SlideShare a Scribd company logo
1 of 72
Download to read offline
Imperatives to shape extended mobility ecosystems of tomorrow
The Future of Urban Mobility 2.0
January 2014
Content
Forewords	3
1. Executive summary	 5
2. Plotting the trend – Urban mobility systems are on their way to breakdown	 9
3.Where are we now? Arthur D. Little Urban Mobility Index 2.0 	 11
4.What is holding back changes? Business models archetypes for urban mobility	 22
5. Shaping the future – Strategic directions and imperatives for cities	 27
6. Case studies of cities demonstrating good practices	 51
Authors:
François-Joseph Van Audenhove
Partner, Arthur D. Little, Brussels
Laurent Dauby
Director Rail Transport, UITP
Jérôme Pourbaix
Head of Policy and Outreach, UITP
Oleksii Korniichuk
Manager, Arthur D. Little, Frankfurt
Acknowledgement for their support and valuable input: Wilhelm Lerner (author of the first edition of the study), Ralf Baron,
Aurelia Bettati, Marie Maggiordomo, Marc Durance, Lucie Lammens and Caroline Cerfontaine.
The Urban Mobility Index 2.0 was developed by Arthur D. Little; the UITP is independent of this index, which does not
necessarily reflect its opinion. Strategic imperatives for cities have been developed together with the UITP.
3
Mobility has significantly evolved in the past, under the influence of industrial evolutions. Following
the first industrial revolution enabled by the invention of steam powered technology, the railway
industry emerged.The second industrial revolution with mass production enabled the emergence
of the automobile industry and, closer to us, the third industrial revolution with digitalization
enabled the emergence of computer-aided travelling (for example GPS in a car).Today we are
entering what could be called a fourth industrial revolution, represented by industry and technology
convergence, leading to the emergence of for example clean energy vehicles or connected
mobility solutions.This evolution is particularly noticeable over past years in network industries
(such as telecommunication and media, utilities and the mobility industry) as well as in B2C
industries (such as retail and healthcare) where, driven by evolving customer needs and enabled by
rapidly evolving technology, business models are continuously evolving.
In this new world, in order to meet the key challenges of today and the future, organizations
cannot only rely on optimizing their operations or pushing the next products generation to market.
To be successful and meet evolving customer’ needs, they need to adapt to this new changing
world by continuously finding ways to reinvent themselves.This successful transformation can
only be enabled by system-level collaboration and innovation.
As a global management consultancy, linking strategy, technology and innovation, Arthur D. Little
aims to help its clients succeed in this “new world of innovation.”The Future of Urban Mobility
(FUM) Lab is our contribution to tackle the urban mobility challenge. With its FUM studies, Arthur
D. Little aims to support cities and nations in shaping the extended mobility ecosystems of
tomorrow and facilitate an open dialogue between urban mobility stakeholders. Our Mobility Lab
initiative has reached a new dimension in 2013, with the signature of an exclusive partnering
agreement with the International Association of PublicTransport (UITP) for the co-development of
future of urban mobility studies; which in our view constitutes the ideal partner due to its global
representation amongst mobility actors and the depth of expertise of its practitioners in the field of
mobility.
With the release of this second edition of the Future of Urban Mobility study, our aim is to provide
mobility decision-makers and stakeholders with reflections and guidance on devising sustainable
strategies that are meeting current and future evolving mobility challenges. We hope you will find
this report useful and we would be pleased to discuss its conclusions and the implications for your
organization.
Sincerely
Ignacio Garcia-Alves				 François-Joseph Van Audenhove
Arthur D. Little Global CEO			 Partner
Forewords
4
The Arthur D. Little study “The Future of Urban Mobility –Towards networked, multimodal cities of
2050” had triggered the interest and attention of UITP when it was released in 2011; and for us it
was natural to feature it in the main plenary session of our World Congress last May.
When we were approached by Arthur D. Little to work together on a second edition of the study,
the UITP immediately saw a great opportunity to further convey its own messages developed
since 2009 in our PTx2 strategy, later labeled “Grow with public transport”.
This strategy for the public transport sector sets out the ambitious aim to double the market share
of public transport worldwide by 2025 and pinpoints the key areas where action is urgently needed.
Current trends indicate that more people will choose to use private motorized transport, leading to a
staggering 6.2 billion private motorized trips every day in cities of the world. If the world fails to change
its mobility habits, the future of our planet looks decidedly bleak. By 2025, worldwide transport-related
greenhouse gas emissions will be 30% higher than 2005 levels.Transport energy bills will also
skyrocket and higher levels of energy consumption could pose a threat to global energy security.Traffic
congestion will bring cities worldwide to a standstill. Most alarmingly, half a million people will be killed
in road traffic accidents every year.
Thankfully, more and improved public transport offers a route to a better future. By doubling the
market share of public transport worldwide by 2025, cities will be able to boost growth, help fight
climate change and create pleasant urban environments where people and businesses can thrive.
Doubling the market share of public transport will enable the stabilization of urban transport
greenhouse gas emissions and energy consumption despite overall mobility increase. In 2025,
60,000 lives will be saved, as a more balanced mobility mix will lead to fewer urban traffic fatalities.
Doubling the market share of public transport would also create seven million green, local jobs.
We took the city ranking proposed by Arthur D. Little as a starting point to perform and refine our
analysis of today’s mobility situation in view of tomorrow’s requirements. Cities are clustered
around their development stage and are given a series of strategic recommendations to overcome
current limitations to achieve the objective of “networked mobility”.
I would like to thank Arthur D. Little for their fruitful cooperation and welcome this joint effort by
two prestigious and reputable organizations. I hope that our joint study will inspire and help many
decision-makers and readers.
Sincerely
Alain Flausch
UITP Secretary General
5
A FUM
Arthur D. Little, the Global Management Consultancy,
launched its “Future of Urban Mobility” lab in 2010 and in
2011 released its first global study highlighting the
mobility challenges cities face on a worldwide basis.This
report introduced the first Arthur D. Little Urban Mobility
Index, which assessed the mobility maturity and
performance of 66 cities worldwide, and triggered high
interest within the mobility industry and in the media on a
global scale.
January 2014 sees Arthur D. Little release the second
version of the “Future of Urban Mobility” study, including
an updated version of the Urban Mobility Index, with an
extended scope of 84 cities worldwide as well as an
extended set of criteria.The index finds most cities are
still badly equipped to cope with the challenges ahead
indicating there is still significant potential for
improvement.
Arthur D. Little highlights what is holding cities back, and,
together with its partner the UITP – the International
Association of PublicTransport – identifies three strategic
directions for cities to better shape the future of urban
mobility.The study also describes 25 imperatives to
consider when defining sustainable urban mobility
policies and case studies of cities demonstrating good
practice.
1. Executive Summary
6
A FUM
1.1. Arthur D. Little Urban Mobility Index 2.0 –
The most comprehensive global urban mobility
benchmarking study
Plotting the trend
Urban mobility is one of the toughest challenges that cities face
today as existing mobility systems are close to breakdown.
The world’s population is increasingly city-based. 53% of the
population currently lives in urban areas and by 2050 this
number is expected to reach 67%.Today, 64% of all travel made
is within urban environments and the total amount of urban
kilometers travelled is expected to triple by 2050. Delivering
urban mobility to cope with this increasing demand will thus
require massive investment in the future.
In addition to the increasing demand for urban mobility, mobility
needs are evolving. Changing travel habits, demand for services
to increase convenience, speed and predictability, as well as
evolving customer expectations toward individualization and
sustainability will require mobility services portfolio extension as
well as business model transformation, while specialized players
from other sectors are assessing opportunities to play a role in
the extended mobility ecosystem.
Moreover, in order to reach UITP’s objective of “doubling the
market share of public transport worldwide by 2025” (compared
to the 2005 level), public transport stakeholders are working
hard to improve attractiveness, capacity and efficiency of
mobility systems despite growing limitations of public financing,
demonstrating the need for system level innovation.
Methodology
Using 19 criteria Arthur D. Little assessed the mobility maturity
and performance of 84 cities worldwide.The mobility score
per city ranges from 0 to 100 index points; the maximum of
100 points is defined by the best performance of any city in
the sample for each criteria. In addition, Arthur D. Little has
reviewed policy initiatives undertaken by cities to improve the
performance of urban mobility systems.
Where are we now?
The overall results find most cities are still badly equipped to
cope with the challenges ahead.The global average score is
43.9 points, meaning that, on average, the 84 cities achieve less
than half of the potential that could be reached today if applying
best practices across all operations.
Only 11 cities score above 52 points (the top 20% of the score
range).The highest score (58.2 points) went to Hong Kong
followed closely by Stockholm (57.4 points) and Amsterdam (57.2
points), still indicating potential for improvement.
There are big differences between the top- and low-end
performers in various regions:
nn 	Europe achieves the highest average score of the six world
regions surveyed, with an average of 49.8 points (51.5
points for Western Europe and 45.2 for (South)-Eastern
Europe) and nine out of the 26 analyzed European cities
scoring above 52 points. European urban mobility systems
are the most mature ones as of today and lead the way in
mobility performance. Stockholm (57.4), Amsterdam (57.2)
and Copenhagen (56.4 points) head the table – while Athens
(40.0 points), Rome (40.9 points) and Lisbon (41.3) are the
worst European cities in the sample.
nn 	Latin American and Asian Pacific cities show slightly
below average performance.The continents’ average
scores are well below Western Europe (43.9 and 42.8
points respectively) but outperform other regions in public
transport-related criteria (financial attractiveness of PT, share
of modal split, smart cards). Most cities in Latin America
show an average performance of between 40 and 47
points, while Asian Pacific cities show the broadest range in
performance, from Hong Kong and Singapore with scores of
58.2 and 55.6 respectively – sitting at the top of the global
table – down to Hanoi with 30.9 points.
nn 	USA/Canada shows average performance with 39.5 points.
Given their orientation towards cars, USA/Canadan cities
rank bottom worldwide in terms of maturity. In terms of
performance, they perform above average overall, but show
poor results with regard to number of cars per capita and
CO2 emissions. NewYork leads the way with 45.6 points,
followed closely by Montreal with 45.4 points.
nn 	Africa and the Middle East are the lowest performing
regions with respective average point totals of 37.1 and 34.1.
Whilst urban mobility systems in Africa perform well on
several criteria due to the lower number of cars, they are still
at an evolving stage and haven’t reached sufficient maturity
yet. Middle East cities have high levels of cars per capita
and are expected to invest in development of environmental
modes of transport in the mid-term perspective.
What is holding back change?
A comprehensive review of technologies and urban mobility
business models reveals sufficient availability of solutions to
address the mobility challenges. In its 2011 study1
, Arthur D.
Little identified three long-term business models archetypes
1	 Arthur D. Little, “Future of Urban Mobility.Towards Networked, Multimodal
Cities of 2050”, 2011
7
A FUM
for mobility suppliers (the “Amazon”, “Apple” and “Dell” of
urban mobility).Those business models still hold true today
and each have interesting development potential. However,
these solutions and archetypes are currently not being applied
comprehensively.
There is a clear trend towards shared mobility: in complement
to conventional public transport, more cars and bikes are being
shared in cities, both via peer-to-peer and business-to-consumer
models, but many of those concepts haven’t yet managed to
take off as providers are still testing different business models.
Why is the innovation potential not being unleashed?There is a
key reason: the management of urban mobility operates in an
environment that is too fragmented and hostile to innovation.
Our urban management systems do not allow market players to
compete and establish business models that bring demand and
supply into a natural balance. It is one of the toughest system-
level challenges facing actors of the mobility ecosystems.
There are plenty of solutions and business models available,
but very few have managed to smartly integrate them to
unleash their full business potential. What is needed is system-
level collaboration between all stakeholders of the mobility
ecosystem to come up with innovative and integrated business
models.
Moreover, many mature cities do not yet have a clear vision
and strategy on how their mobility systems should look in the
future.The lack of synergies between isolated initiatives leads
to a sub-optimal outcome in terms of mobility performance,
which calls for a more holistic approach. At a different level,
integration between regional mobility systems still remains very
low in comparison to other parts of the economy as transport
infrastructures were historically designed to serve regional
rather than supra-regional goals. In that context, there is a need
for stronger alignment between regional mobility strategies
while respecting each-others accountabilities and ensuring
solutions are adapted to local contexts.
1.2. Strategic imperatives for cities to shape
extended mobility systems of tomorrow
Three strategic directions for cities
To meet the urban mobility challenge, cities need to implement
one of the following three strategies dependent on their matu­
rity and the share of sustainable transport in their modal split:
nn 	Rethink the System: Cities in mature countries with a high
proportion of motorized individual transport need to shape
political agendas to fundamentally redesign their mobility
systems so that they become more orientated towards
public transport and sustainability.The majority of cities in
the index (53 out of 84) belong to this group.
nn 	Network the System: For mature cities with a high share
of sustainable transport modes, the next step must be to
fully integrate the travel value chain to foster seamless,
multimodal mobility while ensuring “one face to the
