. Draw each line that passes through the given two points. Find the slope and an equation of the line. Again Identify the vertical lines and the horizontal lines by inspection and solve for them first. (Fraction Review: slide 99 of 1.2) 1. (0, –1), (–2, 1) 2. (3, –1), (3, 1) 4. (1, –2), (–2, 3) 3. (2, –1), (3, –1) 6. (4, –2), (4, 0) 5. (7, –2), (–2, –6) 7. (3/2, –1), (3/2, 1) 8. (3/4, –1/3), (1/3, 3/2) 9. (–1/4, –3/2), (2/3, –3/2) 10. (–1/3, –1/6), (–3/4, 1/2) 11. (2/5, –3/10), (–1/2, –3/5) 12. (–3/4, 5/6), (–3/4, –4/3)
  • 71. Linear Equations and Lines 2. It’s perpendicular to 2x – 4y = 1 and passes through (–2, 1) 6. It’s perpendicular to 3y = x with x–intercept at x = –3. 12. It has y–intercept at y = 3 and is parallel to 3y + 4x = 1. 8. It’s perpendicular to the y–axis with y–intercept at 4. 9. It has y–intercept at y = 3 and is parallel to the x axis. 10. It’s perpendicular to the x– axis containing the point (4, –3). 11. It is parallel to the y axis has x–intercept at x = –7. 5. It is parallel to the x axis and has y–intercept at y = 7. C. Find the equations of the following lines. 1. The line that passes through (0, 1) and has slope 3. 7. The line that passes through (–2 ,1) and has slope –1/2. 3. The line that passes through (5, 2) and is parallel to y = x. 4. The line that passes through (–3, 2) and is perpendicular to –x = 2y.
  • 72. Linear Equations and Lines The cost y of renting a tour boat consists of a base–cost plus the number of tourists x. With 4 tourists the total cost is $65, with 11 tourists the total is $86. 1. What is the base cost and what is the charge per tourist? 2. Find the equation of y in terms of x. 3. What is the total cost if there are 28 tourists? The temperature y of water in a glass is rising slowly. After 4 min. the temperature is 30 Co, and after 11 min. the temperature is up to 65 Co. Answer 4–6 assuming the temperature is rising linearly. 4. What is the temperature at time 0 and what is the rate of the temperature rise? 5. Find the equation of y in terms of time. 6. How long will it take to bring the water to a boil at 100 Co? D. Find the equations of the following lines.
  • 73. Linear Equations and Lines The cost of gas y on May 3 is $3.58 and on May 9 is $4.00. Answer 7–9 assuming the price is rising linearly. 7. Let x be the date in May, what is the rate of increase in price in terms of x? 8. Find the equation of the price in term of the date x in May. 9. What is the projected price on May 20?
  • 74. (Answers to odd problems) Exercise A. 1. 𝑚 = 1/3, 𝑦 = 1/3𝑥 3. 𝑚 = 1, 𝑦 = 𝑥 + 3 5. 𝑚 = 0, 𝑦 = 4 7. 𝑚 = − 3 2 , 𝑦 = − 3 2 𝑥 + 3 1. 𝑚 = −1, 𝑦 = −𝑥 − 1 3. 𝑚 = 0, 𝑦 = −1 Exercise B. Linear Equations and Lines
  • 75. 5. 𝑚 = 4 9 , 𝑦 = 4 9 𝑥 − 46/9 7. 𝑚 = 0, 𝑥 = 3/2 9. 𝑚 = 0, 𝑦 = −3/2 11. 𝑚 = 1/3, 𝑦 = 𝑥/3 − 13/30 Linear Equations and Lines
  • 76. 9. 𝑦 = 3 11. 𝑥 =– 7 5. 𝑦 = 7 Exercise C. 1. 𝑦 = 3𝑥 + 1 7. 𝑦 =– 1/2𝑥 3. 𝑦 = 𝑥 − 3 1. The base cost is $53 and the charge per tourist is $3. 3. $137 Exercise D. 5. 𝑦 = 5𝑥 + 10 9. $4.77 7. The rate of increase is 0.07 Linear Equations and Lines