customer” and to increase the overall attractiveness of
public transport by service extension.This group contains
the majority of cities in Europe as well as Hong Kong,
Singapore, Seoul,Tokyo,Toronto and Buenos Aires.
nn 	Establish Sustainable Core: For cities in emerging
countries with partly underdeveloped mobility systems, the
aim must be to establish a sustainable mobility core that
can satisfy short term demand at a reasonable cost without
replicating mistakes from developed countries. With access
to emerging transport infrastructure and technologies, these
cities have the opportunity to become the test-bed and
breeding ground for tomorrow’s urban mobility systems.
Four dimensions for cities to consider when defining
sustainable urban mobility policies
nn 	Visionary Strategy and Ecosystem: Establishing
sustainable urban mobility policies requires cities to develop
a political vision and urban mobility objectives based on
strategic alignment between all key public and private
stakeholders of the extended mobility ecosystem.This
should inform a visionary urban mobility strategy (priorities
and investments to achieve mobility objectives), which
ensures the right balance between stretch and achievability.
nn 	Mobility Supply (solutions and lifestyles): Responding to
increasing demand for urban mobility and to consumer and
business needs for seamless, multimodal urban mobility
requires cities to extend their public transport offering and
adapt it from “delivering transport” to “delivering solutions”.
This transformation can be achieved through a combination
of quality improvements to the current public transport
offering and an increase of customer experience via service
offering extension through partnerships and alliances with
third parties.
nn Mobility Demand Management: The limited capacity of
current mobility systems and the level of investment required
for the development of transport infrastructure means
mobility service extension must also be complemented with
measures to manage the demand side. Mobility demand
management is a delicate discipline which can easily meet
strong resistance if not properly planned and executed.
However, a number of measures exist and some of these
have already derived clear benefits, the relevance of which
should be assessed by cities against the local context.
8
A FUM
nn 	Public Transport Financing: Devising the right funding mix
for public transport is a critical priority for cities to ensure its
financial viability, particularly given that funding needs are
increasing significantly due to growing supply, rising quality
expectations and the rising cost of production factors. As
fare revenues do not always evolve in line with the costs of
production factors and the public debt crisis is increasing
pressure on public resources, transport authorities and
operators need to assess opportunities to derive additional
revenues from aggregation of third party services and
to perceive charges from indirect beneficiaries of public
transport.
A system-level approach across these four dimensions is critical:
sustainable improvements of a city’s mobility performance
requires simultaneous improvement on each of the four
dimensions as the weakest link will influence overall mobility
performance.
In this study Arthur D. Little and the UITP elaborate further
on those dimensions and identify 25 imperatives for cities to
consider when defining sustainable urban mobility policies.The
study also includes case studies of cities demonstrating good
practice.
9
A FUM
All around the globe people are flocking to cities. In 2007, UN
population figures showed that more than a half of the world’s
population for the first time lived in urban areas.That proportion
is set to rise to 60% by 2030 and 67% by 2050.
This mushrooming in urban population will be accompanied by a
massive growth in the number of individual journeys taken on a
daily basis.Today, 64% of all travel kilometers are made in urban
environments but the number of urban kilometers travelled is
expected to treble by 2050. Such an explosion in the growth
of urban mobility systems will present new challenges on a
number of different fronts (see Figure1).
nn 	Planet: At a time when sustainability of resources and the
environment is increasingly at the forefront of one’s mind, a
logarithmic increase in the use of motorized transport raises
the specter of a vast rise in air and noise pollution and CO2
emissions. Indeed, it is predicted that by 2050 urban mobility
systems will use 17.3% of the planet’s bio capacities, five
times more than they did in 1990.
nn 	People: An inevitable consequence of an unreformed and
under-invested urban mobility system is gridlock. By 2050,
the average time an urban dweller will spend in traffic jams
will be 106 hours per year, twice the current rate, with all
that entails for the quality of life of the average citizen.
nn 	Profit: Unless far-sighted decisions relating to service
expansion and innovation are made now, the cities of the
future stand to sleepwalk into a situation where they have
insufficient public transport, overloaded infrastructures, a
default expansion of motorized means of transport and a
concomitant parking capacity problem. Given that urban
infrastructure is a key factor in luring businesses to cities,
this would be highly damaging commercially.
Meanwhile, mobility needs are evolving all over the world.
People’s travel habits are changing, as is the mix of transport
modes and services offered to them. But it is clear that, going
forward, transport providers will have to satisfy demand for
services that are increasingly convenient, fast and predictable.
At the same time, consumers are becoming more concerned
about the sustainability of their mode of travel and some are
prepared to sacrifice individual forms of transport in furtherance
2. Plotting the trend
Urban mobility systems are on their way to breakdown
 Air pollution
 CO2 emissions
 Noise
 Increasing ecological
footprint
9,306
CAGR 2010-50
-0.2% p.a.
CAGR 2010-50
+1.4% p. a.
2050
33%
67%
2030
8,321
40%
60%
2010
6,896
48%
52%
RuralUrban
Urban and rural population,
2010-2050 [m people; %]
Urban mobility demand,
2010-2050 [trillions pkm p.a.; %]
67.1
2.6x
+55%
+68%
20502030
43.2
2010
25.8
PlanetPeopleProfit
 Traffic chaos
 Traffic security
 Traffic jam
 Decreasing quality of life and
convenience
 Overloaded infrastructures
 Insufficient public transport
capacities
 Increasing motorization
 Limited parking places
The world is becoming increasingly
urban
Urban mobility demand explodes
Cities are confronted with new
challenges
Source: UN Population Division, Schäfer/Victor 2000, Cosgrove/Cargett 2007, Arthur D. Little
Figure 1: The future of earth will be urban…
10
A FUM
of that cause, leading to the successful introduction and rapid
penetration of new mobility services such as car sharing and
bike sharing.
Due to limits on public financing, however, public transport
stakeholders are struggling to improve the attractiveness,
capacity and efficiency of public transport and system innovation
may be the only answer. At the same time, specialized players
from other sectors – notably automotive OEMs, financial
institutions/payment providers and internet businesses – are
assessing opportunities to play a role in the extended mobility
ecosystems of tomorrow. All this raises the question: what will
the future business model(s) of urban mobility be?
The good news is that people are beginning to get the message.
The Siemens Megacity Challenges Study found that mobility
was cited as the most important issue for cities when it came
to attracting investment, with 27% of respondents mentioning
it, three times more than the second mentioned factor, security
(see Figure 2).
When the above study asked which sectors had the highest
need for investment in cities, no less than 86% of the sample
opted for mobility as the number one priority, with education
and the environment tying in second place with 77%.That
said, the scale of investment required to cope with the mobility
challenge is immense. In 2010, the global investment in urban
mobility amounted to 324 bn EUR. By 2050, it is forecast that
829 bn EUR a year will be required.
Figure 2: Mobility is the n°1 priority for cities and will require significant investment
Source: Siemens, Bureau of Transport Statistics, Arthur D. Little
1) Siemens “Megacity Challenges Study” 2) % saying high need for investment 3) Percentage of respondents
829
665
534
429
324
245
185
0
200
400
600
800
1.000
1990 2000 2010 2020 2030 2040 2050
3
4
5
6
6
6
6
6
9
27
Water supply
Health
Environment
Culture
Energy supply
Education
ICT
City management
Security
Mobility
Global urban mobility investment volume in bn EURUrban mobility infrastructure is the n°1 priority area
for cities in attracting investors 1) 3)
 In 1990 investment amount in global urban mobility equaled
185 bn EUR
 For 2050 the need of 829 bn EUR is being forecasted
(growth by the factor 4.5)
Mobility: Priority n°1 for cities Constant growth of investments in urban mobility
Public housing
Social services 66
Energy supply 67
77
Education
69
Water supply 70
74
Security 71
Health
71
Environment
Mobility
Waste management
86
77
Highest needs for investment in cities 2007-2017 1) 2)
11
A FUM
3.1. Index design: scope and methodology
The reform of urban mobility systems is one of the biggest
challenges confronting policymakers, stakeholders and users
today, and to do it justice the urban mobility index required
a commensurately ambitious approach. Arthur D Little’s
researchers worked on seven geographical areas across six
continents to study the status quo, and this year’s index is more
comprehensive than ever, with 18 more cities scrutinized than
for the last report (see Figure 3).
The largest group of cities in the index was the Megacity group
of the C40 Climate Leadership Group, a network of the world’s
cities committed to addressing climate change.The next biggest
was the 24-strong group of cities selected on the basis that they
represent the largest metropolises determined by GDP share
of region and population, which are not members of the C40
group.This included no fewer than six cities in China and four in
India.The final group was made up of smaller cities with good
practices, which are useful as role models for others. Europe
dominated this group with 14 of the 20 places.
The Mobility Index assessed cities on the basis of 19 criteria. 11
of these were related to how mature the city under examination
was in terms of its existing infrastructure, from public transport’s
share of the modal split to smart card penetration.These
indicators made up 58 possible points of the maximum of 100
available.The other 42 points were awarded on the basis of
performance, with categories including the level of transport-
related CO2
emissions and the mean travel time to work (see
Figure 4 overleaf).
3. Where are we now?
Arthur D. Little’s Urban Mobility Index 2.0
Americas
Europe, Middle
East  Africa
Asia Pacific
“Megacities”-
cluster of C40
Cities Climate
Leadership
Group
World’s largest
cities
determined by
GDP share1)
Smaller cities
with good
practices
40
24
20
Africa
Addis Ababa
Cairo
Europe
Athens
Berlin
Istanbul
Middle East
Baghdad
Tehran
Asia
Bangkok
Delhi
Dhaka
Hanoi
USA/Canada
Chicago
Houston
Los Angeles
New York
Philadelphia
Toronto
Washington D.C.
Latin America
Bogota
Buenos Aires
Caracas
Lima
Mexico City
Rio de Janeiro
Sao Paulo
Pacific
Melbourne
London
Madrid
Moscow
Johannesburg
Lagos
Paris
Rome
Warsaw
Ho Chi Minh
Hong Kong
Jakarta
Karachi
Mumbai
Seoul
Tokyo
Sydney
Munich
Stockholm
Vienna
Zurich
Nantes
Hanover
Kuala Lumpur
Singapore
Amsterdam
Copenhagen
Frankfurt
Prague
Stuttgart
Brussels
Helsinki
Dubai
Ankara
Bangalore
Beijing
Chennai
Guangzhou
Hyderabad
Kolkata
Atlanta
Boston
Dallas
Miami
Europe
Barcelona
Lisbon
St. Petersburg
Africa
Kinshasa
Lahore
Manila
Osaka
Shanghai
Shenzhen
Tianjin
Wuhan
22 33 29
Portland
Montreal
Curitiba
Santiago de Chile
Source: Arthur D. Little Urban Mobility Index 2.0; 1) not included into group 1 (C40 Megacities)
Figure 3: Our benchmark sample includes 84 cities covering seven geographical regions across all continents
12
A FUM
The selection of the criteria used to measure the maturity and
performance of the cities under examination was governed by
a desire to cover the classical areas of mobility measurements
– security, quality, accessibility, affordability, sustainability,
innovativeness and convenience – while finding the right
balance between the supply side, and the demand side, as
well as overall mobility policy initiatives.The selection of the
measurement criteria was also driven by the ability to obtain
data in all the territories covered, which proved impossible in
some cases (e.g. measurement of accessibility by the number
of public transport stops per square kilometer) as certain
statistics are not collected in some regions of the world. We
trust however that, taken as a whole, the 19 criteria make for a
representative and comprehensive view of cities’ mobility.
When it came to weighting the criteria, it was decided to
award a number of them a lower maximum weighting than
others.This has been done to avoid penalizing cities unfairly.
When it comes to urban agglomeration density, for example,
a densely populated city such asTokyo would rate highly for
public transport provision over the much less densely populated
Atlanta, where such a solution might not be the answer.The
authors of the report were also keen not to penalize mature
cities with long established road densities, for example, on the
basis that this was an indicator over which they had little if any
influence (see Figure 5 overleaf).
Arthur D. Little Urban Mobility Index 2.0 – Assessment criteria
Maturity
[max. 58 points]
Performance
[max. 42 points]
Criteria Weight1
1. Financial attractiveness of public transport 4
2. Share of public transport in modal split 6
3. Share of zero-emission modes in modal split 6
4. Roads density 4
5. Cycle path network density 6
6. Urban agglomeration density 2
7. Smart card penetration 6
8. Bike sharing performance 6
9. Car sharing performance 6
10. Public transport frequency 6
11. Initiatives of public sector 6
Criteria Weight1
12. Transport related CO2 emissions 4
13. NO2 concentration 4
14. PM10 concentration 4
15. Traffic related fatalities 6
16. Increase of share public transport in modal split 6
17. Increase of share of zero-emission modes 6
18. Mean travel time to work 6
19. Density of vehicles registered 6
1) The maximum of 100 points is defined by any city in the sample for each criteria
Source: Arthur D. Little Urban Mobility Index 2.0
Figure 4: Arthur D. Little Urban Mobility Index 2.0 assessment criteria
13
A FUM
Criteria Weight1
1. Financial
attractiveness of
public transport
4
2. Share of public
transport in modal
split
6
3. Share of zero-emission
in modal split
6
4. Roads density 4
5. Cycle path network
density
6
6. Urban agglomeration
density
2
7. Smart card
penetration
6
8. Bike sharing
performance
6
9. Car sharing
performance
6
10. Public transport
frequency
6
11. Initiatives of public
sector
6
Definition
 Ratio between the price of a 5 km journey with private means of transport and the price of a 5 km journey
with public transport within the agglomeration area
 Private means of transport: car or motorcycle, depending on what vehicle type dominates in modal split
 Cost of journey with motorized-individual transport: fuel cost only, based on fuel consumption and fuel price
including taxes; average for gasoline and diesel cost taken
 Cost of public transport journey: ticket cost for a 5 km distance trip
 Percentage of the total number of person trips which are made with pubic transport in the last available
measurement
 Modal split definition: trips made by residents of the urban agglomeration; both motorized and non-motorized
trips; trips for all purposes; trips on both working days and weekends
 Percentage of the total number of person trips which are made by bicycle and walking in the last available
measurement
 Ratio between the total road length in an urban agglomeration and the urbanized surface area
 Total road length definition: all roads open to public traffic (both paved and non�paved) incl. motorway network
and excl. farmland, forest and private roads located within the urban agglomeration borders
 Measured as a deviation from an optimum value. Optimum value for road density according to Fei (2011)2) is:
average for core city 11,0 km/km2, average for suburbs 3,7 km/km2, average for mixed territories 7,35 km/km2
 Ratio between the total length of cycle lanes and cycle paths in an urban agglomeration and the urbanized
surface area of this urban agglomeration
 Cycle lane: A lane marked on a road with a cycle symbol, which can be used by cyclists only
 Cycle path: An off-road path for cycling incl. exclusive cycle paths (for cyclists only), shared-use paths (for
both cyclists and pedestrians), and separated paths (where section for cyclists’ use is separated from the
pedestrians’ section)
 Ratio between the population of an urban agglomeration and its urbanized surface area
 Urban agglomerations taken as defined by the United Nations’ in World Urbanization Prospects3)
 Urbanized surface area doesn‘t include sea, lakes, waterways, woods, forests etc. and refers to the build-up
land surface only
 Ratio between the total number of transit smart cards in circulation in an urban agglomeration area and the
population of this area
 Cards are only considered if they are issued and/or accepted by public transport authorities of public transport
operators
 Ratio between the total number of bikes in bike sharing systems in an urban agglomeration area and the
population of this area
 Only bikes in business-to-consumer (B2C) and administration-to-citizen (A2C) schemes are considered.
Peer-to-peer (P2P) sharing is excluded
 Ratio between the total number of cars in car sharing systems in an urban agglomeration area and the
population of this area
 Only cars in business-to-consumer (B2C) and administration-to-citizen (A2C) schemes are considered.
Peer-to-peer (P2P) sharing is excluded
 Both free floating and station based models are considered
 Frequency of the busiest public transport line in an urban agglomeration
 Frequency of the busiest metro line taken; if metro not available – then frequency of the busiest bus line
considered
 Qualitative evaluation of strategy and actions of public sector with regard to urban mobility along 5
dimensions: General sustainability and restrictions; Alternative engines; Multimodality; Infrastructure;
Incentives
Arthur D. Little Urban Mobility Index 2.0 – Assessment criteria
Figure 5: Arthur D. Little Urban Mobility Index 2.0 – Definition of assessment criteria
Maturity
[max. 58 points]
Performance
[max. 42 points]
Criteria Weight1
12. Transport related CO2
emissions
4
13. NO2 concentration 4
14. PM10 concentration 4
15. Traffic related fatalities 6
16. Increase of share of public
transport in modal split
6
17. Increase of share of zero-
emission in modal split
6
18. Mean travel time to
work
6
19. Density of vehicles
registered
6
Definition
 Ratio between the total amount of carbon dioxide emitted by the agglomeration area p.a. as a consequence
of its transport activities and its population
 The data considers carbon dioxide emissions from the burning of fossil fuels in transportation only
(sectorial approach)
 Annual arithmetic average of the daily concentrations of NO2 recorded at all monitoring stations within the
agglomeration area
 Annual arithmetic average of the daily concentrations of PM10 recorded at all monitoring stations within the
agglomeration area
 Number of deaths related to transport i.e. an annual number of people killed as a result of transport accidents
that occurred in an urban agglomeration area p.a.
 Fatality is counted if it occurs during a period of 30 days after the accident
 Increase of the percentage of the total people trips which are made daily by public transport in the last
available measurement compared to its share in the last but one measurement
 Increase of the percentage of the total people trips which are made daily by bicycle and walking in the last
available measurement compared to its share in the last but one measurement
 Total number of minutes that it usually takes the person to get from home to work each day during the
reference week
 The elapsed time includes time spent waiting for public transport, picking up passengers in carpools, and
time spent in other activities related to getting to work
 The ratio between the total number of passenger motorized vehicles (incl. cars, motorcycles, taxis) within
the urban agglomeration and its population
 Non-active vehicles (“scrap”) excluded from the calculation
1) Maximum number of points achievable
2) Shi Fei (2011) “Theoretical Research on Rational Urban Road Network Density Based on Operations Research”. World Academy of Science, Engineering and Technology
3) United Nations, Department of Economic and Social Affairs, Population Division, Population Estimates and Projections Section, World Urbanization Prospects
14
A FUM
3.2. Ranking of urban mobility systems
The results of the Urban Mobility Index 2.0 report make grim
reading as it finds most cities are badly equipped to cope with
the challenges ahead.The global average score is 43.9 points,
meaning that, on average, the 84 cities achieve less than half of
the potential that could be reached today when applying best
practice across all operations (see Figure 6).
Only 11 cities score above 52 points (top 20% of the score
range).The highest score (58.2 points) went to Hong Kong
followed closely by Stockholm (57.4 points) and Amsterdam (57.2
points), still indicating potential for improvement.
16 of the cities surveyed were below average. While most of
these were in developing economies, four were in the US –
Atlanta, Dallas, Houston and Miami – fresh evidence that the
Americans’ addiction to cheap gas is impeding the development
of sustainable mobility models. At the opposite end of the
spectrum, among the cities with above average scores, all but
two were in Europe. Exceptions in this group are Hong Kong,
the city with the world’s most well integrated and sustainable
mobility ecosystem, and Singapore.
Perhaps surprisingly, the cities of the C40 Climate Leadership
Group perform slightly worse, than all 84 cities in the sample,
with an average of 42.6 points against a global average of 43.9.
There are big differences between the top- and low-
end performers in various regions:
nn 	Europe achieves the highest average score of all the regions
surveyed. With an average of 49.8 points (51.5 points for
Western Europe and 45.2 for (South)-Eastern Europe) and
nine out of the 26 analyzed European cities scoring above
52 points, European urban mobility systems are the most
mature ones as of today and lead the way in mobility
performance. It is a clear leader in three categories in the
Maturity bucket: cycle path network, car sharing and bike
sharing. Stockholm (57.4), Amsterdam (57.2) and Copenhagen
(56.4 points) head the table – while Athens (40.0 points),
Rome (40.9 points) and Lisbon (41.3) are the worst scoring
European cities in the sample (see Figure 7 overleaf).
nn 	Latin American and Asian Pacific cities show slightly
below average performance.The continents’ average
scores are well below Western Europe (43.9 and 42.8
points respectively) but outperform other regions in public
transport-related criteria: fares are financially attractive,
services are frequent, smart card use is well developed
and public transport represents a dominant part of the
modal split. Most cities in Latin America show average
performance of between 40 and 47 points while Asian
Pacific cities show the broadest range in performance, from
Hong Kong and Singapore with scores of 58.2 and 55.6
Urban Mobility Index
Global
Average 43.9
Source: Arthur D. Little Urban Mobility Index 2.0; UITP is independent of this index, which does not necessarily reflect its opinion;
100 index points for city that would achieve best performance on each criteria.
Ranking
below average average above average
28 32 36 40 44 48 52 56 60
Baghdad Hanoi
Atlanta
Delhi
Tehran
Lahore
Dallas
Kuala Lumpur
Houston
Johannesburg
Bangkok
Addis Ababa
Lagos
Rome
Miami
Cairo
Jakarta
Los Angeles
Bangalore
Chicago
Osaka
Portland
Dhaka
Athens
Hyderabad
Boston
Lisbon
Melbourne
Mexico City
Buenos Aires
Tianjin
Saint Petersburg
Lima
Manila
Washington, D.C.
Curitiba
Ankara
New York
Nantes
Istanbul
Prague
Frankfurt
Zurich
Paris
Singapore
Vienna
Copenhagen
Amsterdam
Hong Kong
Philadelphia
Chennai
Sydney
Mumbai
Rio de Janeiro
Toronto
Moscow
Montreal
São Paulo
Bogota
Kolkata
Santiago de Chile
Guangzhou
Beijing
Shenzhen
Warsaw
Shanghai
Barcelona
Seoul
Tokyo
Brussels
Berlin
Wuhan
Hanover
Munich
HelsinkiCaracas
Karachi
Dubai
Ho Chi Minh City
Kinshasa
Madrid
Stuttgart
London
Stockholm
Figure 6: Arthur D. Little’ Urban Mobility Index 2.0
15
A FUM
respectively – sitting at the top of the global table – down to
Hanoi with 30.9 points.
nn 	USA/Canada shows average performance with 39.5 points.
Given their orientation towards cars, USA/Canadan cities
rank bottom worldwide in terms of maturity. In terms of
performance, they perform above average overall, but show
poor results with regard to number of cars per capita and
CO2
emissions. NewYork leads the way with 45.6 points,
closely followed by Montreal with 45.4 points.
nn 	Africa and the Middle East are the lowest performing regions
with respective average point totals of 37.1 and 34.1. While
urban mobility systems in Africa perform well on several
criteria due to the relatively low number of cars per capita
and the large number of journeys made on foot, they are still
evolving and lack maturity. Middle East cities have high levels
of cars per capita and are expected to invest in development
of environmental modes of transport in the mid-term
perspective. War-torn Baghdad came bottom of the class
overall, perhaps for obvious reasons.
None of the urban mobility systems in the above regions,
except Western Europe, reaches 50% of potential maturity,
showing that all the world’s cities have a long way to go in
terms of developing their travel networks. It was a slightly more
encouraging story when it came to performance, with Europe
leading the way with a score of 24.8 out of 42 (59%).
Eleven cities belong to the above average group
worldwide
nn 	Hong Kong – study winner: 58.2 points, 1 out of 84
worldwide, 1 out of 28 in Asia Pacific
Despite – or perhaps because of – being one of the most
densely populated areas in the world, with more than
7 million people packed into a land mass of just 1,100 sq km,
Hong Kong has developed the most advanced urban mobility
system in the world. Public transport represents no less than
64% of the modal split, the number of vehicles registered
per capita is amongst the lowest in the survey, and smart
card penetration stands at 3.1 cards per person.This latter
point can be explained by the fact that some people have
two cards, one personalized and one anonymous; some
cardholders work in Hong Kong but live in China; and others
belong to tourists. Hong Kong fares even better when it
comes to performance factors with a low level of transport-
related emissions per capita, a low rate of traffic-related
deaths, and a respectable mean travel time to work given its
population density (see Figure 8 overleaf).
nn 	Stockholm: 57.4 points, 2 out of 84 worldwide, 1 out of 19
in Western Europe
The Swedish capital stands out for having one of the best-
developed networks of cycle paths: its bike lane network is
the third most dense in the world, with 4,041km of lanes
per 1,000 sq km. It has a high rate of public sector initiatives,
and its multi-modal SL-Access smart card has a penetration
of 0.64 cards per capita. As a result of this forward-thinking
approach, it ranks above average for transport-related
emissions, with one of the lowest concentrations of nitrogen
dioxide and particulates (NO2
and PM10
) in the air in the
world. What’s more, its traffic-related death rate is amongst
the lowest in the survey.
nn 	Amsterdam: 57.2 points, 3 out of 84 worldwide, 2 out of 19
in Western Europe
There is a car for only one in three citizens in Amsterdam,
which makes it well below the Western European average
of 0.45 vehicles per capita. Cycling on the other hand has a
very high share of the modal split (33%) thanks partly to a
Number of
cities in
index
19 7 9 28 13 5 3
51.5
45.2 43.9 42.8
39.5
37.1
34.1
(South-)
Eastern
Europe
Asia
Pacific
USA/
Canada
Latin
America
Western
Europe
Middle
East
Africa
Figure 7: Ranking by regions [average points]
Source: Arthur D. Little Urban Mobility Index 2.0
 Western Europe ranks top out of
all regions surveyed followed by
(South-) Eastern Europe
 European urban mobility systems
are the most mature ones as of
today – They also lead the way in
mobility performance
 USA/Canada: cities rank bottom
worldwide in maturity given their
orientation toward cars
 Developing regions perform well on
several criteria due to low number
of cars so far
16
A FUM
dense cycling lanes network occupying 3,502 km per
1,000 sq km. Add to this, the second best car-sharing
performance worldwide (1.219 shared cars per million
citizens) and it’s no surprise to hear that transport-related
CO2
emissions are significantly lower than the Western
European average (844 kg per capita per annum in
Amsterdam compared to an average of 1,330 kg in Western
Europe as a whole).
nn 	Copenhagen: 56.4 points, 4 out of 84 worldwide, 3 out of
19 in Western Europe
The Danish capital has the safest urban mobility system in
the world, with 4.1 traffic deaths per million citizens. It also
has the lowest penetration rate of cars in Western Europe at
0.24 per capita, and the use of individual transport is on the
decrease.This coupled with the fact it has a dense cycle-
lane network, helps explain why its transport-related CO2
emissions are significantly below the European average at
812 kg per capita, compared to a Western European average
of 1,330 kg.
nn 	Vienna: 56.0 points, 5 out of 84 worldwide, 4 out of 19 in
Western Europe
Alongside Zurich, Vienna’s public transport system has the
highest share of journeys in Western Europe, with 39%
of trips made on its services. It has pioneered the use
of a new generation of Liquefied Petroleum Gas (LPG)-
powered engines in its bus fleet, whose emissions fall more
than 50% below the EU-5 standard. It also has a below
average number of private cars per capita and encourages
cycling. One innovative initiative in this regard is Bike
City, a housing estate equipped with extra-large lifts to
accommodate bicycles and limited space for car parking.The
combined effect of all this is clean air, with a particularly low
concentration of NO2
and PM10
.
nn 	Singapore: 55.6 points, 6 out of 84 worldwide, 2 out of 28
in Asia Pacific
With a population density of 7,300 inhabitants per square
kilometer, Singapore’s public transport is highly developed;
accounting for no less than 48% of the modal split, and
mobility card penetration is at 2.9 cards per capita.Thanks,
at least in part, to high taxes and duties, car ownership has
been reduced to 0.18 cars per capita and car-use is also
Figure 8: Top 11 cities with above average mobility score
Source: Arthur D. Little Urban Mobility Index 2.0
Fin.attract.ofPT(costof
5kmPT/costof5kmcar)
Shareofpublictransportin
modalsplit[%]
Shareofzero-emissionmodes
inmodalsplit[%]
Roadsdensity(deviationfrom
optimum)[km/km
2
]
Cyclepathnetworkdensity
[km/thskm
2
]
Urbanagglomerationdensity
[citizens/km
2
]
Smartcardpenetration
[cards/capita]
Bikesharingperformance
[sharedbikes/millioncitizens]
Carsharingperformance
[sharedcars/millioncitizens]
Densityofvehiclesregistered
[vehicles/capita]
Frequencyofthebusiestpublic
transportline[times/day]
Initiativesofpublicsector
(0to10scale)
TransportrelatedCO2
emissions[kg/capita]
AnnualaverageNO2
concentration[mcg/m
3
]
AnnualaveragePM10
concentration[mcg/m
3
]
Trafficrelatedfatalitiesper
1millioncitizens
Dynamicsofsharepublic
transportinmodalsplit[%]
Dynamicszero-emission
modesinmodalsplit[%]
Meantraveltimetowork
[minutes]
OVERALLSCORE
1.7 55% 38% 2.0 187 6.5 3.1 0 0 0.07 324 10 776 50.0 50.0 16.2 +20% 0% 36.6 58.2
6.7 33% 34% 0.5 4,041 3.7 0.6 852 400 0.40 212 10 1,348 12.5 16.7 9.4 -7% +89% 33.7 57.4
3.0 8% 50% 1.7 3,502 3.2 0.7 527 1,219 0.32 130 10 844 30.0 24.7 19.5 +12% +13% 35.5 57.2
4.8 27% 33% 2.7 3,977 2.7 0.1 1,025 246 0.24 238 10 812 56.0 28.0 4.1 +123% -15% 29.7 56.4
3.9 39% 34% 0.6 2,948 3.8 0.0 692 415 0.39 277 10 1,111 21.7 21.5 16.1 +15% +13% 29.3 56.0
2.6 48% 23% 2.6 280 7.3 2.9 19 57 0.18 233 9 1,381 22.0 29.0 32.5 +17% +64% 36.8 55.6
2.9 34% 50% 8.8 3,520 3.8 0.6 2,224 219 0.46 267 10 1,163 39.2 38.0 23.9 +7% 0% 38.6 55.4
3.8 39% 31% 0.7 3,700 4.2 0.0 232 1,064 0.54 149 10 1,200 30.1 19.1 15.4 +15% +3% 30.4 54.7
3.9 34% 26% 10.8 254 5.6 3.1 1,012 253 0.39 468 10 1,050 37.0 22.9 26.6 +10% +4% 44.1 53.2
3.6 27% 40% 2.1 4,678 2.3 0.9 0 70 0.48 246 10 1,228 28.0 20.2 13.9 -16% +8% 28.5 53.2
4.6 21% 42% 0.1 3,862 3.0 0.0 727 640 0.56 210 10 1,351 35.3 21.7 15.3 0% +11% 30.1 53.0
Hong Kong
Stockholm
Amsterdam
Copenhagen
Vienna
Singapore
Paris
Zurich
London
Helsinki
Munich
1
2
3
4
5
6
7
8
9
11
Performance indicatorsMaturity indicators
9
17
A FUM
discouraged via congestion pricing, which charges drivers
more for using roads during the rush hour.
nn 	Paris: 55.4 points, 7 out of 84 worldwide, 5 out of 19 in
Western Europe
In addition to the outstanding performance of its extensive
rail network, the French capital boasts the third best bike-
sharing performance in the world afterWuhan and Brussels,
with 2,224 shared bikes per million citizens. Its cycle-lane
network is also well advanced, accounting for 3,520 km
per thousand square kilometers. An innovative car sharing
scheme has proved highly successful too, with 2,000 electric
Bluecars attracting more than 100,000 registered subscribers.
On the commercial front, a grouped goods delivery system,
Distripolis, uses low-emission vehicles to reduce transport-
related pollution.
nn 	Zurich: 54.7 points, 8 out of 84 worldwide, 6 out of 19 in
Western Europe
The Swiss banking center saw public transport’s share of
the modal mix increase by five percentage points between
2005 and 2010 to 39%, putting Zurich alongside Vienna
as the best-performing city in Western Europe. Its ‘good
practice’ urban mobility strategy has led to a dense cycle-lane
network – 3,700 km per thousand square kilometers – and
the world’s third best car sharing performance after Stuttgart
and Amsterdam, with 1,064 shared cars per million citizens.
nn 	London: 53.2 points, 9 out of 84 worldwide (ex aequo with
Helsinki), 7 out of 19 in Western Europe
Like Hong Kong, London’s smart card penetration rate is at
saturation level and it boasts dynamic and efficient public
transport sector operators. Despite having a far from optimum
level of road density, its rate of traffic-related fatalities is
below average and its level of harmful emissions is average
or below average. But while it has frequent services on public
transport, its mean travel time to work is below average.
nn 	Helsinki: 53.2 points, 9 out of 84 worldwide (ex aequo with
London), 7 out of 19 in Western Europe
The world’s most dense cycle-lane network can be found in
Helsinki, which has a total of 1,000 km of segregated bike
lanes, or 4,678km per thousand square kilometers of city
area. One innovation, the 1.3 km Baana pathway for cyclists
and pedestrians, was used by 320,000 cyclists in one six-
month period in 2012.The city also boasts a high penetration
of its HSLTravel Card at 0.9 cards per capita, with the result
that Helsinki has a low concentration of both NO2
and PM10
.
nn 	Munich: 53 points, 11 out of 84 worldwide, 9 out of 19 in
Western Europe
The level of zero-emission modes in the capital of Bavaria’s
modal split is an impressive 42%. A significant contributor to this
has been Munich’s Cycle Capital Campaign, which has a vision
of turning Munich into Germany’s most bicycle-friendly large city.
Between 2002 and 2012, cycling’s share of the modal split rose
from 10% to 17%, aided by the creation of a dense network of
cycle lanes that now stretches to 3,862 km per thousand square
kilometers. Munich is also enjoying a dense and high quality
multimodal public transport system, especially by rail (tram,
metro, S-bahn) (see Figure 9 overleaf).
Trends towards shared mobility
An important finding of the study is that progress is being made in
the field of shared mobility.With every year that passes, more and
more cars and bikes are being shared than ever before. In 2011,
Arthur D. Little found that in the 66 cities surveyed in the context
of the first edition of the urban mobility index, an average of 89
cars were shared per million citizens. In 2013 – just two years later
– in the 84 cities surveyed, 115 cars per million were shared – that
represents a global compounded annual growth rate of +14% per
annum. On a like-for-like basis, the increase was almost identical:
+13% p.a. It was a similar story when it came to bike use.The
number of bikes shared per million citizens increased from 344 to
383 (+6% p.a.) between the two studies. On a like-for-like basis,
the increase was even more impressive: +12% p.a.
Integrated mobility platforms
Smart card use is also on the increase, pointing to a growth in
the integration of services worldwide. In 2011, the average pene­­­
tration of smart cards was 0.34 cards per capita in the 66 cities
surveyed. In 2013, in the 84 cities surveyed, this had increased
to 0.44 cards per capita (+14% p.a.). On a like-for-like basis,
penetration was up +21% p.a. It should be noted that most of
this growth is being driven by developing cities such as Dubai,
Buenos Aires, Delhi, Kuala Lumpur andTehran, while, in contrast,
smart card penetration is stagnating in developed cities.
There are some very good examples of successfully integrated
mobility platform initiatives at local level, of which probably the
most well-known one is the Octopuscard launched by Hong
Kong in 1997.
Other successful initiatives worth mentioning include SMILE
(Vienna),Trafiken.nu (Stockholm), Path2Go (San Francisco Bay
Area), and Goroo (Chicago Metropolitan Region). In Germany,
Stuttgart and Berlin, recently received major subsidies from
the central government to speed up implementation and are
good examples of strong integration between several actors of
different plumages:
nn 	SMILE (Smart Mobility Information and ticketing system
Leading the way for Effective e-mobility services) is a
prototype of the multimodal mobility platform of the City of
18
A FUM
Western Europe USA/Canada
Average 51.5 Average 39.5
Stockholm 57.4
Amsterdam 57.2
Copenhagen 56.4
Vienna 56.0
Paris 55.4
Zurich 54.7
London 53.2
Helsinki 53.2
Munich 53.0
Stuttgart 51.9
Hanover 50.1
Berlin 51.7
Madrid 50.3
Barcelona 49.1
Frankfurt 48.8
Nantes 47.7
Lisbon 41.3
New York 45.6
Montreal 45.4
Toronto 44.4
Washington 43.7
(D.C.)
Boston 40.9
Philadelphia 40.3
Chicago 39.1
Los Angeles 38.1
Portland 37.8
Miami 37.3
Rome 40.9
Houston 34.7
Dallas 33.8
Atlanta 32.5
Figure 9: Urban Mobility Index by regions and cities
Brussels 49.7
(South-)Eastern Europe
Average 45.2
Prague 47.8
Warsaw 47.8
Istanbul 47.2
Ankara 46.1
Moscow 44.4
St. Petersb. 43.4
Athens 40.0
25
30
35
40
45
50
55
60
19
A FUM
Latin America Asia Pacific Middle East/Africa
Average 43.9 Average 42.8 Average 36.0
Santiago de Chile
47.1
Bogota 46.3
Sao Paulo 45.7
Rio de Janeiro
44.0
Curitiba 44.0
Lima 43.5
Buenos Aires42.4
Mexico City 42.2
Caracas 40.1
Wuhan 51.1
Seoul 49.3
Tokyo 49.2
Shanghai 49.1
Shenzhen 47.7
Beijing 47.2
Guangzhou 47.2
Kolkata 47.0
Mumbai 43.9
Manila 43.6
Sydney 43.1
Tianjin 42.6
Melbourne 41.9
Chennai 40.7
Hyderabad 40.7
Ho Chi Minh 39.8
Karachi 39.5
Dhaka 39.2
Bangalore 38.9
Osaka 38.5
Jakarta 37.4
Bangkok 35.0
Kuala
Lumpur 34.6
Lahore 33.1
Delhi 33.5
Hanoi 30.9
Cairo 37.4
Lagos 37.1
Addis Ababa 36.5
Johannesburg
35.0
Tehran 33.0
Baghdad 28.6
Kinshasa 39.4
Dubai 40.6
Hong Kong 58.2
Singapore 55.6
20
A FUM
Vienna.This smartphone-based platform was developed with
public transport as a backbone. It integrates diverse mobility
offerings into multiple unified travel options taking into
account unique customer needs. SMILE provides intelligent
customer information, and enables electronic booking
and payment. It is open to third-parties and is expected
to develop into a nation-wide platform for Austria in the
medium term.
nn 	Trafiken.nu is a multimodal planning tool that was piloted
in Stockholm (a joint initiative of the local PTO, PTA, city
administration and road building authority) and financed via
toll revenue. It was later rolled out in other areas, such as the
Gothenburg Region and Skane Country.This tool compares
different multimodal chains door-to-door with regard to cost,
time and climate impact. However, innovative mobility ser­
vices, such as car or bike sharing, are not integrated so far.
nn 	Path2go is a trip-planning tool for the San Francisco Bay Area
that combines real-time information on transit, traffic and
parking in order to provide personalized intermodal chains for
travelers.The platform also includes en-route incident alerts
and navigation to connect with transit. Tool roll out in Los
Angeles is planned in the short term. Reservation and ticket-
purchasing functionalities are not yet available however.
nn 	Goroo, a multimodal journey planner in the Chicago
Metropolitan Region was developed by the local PTA in
collaboration with PTOs, the traffic authority, the tourism
bureau, the parking services provider, the regional
transportation department and other stakeholders. Apart
from urban mobility the platform also offers entertainment,
shopping, sport, recreation, gastronomy and other value-
added services.
nn 	Stuttgart Services Mobility Platform is a prototype system
that provides real-time intermodal information and can be
used as a booking and reservation system.The platform
provides real-time information for all modes of transport.
Routes can be planned according to the availability of
transport means (for car and bike sharing) and the actual
traffic situation. Users can obtain the most suitable mobility
solution in each specific situation.
While we are yet to discover any example of best practice when
it comes to integrated mobility platforms at supra-regional level,
private companies such as Daimler, Citroen, Google, Nokia
and the German Railway are making interesting attempts to
establish platforms integrating multiple local players:
nn 	Daimler’s moovel is focused on its captive car sharing
service car2go as well as other third-party mobility services,
including taxis, public transport, bike sharing, carpooling etc.
It covers five German agglomerations – Stuttgart, Berlin,
Rhine-Ruhr, Nuremberg and Munich. Expansion to other
cities, regions and continents, as well as aggregation of
further mobility providers, is expected.
nn 	Citroen’s Multicity has integrated car-sharing, flights, railway,
hotels and other tourist services, but, at this stage, is active
only in Germany and France.
nn 	Google Now is an intelligent personal assistant with voice
recognition that makes mobility-related recommendations
for users based on their location, calendar entries etc.
Besides traffic, transit, flight and hotel information, the
platform assists users with car rentals, event tickets and
reminders.
nn 	Nokia Here provides public transport information for 700
cities across 50 countries. Modes covered include bus, train,
ferry, tram and walking.The system also provides navigation
for car drivers in 94 countries including real-time information
on congestion, accidents, and road-works. Unlike its
competitor Google Now, Nokia Here doesn’t offer bicycling
directions.
nn 	German Railway’s Qixxit platform is open to third parties. It
is currently available only as a beta-version and aggregates
railway, long-distance buses, airlines, taxis, car rental, car
sharing, bike sharing and local public transport in Germany.
nn Platforms currently being created globally around Visa
PayWave and Mastercard PayPass are also worth
mentioning.
The integrator type of business models are expected to change
their core. While transit smart cards have been at the core of
such business models until now and smart cards penetration
continues to increase, we expect that over the next five to
ten years smartphone-based mobility platforms will become
increasingly important for mobility integrators and will constitute
major revenue generators.
3.3. Overall conclusions
It is clear that no city has a perfect urban mobility system.
Overall, only 11 cities are performing “above average” – the top
20% of the score range. Even the city with the highest score –
Hong Kong with 58.2 out of 100 – still has significant potential for
improvement. On average, less than half of the potential of urban
mobility systems is unleashed today. Action is needed, and fast.
Out of seven regions surveyed, Western Europe ranks top
followed by (South-) Eastern Europe and Latin America: Not only
are European urban mobility systems the most mature ones as
of today, they also lead the way in mobility performance. USA/
Canadan cities rank bottom worldwide in terms of maturity
21
A FUM
given their orientation towards cars. Developing regions, on
the other hand, perform well on several criteria due to the low
number of cars and the share of individual motorized transport in
the modal mix so far.
Significant progress has been made in certain sectors since we
published our previous urban mobility index in 2011. In terms
of the trend towards shared mobility, more cars and bikes are
being shared in cities, via both peer-to-peer and business-to-
consumer models. Integrated mobility platforms are also gaining
traction: the penetration of mobility smart cards is increasing,
driven by developing cities, and there is a growing number of
examples of good practice in integrated mobility platforms at the
local level.There is currently no good example of best practice
for a supra-regional integrated mobility platform.
A near-perfect mobility system does not yet exist in the world
today and full satisfaction with urban transport is not observed
in any of the cities studied. Even among the cities that score
highest, the scope for improving toward the maximum score of
100 is still significant:
nn 	Hong Kong, for example, scores very high in terms of modal
split, smart card penetration and vehicles per capita but lags
in terms of car and bike sharing.
nn 	Amsterdam is a cycling oriented city with a good cycling
network, car and bike sharing systems, but public transport
has a poor share of the modal split (only 8%).
nn 	Vienna and Zurich have safe mobility systems with well-
balanced modal splits, but have no mobility card so far, etc.
What would a city that would perform well across all criteria look
like? A hypothetical best-in-class urban mobility system would:
nn 	Be as affordable as Hong Kong, with a similar modal split
and level of smart-card acceptance. It would also have as
few vehicles as Hong Kong.
nn 	Ensure air is as pure as Stockholm’s
nn 	Promote cycling like Amsterdam
nn 	Be as safe as Copenhagen
nn 	Have best-in-class bike sharing as demonstrated in Brussels
and Paris	
nn Have a public transport service as frequent as the London
Tube
nn 	Have best-in-class car sharing as demonstrated in Stuttgart
nn 	Have as minor an impact on climate as in Wuhan
nn 	Ensure travel times as short as they are in Nantes
22
A FUM
4.1. Business model archetypes for urban mobility
Confronting the challenges of the future will often require the
adoption of new technology and business models. A comprehen­­­
sive review of technologies and urban mobility business models
reveals that the majority of them are at the growth or maturity
stage. However, there are sufficient solutions available to
address the mobility challenges. In its 2011 study2
, Arthur D.
Little identified three long-term sustainable business models
for the future of urban mobility, which it dubbed the “Amazon”,
“Apple” and “Dell” models of urban mobility (see Figure 10).
nn 	The Amazon model: So-called because – like the online
retailer – it is an aggregator of third-party services. It relies
on a single point of access for mobile and supplementary
services, including information, planning, booking and
payment/billing functions.These are largely virtual services,
with little physical infrastructure required, which form
a one-stop shop. Examples of this model in the public
transport sphere include German Railway’s Qixxit, Daimler’s
moovel or Viennna’s SMILE. Car rental variants include
Check 24, carrentals.com and eBookers, while examples
2	 Arthur D. Little, “The Future of Urban Mobility –Towards networked,
multimodal cities of 2050, 2011
in the hotel market include HRS, Expedia, Opodo and
TripAdvisor. However, market research shows that no one is
currently operating a truly integrated intermodal routing and
compilation of travel chains, e.g. taxi-rail-rental-car-hotel, in
both directions of travel. A fully implemented service of this
sort has the potential to attract significant volume.
nn 	The Apple model: Like the desktop-to-smartphone giant,
the key to this model is deep vertical integration of services.
The goal here is a completely seamless user experience of
the sort epitomized by car hire company Avis’s acquisition
of car-sharing firm ZipCar and Sixt’s car-and-driver service
MyDriver and its car-sharing joint venture with BMW,
DriveNow. Other examples of the Apple business model
archetype are German Railway, offering also car sharing
(“Flinkster”) and bike sharing (“call-a-bike”) services or
Transdev operating train, tram-train, metro, light rail, coach,
bus, BRT, paratransit, ferry, taxi, car-sharing, shared-ride
airport shuttle and bicycle sharing.
4. What is holding back changes?
Business model archetypes for urban mobility
Figure 10: Three long term sustainable business model archetypes for the future of urban mobility
“Amazon of mobility“
 Aggregator of third party services: Single point of access for
mobility and supplementary services (information, planning,
booking, payment) – One-stop-shop concept
 Virtual services, minimal physical infrastructure needed
“Apple of mobility“
 Integrator of own services: A number of mobility solutions
under one strong brand; deep vertical integration
 Goal: Integrated mobility services for end consumers that
provide a seamless, multimodal journey experience
“Dell of mobility“
 Singe mode specialist: Stand alone mobility services, e.g. car
or bike sharing, no intermodal integration
 Also providers of disruptive technologies (drive-in-drive-out,
be-in-be-out (BIBO), NFC solutions for mobility etc.)
Business model: Vision: Insights:
Source: Arthur D. Little Own services Third party services
Business archetypes for urban mobility suppliers
23
A FUM
nn The Dell model: While others diversified in response
to excess supply and deteriorating margins in the PC
market of the mid-90s, US PC manufacturer Dell thrived by
concentrating on online sales and supply chain excellence.
In the urban mobility context, this model refers to single mode
specialists such as local public transport (e.g.Transport for
London), car and bike sharing providers (e.g. Volkswagen’s
Quicar), car pooling platforms (e.g. carpooling.com), taxi
and limo services. All these sectors are expected to enjoy
rapid growth over the next few years. Bike sharing in the US,
for example, is expected to grow 51% p.a. between 2013
and 2016. B2C car-sharing is expected to mushroom too. In
Europe it is tipped to increase by 43% p.a. between 2013 and
2016 and in Japan by 64% p.a. in the same period.
These models need not stand alone.The Amazon and Apple
archetypes can be combined, whereby a mobility provider could
integrate its own services with those of third parties and provide
“one face to the customer”. Figure 11 shows how this could
work from the perspective respectively of an automotive OEM
and a PTA/PTO.
Those three business model archetypes still hold true today
and each has interesting development potential. However,
these solutions and archetypes are currently not being applied
comprehensively and only a few players have managed to
smartly integrate them to unleash their full business potential.
Note: SU=Suburban, LD = Long-Distance, HW = Hardware, SW = Software
Source: Arthur D. Little
“Total Mobility Provider” – Illustrative Business Model
from an Automotive OEMs perspective
Car
sharing
Car
rental
Car
pooling
Limou-
sine
Parking
SW
Taxi
Bike
sharing
LD
train
Reg.
bus
Reg.
train
SU
train Air
Bus
Metro
Tram
Parking
HW
Bike
rental
Cars
AGGREGATOR
INTEGRATOR
CORE
BUSINESS
Figure 11: Combined “Amazon” and “Apple” business models (“Total Mobility Provider”)
“Total Mobility Provider” – Illustrative Business Model
from a PTA/PTO perspective
Bike
sharing
Car
rental
Car
pooling
Reg.
train
Bike
rental
Taxi
Limou-
sine
LD
train
Parking
HW
Parking
SW
Reg.
bus
Car
sharing
SU
train
Air
Local public
transport
AGGREGATOR
INTEGRATOR
CORE
BUSINESS
24
A FUM
There is a clear trend toward shared mobility: more cars and
bikes are being shared in cities, both via peer-to-peer and
business-to-consumer models.
Car sharing is one mobility mode set to become much more
ubiquitous in the next few years.The strongest growth is
expected to be seen in regions with mature urban mobility
systems, such as Western Europe, North America and some
Asian Pacific cities, because they are easier to target due to
their existing infrastructure and an openness on the part of
economically and environmentally conscious consumers to
embrace options that are cheaper and more sustainable (see
Figure 12).
Car sharing has evolved from a community-based,
collaborational exercise between eco- and/or cost-oriented
customers with an average age of 40 (car sharing 1.0), to a big
business which has attracted some of the world’s major car
manufacturers, and a younger customer base thanks, in part, to
the need for them to be app-savvy (car sharing 2.0). Currently
operators are looking for the next levers that will turn car
sharing into a mass market 3.0 business model. Depending on
the type of operator, Arthur D. Little has identified four business
model archetypes in the car sharing sector:Traditionalists,
Citizen Networkers, Mobility Integrators and Innovative OEMs.
nn Traditionalists: These service providers offer a broad
range of unsually low-cost cars3
stationed in dedicated
parking spaces around the city or region they serve.This
type of operator may well be established on a not-for-
profit or co-operative basis and thus offer comparatively
low usage fees. Because the reservation of cars is usually
possible without smartphone usage, the older generation
find this type of car sharing user friendly.
	 The German car-sharing company Greenwheels/StattAuto
is one of the pioneers in this. Its members can reserve a
car at any time over the phone or online, with the driver
accessing the car or key-deposit box with a chip card and
pin code. At the end of a trip, the member returns the car
to the distribution station and fills out a short driving report.
	 The disadvantages of such operations are that the cars
can be found at defined stations only4
(and the network
of such stations is sometimes insufficiently dense) and
customer processes can be relatively complex. Other
examples of operators in this area include Stadtmobil,
Communauto, etc. (see Figure 13)
3	 Still a minor share of premium cars is also being offered, e.g. Stadtmobil
has Mercedes, BMW and Audi in its fleet.
4	 ButTraditionalists also start to penetrate the free-floating operating model,
e.g, Auto-mobile car sharing service of Communauto in Montreal.
nn Citizen Networkers: Unlike theTraditionalists, Citizen
Networkers connect private car owners and people looking
to rent their vehicles for short periods of time. P2P car
sharing is a comparatively new business model, having
emerged in 2001 in Germany with the establishment of the
RentMyCar platform. In the US this business model was
first piloted by RelayRides in 2010 in San Francisco.The
advantages of this model is that it tends to offer cheaper
rides than any other car-based system, insurance is built in
and there is no need for anyone to invest in a fleet.
	 The down side is that it does not become an effective and
reliable option until a critical mass of car owners has been
established.They also tend to be neighbourhood schemes
with limited geographic scope and sometimes car theft
problems can arise. Examples includeTamyca, Jolly
Wheels, Getaround, etc.
nn Mobility Integrators: Entrepreneurial public transport
operators have increasingly developed a clear vision of
becoming integrated mobility providers.Thus they have
started offering car sharing and other services in addition
to their core business.These operators belong to the
“Apple of Mobility” business model archetype.
	 These operators can leverage their existing customer
base to reach the critical mass of users needed for a
profitable car sharing business more quickly. Captive
users of such PTOs can also use the same mobility
cards to access shared cars and same smartphone apps
designed to reserve and pay for shared cars.
	 There are no additional disadvantages for users if the car
sharing service is being provided by a Mobility Integrator,
rather than, for example, aTraditionalist. As station based car
sharing is currently the only operating model being offered by
Mobility Integrators, the disadvantages on this model apply.
Examples include Deutsche Bahn’s Flinkster (countrywide in
Germany plus in Austria’s capitalVienna),Transdev’s Autobleue
(in Nice) and Keolis’ Autocool, Lilas, Auto’Tao, IDElib’ (in
Bordeaux, Lille, Orléans and Pau respectively).
nn Innovative OEMs: This model relies on providers offering
middle segment or premium cars to user communities
who typically identify available vehicles and their locations
via a smartphone app.
	 The advantage this free-floating model has overother car
sharing options is that users are not restricted to picking up
cars from fixed points and can hire a car at a moment’s notice.
Just intermodal apps are available and (same as in other
archetypes) customers often have the choice of an electric
car as well as a conventional petrol or diesel-powered. Such
Car sharing 3.0. – What is the next lever that will turn car sharing into a mass market?
25
A FUM
services do, however, command higher usage fees, rely on
smartphone skills and do not allow the reserving of a car
in advance (orders tend to be taken only 15 or 30 minutes
beforehand). Examples include BMW’s DriveNow, Daimler’s
car2go,Volkswagen’s Quicar, Citroen’s Multicity, etc.
	 While growth will be rapid in this sector, it is from a low
base and providers are currently still assessing long term
profitability of different business models.Very few examples
boast a significant number of members or users and the
challenge is to find a way to turn car sharing from the
province of a relatively small number of early adopters into a
mass-market option.
	 Levers for potential growth exist in four main areas:
geographical expansion, developing the sales platform,
creating or extending a partner network and fostering
loyalty by becoming more locally responsive.
Source: Arthur D. Little
Car sharing 1.0:
Eco niche
Car sharing 2.0:
OEMs get on
Car sharing 3.0:
Mass market
Features
Demand
Time1948 2008 2012-2015
Swiss self
driver
coperative
(SEFAGE)
 Station based model
 Complicated customer processes: reservation,
information provisioning
 Target group – Eco-oriented customers
Witkar
 Free floating  private P2P
models
 Smart phone based
 Premium cars pilots
 Is it about community?
 Is it about seamless and
integrated solutions?
 Is it about convenience?
Car sharing innovation curves – Selective
Figure 12: Car sharing innovation curves
Figure 13: Car sharing business model archetypes
Innovative OEMsMobility integratorsCitizen networkers
Unique Selling
Proposition
Advantages
Disadvantages
 Mainly low-cost cars
 Full service model
 Broad range of vehicle types
Source: Arthur D. Little 1) Except Quicar
Examples
 Greenwheels/StattAuto
 Stadtmobil
 Communauto
 Tamyca
 Jolly Wheels
 RelayRides
 Getaround
 Deutsche Bahn – Flinkster
 Veolia Transdev – Autobleue
 Keolis – Autocool, Lilas,
Auto'Tao, IDElib'
 BMW DriveNow
 Daimler car2go
 Volkswagen Quicar
 Citroën Multicity
 Lower usage fees
 Booking possible without
smartphone usage skills
 Appropriate for older customer
groups
 Mainly station based services
 Less flexibility
 Sometimes complicated
processes for customers
 Leveraging existing customer
base
 Integration into own intermodal
apps (e.g. Qixxit) and mobility
cards (e.g. BahnCard)
 Mainly free floating1)
 spontaneous hire
 Intermodal apps (e.g. moovel)
 Usually minute based charging
 Premium cars also
 User communities
 Value add location based services
 Strong OEM brand
 Higher usage fees
 Smartphone usage skills needed
 Booking in advance ( 30 minutes
before) not possible
 PTOs enlarging their service
portfolio in order to offer door-to-
door mobility
 Strong PTO brand
 Mainly station based services
 Less flexibility
 Sometimes complicated
processes for customers
 Critical mass decisive
 Car theft issues
 Neighborhood based geographic
scope
 No full service model
 “Virtual” fleet made up of
vehicles from participating
owners
 Usually large selection of cars
 Insurance included
 Cheaper compared to car
sharing/rental
 Suitable for less density
populated areas
Traditionalists
26
A FUM
4.2. What is holding back changes?
Given the scale of the looming crisis in urban mobility and the
fact that the solutions to it are already available, it is reasonable
to ask: why has the potential for innovation not been unleashed?
The answer is that the management of urban mobility operates
in an environment that is too fragmented and hostile to
innovation. Our urban management systems do not allow
market players to compete and establish business models
that bring demand and supply into a natural balance. Current
mobility systems adapt poorly to changing demands, are weak
in combining single steps of the travel chain into an integrated
offering, find it difficult to learn from other systems, and shun
an open, competitive environment. Collaboration on solutions is
rare. Rewards for investors are rather meagre.
Moreover, a lot of mature cities do not yet have a clear vision
and strategy on how their mobility systems should look in
the future. In all too many cases, urban mobility plans look
like “Christmas wish lists” with no clear reflection of the
synergies or incompatibilities between the initiatives, too limited
integration between the different modes of transportation
and no convincing explanation of how desired results should
be achieved by allotting responsibilities, setting deadlines,
and instituting monitoring procedures.This lack of synergies
between isolated initiatives leads to a sub-optimal outcome in
terms of mobility performance, which calls for
a more holistic
approach.
There is also often a poor interlinking of urban mobility strategy
and other urban strategies. For example, if a city is committed
in its environmental strategy to reduce CO2
emissions, it should
ask what contribution transport should make to achieve this
goal.
Finally, decisions are often mainly based on “public sector
actions” and do not sufficiently address interfaces with the
private sector and what contribution it could make to the
achievement of urban mobility goals.The private sector needs to
be involved in the goal-setting process.
At a different level, integration between regional mobility
systems still remains very low
in comparison to other parts
of the economy as transport infrastructures were historically
designed to serve regional rather than supra-regional goals. In
that context, there is a need for stronger alignment between
regional mobility strategies while respecting each-others
accountabilities and ensuring solutions are adapted to local
contexts.
Urban mobility is one of the toughest system-level challenges
facing actors of the mobility ecosystems. In the future,
innovative mobility services will be driven less by improvements
in single transport modes than by integration. What is needed
is system-level collaboration between all stakeholders of the
mobility ecosystem to come up with innovative and integrated
business models.
27
A FUM
5.1. Three strategic directions for cities
The urban mobility study was conducted in 84 cities around the
globe, a sample consisting of the largest cities in the world as
measured by GDP share, C40 members, and a group of smaller
cities, which had demonstrated some level of good practice with
regards to mobility.
We tried to put the index results in perspective by looking at city
characteristics and analyzing their correlation with the mobility
scores of cities. We looked more specifically at the following city
characteristics:
nn 	Prosperity: This was determined by the GDP per capita as
of 2012, with those having a GDP per capita of more than
25,000 USD being defined as ‘mature’ and those below that
level defined as ‘emerging’.
nn 	Modal split: This criterion was applied by assessing the
respective shares of individual motorized mobility, public
transport and walking/cycling in the modal split. Cities with
less than 50% of individual motorized transport in the modal
split were categorized as ‘public mobility-oriented cities’.The
others were categorized as ‘individual mobility cities’.
nn 	City size: This was determined by the population of the city
agglomerations as of 2012. Cities with more than five million
residents were defined as ‘large’ and those below defined
as ‘smal’.
The analysis revealed wildly divergent performances but allowed
for a number of interesting conclusions:
nn City size does not matter – City size does not have a signifi­
cant influence on the mobility score. However, the two other
city characteristics that we studied, namely city prosperity
and the prevalence of public transport, do have a significant
influence on the mobility score: the richer the city and the
lower the share of individual transport, the higher the score.
nn 	Mature cities are not necessarily a model – Cities in
emerging regions should not necessarily aspire to emulate
their counterparts in mature regions. If cities in emerging
regions replicate the pathway that cities in mature regions
have followed, they run the risk of introducing the very same
problems of poor modal split, high carbon emissions and low
travel speed.
nn 	Innovation is key – One thing all cities have in common is
that they need to innovate to improve their performance.
We can distinguish three typical city clusters depending on
urban mobility system positioning on the evolutionary curve:
5. Shaping the future:
Strategic directions and imperatives for cities
Figure 14: City clusters of urban mobility and their performance with regards to triple bottom line
Source: Arthur D. Little Mobility Index Performance level: good bad
Cluster
Challenges and opportunities associated with current performance level
Planet People Profit
Public
Mature cities with high share
of public transport/walking
 cycling
Sustainability - often a goal of master
plans; public transport less
environmentally harmful
Sufficient infrastructure supply and
convenient usage/access
Mature cities with high mobility
budgets; able to implement high-end
technologies
Individual
Mature cities with high share
of individual transport in
modals split
Often most dirtiest cities in the world
(mobility related impact), e.g.,
7 t CO2/ capita
High congestion and accidents level
lead to lowering quality of life
Less interesting markets for
infrastructure provides, due to lower
demand for public mobility
Emerging
Emerging cities with partly
underdeveloped mobility
systems Weak environmental impact due to
underdevelopment of infrastructure
Low satisfaction with mobility supply
esp. in Africa, South-East Asia;
Main mode: by foot
Often problems with financing
of mobility infrastructure.
Affordability challenges
Public
Individual
Emerging
28
A FUM
public, individual and emerging, each of them with specific
opportunities and challenges to address and overcome (see
Figure 14 overleaf):
nn 	“Public” city cluster: The key here is to further improve
performance in terms of sustainability and smart
infrastructure – both targets which would benefit from
networking of the mobility system and other efforts to
reduce still further the role of individual motorized transport
in the modal split.
nn 	“Individual” city cluster: Cities in this cluster tend to be
among the dirtiest and most congested in the world thanks
to a disproportionate reliance on car use. In the interests of
both sustainability and quality of life there is a pressing need
to change the mobility culture.
nn 	“Emerging” city cluster: Cities in this cluster have under­
developed infrastructure and the resources to change this
are scarce.The good news is that there is an opportunity
to create a mobility system that does not repeat the errors
made in mature markets.
Each of these city clusters requires a different approach to make
them fit for the future, as illustrated in Figure 15:
nn 	Rethink the System (for the “individual” city cluster):
Cities in mature countries with a high proportion of
motorized individual transport need to shape political
agendas to fundamentally redesign their mobility systems so
that they become more orientated towards public transport
and sustainability.The majority of cities in the index (53 out
of 84) belong to this group.
nn 	Network the System (for the “public” city cluster):
For mature cities with a high share of sustainable transport
modes, the next step must be to fully integrate the travel
value chain to foster seamless, multimodal mobility while
ensuring “one face to the customer” and to increase
the overall attractiveness of public transport by service
extension.This group contains the majority of cities in
Europe as well as Hong Kong, Singapore, Seoul,Tokyo,
Toronto and Buenos Aires.
nn 	Establish Sustainable Core (for the “emerging” city
cluster): For cities in emerging countries with partly
underdeveloped mobility systems, the aim must be to
establish a sustainable mobility core that can satisfy short
term demand at a reasonable cost without replicating
mistakes from developed countries. With access to
emerging transport infrastructure and technologies, these
cities have the opportunity to become the test-bed and
breeding ground for tomorrow’s urban mobility systems.
That said, different strategic directions can be combined.
In addition to rethinking their mobility system, cities in the
“individual” cluster can initiate action to network the system.
But these initiatives will only bring significant benefits if
sustainable modes of transport make up a sufficient percentage
Baghdad
Hong Kong
SeoulAddis
Ababa
Johannes-
burg
Wuhan
Munich
Zurich
Amsterdam
Time
Maturity
Features:
 Innovative thinking
 Seamless integration
with “one key” for
citizens
 High convenience
 Sharing concepts
Establish Sustainable
Core: Invest in
sustainable urban
mobility infrastructure
Rethink the System:
Shape political agenda
towards shift to public 
sustainability
Network the System:
Integration of different
market players and
networking of citizens
Prerequisite Way forward
Establish your own way
(do not replicate)
Figure 15: Three strategic directions for cities
Source: Arthur D. Little
Emerging
Emerging cities with
partly underdeveloped
mobility systems
Individual
Mature cities with high
share of individual
transport in modals split
Public
Mature cities with high
share of public transport/
walking  cycling
Networked mobility
Integration of all modes
to reduce share of
individual motorized
transport
29
A FUM
of the modal split. Hence “rethinking the system” is a
prerequisite to obtaining the full benefits of “Network the
System”. Similarly, cities in the “emerging” city cluster should
undertake the right set of actions in order not to be forced
to rethink the system in a second stage, and once the basic
elements of a sustainable mobility system are in place, start
introducing initiatives to network the system.
5.2. Four dimensions for cities to consider when
defining sustainable urban mobility systems
Improving urban mobility is a challenge of epic proportions. As
urban populations grow and economic prosperity increases,
cities are increasingly under pressure to deliver fast, safe and
environment-friendly transport to citizens and businesses.
Fortunately, there is a wealth of good-practice examples,
technologies and business models on which the various
stakeholders can draw to devise effective and sustainable
mobility policy.
Arthur D. Little and the UITP have identified four key dimensions
to be considered by mobility actors in cities seeking to put in
place sustainable urban mobility systems (see Figure 16):
nn 	Visionary Strategy and Ecosystem
nn 	Mobility Supply (solutions and lifestyles)
nn 	Mobility Demand Management
nn 	PublicTransport Financing
If an urban mobility policy based on implementing the above
four dimensions is to succeed in achieving its aims, it is vital that
all four dimensions are improved simultaneously as the overall
results will be influenced by the performance of the weakest
link.
In this context, 25 imperatives should be carefully assessed by
cities as a basis for setting up sustainable urban mobility policies
and converted into a concrete set of actions.The relevance
of the imperatives to each city will vary depending on the
urban mobility city cluster to which they belong (see Figure 17
overleaf).
5.2.1 First dimension of sustainable urban mobility
systems: Visionary Strategy and Ecosystem
Establishing sustainable urban mobility policies requires cities to
develop a political vision and a set of urban mobility objectives
based on a strategic alignment between all key public and
private stakeholders of the extended mobility ecosystem.
This should forge a visionary urban mobility strategy, in which
priorities – and the investments required to achieve them – are
identified, in a way that strikes the right balance between stretch
and achievability.
The time has come for mobility actors to step up and to drive
innovation in urban mobility as there is now a real window of
opportunity. In order to exploit this, public transport authorities
and operators will need to open their minds and take a much
more holistic view on public transport than they have done up
to now.They will need to work closely with each other, and
the new market players, to deliver creative and entrepreneurial
mobility solutions guided by a strategic vision of how cities and
regions can be planned and organized.
The establishment of a visionary urban mobility strategy involves
addressing seven key imperatives:
Imperative 1: Establish a transparent, viable and stable
regulatory framework for public transport, integrating
national and regional mobility powers, and ensuring a
clear allocation of roles and responsibilities
An unstable regulatory framework is the enemy of strategic
planning in both private and public sectors. Constant changes to
the legal and organizational framework are a particular problem
for the public transport sector.
In such a context it is vital that transparent rules are developed
to allocate roles among the system’s stakeholders, with risks
and responsibilities clearly split between authorities, operators,
as well as private actors and associations alike.
Source: Arthur D. Little  UITP FUM 2.0
System-level framework for sustainable mobility
Mobility Supply
(solutions  lifestyles)
Mobility Demand
Management
PublicTransport Financing
Visionary Strategy
 Ecosystem
1
2 3
4
Figure 16: System-level framework for sustainable urban
mobility system
30
A FUM
MobilityDemandManagement
Awareness
creation
MDM measures
to influence
behavior of
individuals
MDM measures
to influence
behavior of
businesses
MobilitySupply(solutions
lifestyle)
Core PT offering
Offering
characteristics
Value-Added
Services
Integrated
mobility
PublicTransportFinancing
Fare
revenue
Additional
revenues
Public
funding
Earmarked
charges
Private funding
Cities in emerging countries with partly
underdeveloped mobility systems:
Develop Sustainable Core
Cities with high maturity
and low share of public transport,
walking, cycling:
Rethink the System
Cities with high maturity and high share
of PT, walking, cycling:
Network the System
VisionaryStrategyandEcosystem
Vision and
objectives
Strategy and
master plan
Integration of
urban policies
Level playing
field
Figure 17: 25 imperatives to be considered by cities as a basis for defining sustainable urban mobility policies
Source : Arthur D. Little  UITP FUM 2.0
5. Ensure coordination of transport
planning with other policies
2. Professionalize PTO and formalize
public transport
4. Develop a visionary urban mobility strategy and master plan ensuring the right balance between stretch and achievability and shift
focus from “supply oriented” to “demand oriented” measures
3. Develop a political vision and urban mobility objectives based on strategic alignment
between all key stakeholders
7. Initiate fair competition between
modes and business models
6. Develop an integrated approach for transport planning and other urban policies to shift
from isolated decision-making toward integrated urban management
8. Invest to establish a sustainable
mobility offering and do not replicate
mistakes of developed cities
9. Develop competitive position of public transport by evolving from “transport provider”
to “solution provider” via introduction of innovative business models and partnerships
10.Shift PTO culture from fleet manager mindset toward customer-centric culture and
progressively enhance quality of public transport offering and customer experience
11.Further improve customer experience via service offering extension
through partnerships and alliances with third parties
12.Encourage interoperability and
develop multi-modal packages
13. Integrate the travel value chain via
development of integrated mobility
platforms
15.Introduce traffic calming measures to optimize streets usage conditions and increase
quality of life for residents and businesses
16.Introduce pricing measures to steer mobility demand through financial
incentives and better synchronize supply and demand
17.Introduce and enforce parking policy as a critical instrument to steer mobility choices, while
gradually increasing sophistication of fee and regulation structure
18.Define appropriate land-use policies to influence long-term mobility patterns and
encourage transit-oriented development
19. Encourage businesses to develop active corporate mobility strategy to improve
mobility of individuals and goods while minimizing costs
21.Further individualize mobility offering by providing bundles of services targeting
different customer groups at different prices
22.Assess opportunities to exploit PT assets to derive additional revenues through
aggregation of third party services
23. Prioritize public funding for capital investments into projects with sound business cases demonstrating policy benefits and long term
viability
25.Further stimulate partnerships with private investors while focusing on preserving business model solidity over short term funding
opportunities
14.Engage with citizens and business community to encourage pragmatic, well-informed
and sustainable travel and location choices
24.Explore opportunities to perceive charges from indirect beneficiaries of PT and
earmark them for PT financing
20.Drive demand for public transport to maximize fare revenue by focusing on gradual increase
of service offering quality and ensure transparency of fare adjustments
1. Establish a transparent, viable and stable regulatory framework for PT, integrating
national and regional mobility prerogatives and ensuring clear allocation of roles and
responsibilities
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study
2014 adl uitp_future_of_urban_mobility_2_0_full_study

More Related Content

What's hot

Smart Transportation Pricing Fact Sheet
Smart Transportation Pricing Fact SheetSmart Transportation Pricing Fact Sheet
Smart Transportation Pricing Fact Sheet
Shane Mitchell
 
Smart Cities UK 2016
Smart Cities UK 2016Smart Cities UK 2016
Smart Cities UK 2016
4 All of Us
 

What's hot (20)

Networked Society City Index 2014
Networked Society City Index 2014Networked Society City Index 2014
Networked Society City Index 2014
 
Ppp for solving public transport woes in india
Ppp for solving public transport woes in indiaPpp for solving public transport woes in india
Ppp for solving public transport woes in india
 
Eurocities flash105 apr2011
Eurocities flash105 apr2011Eurocities flash105 apr2011
Eurocities flash105 apr2011
 
Networked society City Index 2014
Networked society City Index 2014Networked society City Index 2014
Networked society City Index 2014
 
Can owning a cell phone replace the desire to own a car? The emerging entrep...
Can owning a cell phone replace the desire to own a car?  The emerging entrep...Can owning a cell phone replace the desire to own a car?  The emerging entrep...
Can owning a cell phone replace the desire to own a car? The emerging entrep...
 
Eurocities flash 123 feb13
Eurocities flash 123 feb13Eurocities flash 123 feb13
Eurocities flash 123 feb13
 
Global Megatrends and the future of urban logistics
Global Megatrends and the future of urban logisticsGlobal Megatrends and the future of urban logistics
Global Megatrends and the future of urban logistics
 
Eurocities flash107 june2011
Eurocities flash107 june2011Eurocities flash107 june2011
Eurocities flash107 june2011
 
Smart Transportation Pricing Fact Sheet
Smart Transportation Pricing Fact SheetSmart Transportation Pricing Fact Sheet
Smart Transportation Pricing Fact Sheet
 
Future of mobility utilisacteur @ ouisharefest
Future of mobility utilisacteur @ ouisharefestFuture of mobility utilisacteur @ ouisharefest
Future of mobility utilisacteur @ ouisharefest
 
Future transport-technology-overview-roadmap-2016
Future transport-technology-overview-roadmap-2016Future transport-technology-overview-roadmap-2016
Future transport-technology-overview-roadmap-2016
 
Financial Times / Intelligent Transport
Financial Times / Intelligent TransportFinancial Times / Intelligent Transport
Financial Times / Intelligent Transport
 
Smart Cities UK 2016
Smart Cities UK 2016Smart Cities UK 2016
Smart Cities UK 2016
 
How to make smart city for people with people?
How to make smart city for people with people?How to make smart city for people with people?
How to make smart city for people with people?
 
Ppp final project
Ppp final projectPpp final project
Ppp final project
 
Mobility as a service
Mobility as a service Mobility as a service
Mobility as a service
 
IE admission - Express yourself - How do you envision the city of the future?
IE admission - Express yourself - How do you envision the city of the future?IE admission - Express yourself - How do you envision the city of the future?
IE admission - Express yourself - How do you envision the city of the future?
 
Intelligent road infrastructure
Intelligent road infrastructureIntelligent road infrastructure
Intelligent road infrastructure
 
GLOBAL VIEW OF A VIBRANT WORLD 360° THE ISSUE Urbanisation FACE TO FACE
GLOBAL VIEW OF A VIBRANT WORLD 360° THE ISSUE Urbanisation FACE TO FACEGLOBAL VIEW OF A VIBRANT WORLD 360° THE ISSUE Urbanisation FACE TO FACE
GLOBAL VIEW OF A VIBRANT WORLD 360° THE ISSUE Urbanisation FACE TO FACE
 
Implementing ITU-T International Standards to Shape Smart Sustainable Cities
Implementing ITU-T International Standards to Shape Smart Sustainable CitiesImplementing ITU-T International Standards to Shape Smart Sustainable Cities
Implementing ITU-T International Standards to Shape Smart Sustainable Cities
 

Viewers also liked

Stress ribbon bridges stiffened by arches or cables
Stress ribbon bridges stiffened by arches or cablesStress ribbon bridges stiffened by arches or cables
Stress ribbon bridges stiffened by arches or cables
Masum Majid
 

Viewers also liked (13)

Vol 1 issue 2 eng definitivo
Vol 1 issue 2 eng definitivoVol 1 issue 2 eng definitivo
Vol 1 issue 2 eng definitivo
 
Implantable medical devices
Implantable medical devicesImplantable medical devices
Implantable medical devices
 
Hysteroscopy newsletter vol 2 issue 5 spanish
Hysteroscopy newsletter vol 2 issue 5 spanishHysteroscopy newsletter vol 2 issue 5 spanish
Hysteroscopy newsletter vol 2 issue 5 spanish
 
Hysteroscopy newsletter vol 2 issue 4 spanish
Hysteroscopy newsletter vol 2 issue 4 spanishHysteroscopy newsletter vol 2 issue 4 spanish
Hysteroscopy newsletter vol 2 issue 4 spanish
 
Stephen Hawking
Stephen HawkingStephen Hawking
Stephen Hawking
 
Hysteroscopy newsletter vol 2 issue 3 spanish
Hysteroscopy newsletter vol 2 issue 3 spanishHysteroscopy newsletter vol 2 issue 3 spanish
Hysteroscopy newsletter vol 2 issue 3 spanish
 
Hysteroscopy newsletter vol2 issue 4 english
Hysteroscopy newsletter vol2 issue 4 englishHysteroscopy newsletter vol2 issue 4 english
Hysteroscopy newsletter vol2 issue 4 english
 
Hysteroscopy newsletter vol 2 issue 3 english
Hysteroscopy newsletter vol 2 issue 3 englishHysteroscopy newsletter vol 2 issue 3 english
Hysteroscopy newsletter vol 2 issue 3 english
 
Researchers of Historic India
Researchers of Historic IndiaResearchers of Historic India
Researchers of Historic India
 
Hysteroscopy newsletter vol 2 issue 2 english
Hysteroscopy newsletter vol 2 issue 2 englishHysteroscopy newsletter vol 2 issue 2 english
Hysteroscopy newsletter vol 2 issue 2 english
 
Hysteroscopy newsletter vol 2 issue 2 spanish
Hysteroscopy newsletter vol 2 issue 2 spanishHysteroscopy newsletter vol 2 issue 2 spanish
Hysteroscopy newsletter vol 2 issue 2 spanish
 
Social Pyschology
Social PyschologySocial Pyschology
Social Pyschology
 
Stress ribbon bridges stiffened by arches or cables
Stress ribbon bridges stiffened by arches or cablesStress ribbon bridges stiffened by arches or cables
Stress ribbon bridges stiffened by arches or cables
 

Similar to 2014 adl uitp_future_of_urban_mobility_2_0_full_study

Executive_Summary_m-ci_Phase 1_digital (2)
Executive_Summary_m-ci_Phase 1_digital (2)Executive_Summary_m-ci_Phase 1_digital (2)
Executive_Summary_m-ci_Phase 1_digital (2)
Heather Troutman
 
Planning for sustainable urban trasport
Planning for sustainable urban trasportPlanning for sustainable urban trasport
Planning for sustainable urban trasport
JIT KUMAR GUPTA
 

Similar to 2014 adl uitp_future_of_urban_mobility_2_0_full_study (20)

The role of ICT in the new urban agenda
The role of ICT in the new urban agendaThe role of ICT in the new urban agenda
The role of ICT in the new urban agenda
 
Next orange smartmobility_alexander.krieg
Next orange smartmobility_alexander.kriegNext orange smartmobility_alexander.krieg
Next orange smartmobility_alexander.krieg
 
Cyclomedia_Whitepaper_The_Future_of_Transport_and_Road_Safet.pdf
Cyclomedia_Whitepaper_The_Future_of_Transport_and_Road_Safet.pdfCyclomedia_Whitepaper_The_Future_of_Transport_and_Road_Safet.pdf
Cyclomedia_Whitepaper_The_Future_of_Transport_and_Road_Safet.pdf
 
Interactive future of highways 2014
Interactive future of highways 2014Interactive future of highways 2014
Interactive future of highways 2014
 
Book The Fabrique des Mobilités 2015
Book The Fabrique des Mobilités 2015Book The Fabrique des Mobilités 2015
Book The Fabrique des Mobilités 2015
 
Dream of the smart city
Dream of the smart cityDream of the smart city
Dream of the smart city
 
Sustainable Mobility: From Future Trend to Necessity
Sustainable Mobility: From Future Trend to NecessitySustainable Mobility: From Future Trend to Necessity
Sustainable Mobility: From Future Trend to Necessity
 
Reshaping Urban Mobility with Autonomous Vehicles. Lessons from the City of B...
Reshaping Urban Mobility with Autonomous Vehicles. Lessons from the City of B...Reshaping Urban Mobility with Autonomous Vehicles. Lessons from the City of B...
Reshaping Urban Mobility with Autonomous Vehicles. Lessons from the City of B...
 
Urban Mobility At The Tipping Point
Urban Mobility At The Tipping PointUrban Mobility At The Tipping Point
Urban Mobility At The Tipping Point
 
FACILITATION OF TRANSPORT AND TRADE IN LATIN AMERICA AND THE CARIBBEAN
FACILITATION OF TRANSPORT AND TRADE IN LATIN AMERICA AND THE CARIBBEANFACILITATION OF TRANSPORT AND TRADE IN LATIN AMERICA AND THE CARIBBEAN
FACILITATION OF TRANSPORT AND TRADE IN LATIN AMERICA AND THE CARIBBEAN
 
Assignment On Smart City.Pdf
Assignment On Smart City.PdfAssignment On Smart City.Pdf
Assignment On Smart City.Pdf
 
Future Mobility – New approaches in the city
Future Mobility – New approaches in the cityFuture Mobility – New approaches in the city
Future Mobility – New approaches in the city
 
EIP SCC Brochure
EIP SCC BrochureEIP SCC Brochure
EIP SCC Brochure
 
Intelligent Transport Services and Systems - IBM
Intelligent Transport Services and Systems - IBMIntelligent Transport Services and Systems - IBM
Intelligent Transport Services and Systems - IBM
 
Executive_Summary_m-ci_Phase 1_digital (2)
Executive_Summary_m-ci_Phase 1_digital (2)Executive_Summary_m-ci_Phase 1_digital (2)
Executive_Summary_m-ci_Phase 1_digital (2)
 
The urban transit evolution
The urban transit evolution The urban transit evolution
The urban transit evolution
 
Planning for sustainable urban trasport
Planning for sustainable urban trasportPlanning for sustainable urban trasport
Planning for sustainable urban trasport
 
Allianz Risk Pulse: The Future of Individual Mobility
Allianz Risk Pulse: The Future of Individual MobilityAllianz Risk Pulse: The Future of Individual Mobility
Allianz Risk Pulse: The Future of Individual Mobility
 
Citizens and mobility in Barcelona
Citizens and mobility in BarcelonaCitizens and mobility in Barcelona
Citizens and mobility in Barcelona
 
Future of Urban Mobility
Future of Urban MobilityFuture of Urban Mobility
Future of Urban Mobility
 

2014 adl uitp_future_of_urban_mobility_2_0_full_study

  • 1. Imperatives to shape extended mobility ecosystems of tomorrow The Future of Urban Mobility 2.0 January 2014
  • 2. Content Forewords 3 1. Executive summary 5 2. Plotting the trend – Urban mobility systems are on their way to breakdown 9 3.Where are we now? Arthur D. Little Urban Mobility Index 2.0 11 4.What is holding back changes? Business models archetypes for urban mobility 22 5. Shaping the future – Strategic directions and imperatives for cities 27 6. Case studies of cities demonstrating good practices 51 Authors: François-Joseph Van Audenhove Partner, Arthur D. Little, Brussels Laurent Dauby Director Rail Transport, UITP Jérôme Pourbaix Head of Policy and Outreach, UITP Oleksii Korniichuk Manager, Arthur D. Little, Frankfurt Acknowledgement for their support and valuable input: Wilhelm Lerner (author of the first edition of the study), Ralf Baron, Aurelia Bettati, Marie Maggiordomo, Marc Durance, Lucie Lammens and Caroline Cerfontaine. The Urban Mobility Index 2.0 was developed by Arthur D. Little; the UITP is independent of this index, which does not necessarily reflect its opinion. Strategic imperatives for cities have been developed together with the UITP.
  • 3. 3 Mobility has significantly evolved in the past, under the influence of industrial evolutions. Following the first industrial revolution enabled by the invention of steam powered technology, the railway industry emerged.The second industrial revolution with mass production enabled the emergence of the automobile industry and, closer to us, the third industrial revolution with digitalization enabled the emergence of computer-aided travelling (for example GPS in a car).Today we are entering what could be called a fourth industrial revolution, represented by industry and technology convergence, leading to the emergence of for example clean energy vehicles or connected mobility solutions.This evolution is particularly noticeable over past years in network industries (such as telecommunication and media, utilities and the mobility industry) as well as in B2C industries (such as retail and healthcare) where, driven by evolving customer needs and enabled by rapidly evolving technology, business models are continuously evolving. In this new world, in order to meet the key challenges of today and the future, organizations cannot only rely on optimizing their operations or pushing the next products generation to market. To be successful and meet evolving customer’ needs, they need to adapt to this new changing world by continuously finding ways to reinvent themselves.This successful transformation can only be enabled by system-level collaboration and innovation. As a global management consultancy, linking strategy, technology and innovation, Arthur D. Little aims to help its clients succeed in this “new world of innovation.”The Future of Urban Mobility (FUM) Lab is our contribution to tackle the urban mobility challenge. With its FUM studies, Arthur D. Little aims to support cities and nations in shaping the extended mobility ecosystems of tomorrow and facilitate an open dialogue between urban mobility stakeholders. Our Mobility Lab initiative has reached a new dimension in 2013, with the signature of an exclusive partnering agreement with the International Association of PublicTransport (UITP) for the co-development of future of urban mobility studies; which in our view constitutes the ideal partner due to its global representation amongst mobility actors and the depth of expertise of its practitioners in the field of mobility. With the release of this second edition of the Future of Urban Mobility study, our aim is to provide mobility decision-makers and stakeholders with reflections and guidance on devising sustainable strategies that are meeting current and future evolving mobility challenges. We hope you will find this report useful and we would be pleased to discuss its conclusions and the implications for your organization. Sincerely Ignacio Garcia-Alves François-Joseph Van Audenhove Arthur D. Little Global CEO Partner Forewords
  • 4. 4 The Arthur D. Little study “The Future of Urban Mobility –Towards networked, multimodal cities of 2050” had triggered the interest and attention of UITP when it was released in 2011; and for us it was natural to feature it in the main plenary session of our World Congress last May. When we were approached by Arthur D. Little to work together on a second edition of the study, the UITP immediately saw a great opportunity to further convey its own messages developed since 2009 in our PTx2 strategy, later labeled “Grow with public transport”. This strategy for the public transport sector sets out the ambitious aim to double the market share of public transport worldwide by 2025 and pinpoints the key areas where action is urgently needed. Current trends indicate that more people will choose to use private motorized transport, leading to a staggering 6.2 billion private motorized trips every day in cities of the world. If the world fails to change its mobility habits, the future of our planet looks decidedly bleak. By 2025, worldwide transport-related greenhouse gas emissions will be 30% higher than 2005 levels.Transport energy bills will also skyrocket and higher levels of energy consumption could pose a threat to global energy security.Traffic congestion will bring cities worldwide to a standstill. Most alarmingly, half a million people will be killed in road traffic accidents every year. Thankfully, more and improved public transport offers a route to a better future. By doubling the market share of public transport worldwide by 2025, cities will be able to boost growth, help fight climate change and create pleasant urban environments where people and businesses can thrive. Doubling the market share of public transport will enable the stabilization of urban transport greenhouse gas emissions and energy consumption despite overall mobility increase. In 2025, 60,000 lives will be saved, as a more balanced mobility mix will lead to fewer urban traffic fatalities. Doubling the market share of public transport would also create seven million green, local jobs. We took the city ranking proposed by Arthur D. Little as a starting point to perform and refine our analysis of today’s mobility situation in view of tomorrow’s requirements. Cities are clustered around their development stage and are given a series of strategic recommendations to overcome current limitations to achieve the objective of “networked mobility”. I would like to thank Arthur D. Little for their fruitful cooperation and welcome this joint effort by two prestigious and reputable organizations. I hope that our joint study will inspire and help many decision-makers and readers. Sincerely Alain Flausch UITP Secretary General
  • 5. 5 A FUM Arthur D. Little, the Global Management Consultancy, launched its “Future of Urban Mobility” lab in 2010 and in 2011 released its first global study highlighting the mobility challenges cities face on a worldwide basis.This report introduced the first Arthur D. Little Urban Mobility Index, which assessed the mobility maturity and performance of 66 cities worldwide, and triggered high interest within the mobility industry and in the media on a global scale. January 2014 sees Arthur D. Little release the second version of the “Future of Urban Mobility” study, including an updated version of the Urban Mobility Index, with an extended scope of 84 cities worldwide as well as an extended set of criteria.The index finds most cities are still badly equipped to cope with the challenges ahead indicating there is still significant potential for improvement. Arthur D. Little highlights what is holding cities back, and, together with its partner the UITP – the International Association of PublicTransport – identifies three strategic directions for cities to better shape the future of urban mobility.The study also describes 25 imperatives to consider when defining sustainable urban mobility policies and case studies of cities demonstrating good practice. 1. Executive Summary
  • 6. 6 A FUM 1.1. Arthur D. Little Urban Mobility Index 2.0 – The most comprehensive global urban mobility benchmarking study Plotting the trend Urban mobility is one of the toughest challenges that cities face today as existing mobility systems are close to breakdown. The world’s population is increasingly city-based. 53% of the population currently lives in urban areas and by 2050 this number is expected to reach 67%.Today, 64% of all travel made is within urban environments and the total amount of urban kilometers travelled is expected to triple by 2050. Delivering urban mobility to cope with this increasing demand will thus require massive investment in the future. In addition to the increasing demand for urban mobility, mobility needs are evolving. Changing travel habits, demand for services to increase convenience, speed and predictability, as well as evolving customer expectations toward individualization and sustainability will require mobility services portfolio extension as well as business model transformation, while specialized players from other sectors are assessing opportunities to play a role in the extended mobility ecosystem. Moreover, in order to reach UITP’s objective of “doubling the market share of public transport worldwide by 2025” (compared to the 2005 level), public transport stakeholders are working hard to improve attractiveness, capacity and efficiency of mobility systems despite growing limitations of public financing, demonstrating the need for system level innovation. Methodology Using 19 criteria Arthur D. Little assessed the mobility maturity and performance of 84 cities worldwide.The mobility score per city ranges from 0 to 100 index points; the maximum of 100 points is defined by the best performance of any city in the sample for each criteria. In addition, Arthur D. Little has reviewed policy initiatives undertaken by cities to improve the performance of urban mobility systems. Where are we now? The overall results find most cities are still badly equipped to cope with the challenges ahead.The global average score is 43.9 points, meaning that, on average, the 84 cities achieve less than half of the potential that could be reached today if applying best practices across all operations. Only 11 cities score above 52 points (the top 20% of the score range).The highest score (58.2 points) went to Hong Kong followed closely by Stockholm (57.4 points) and Amsterdam (57.2 points), still indicating potential for improvement. There are big differences between the top- and low-end performers in various regions: nn Europe achieves the highest average score of the six world regions surveyed, with an average of 49.8 points (51.5 points for Western Europe and 45.2 for (South)-Eastern Europe) and nine out of the 26 analyzed European cities scoring above 52 points. European urban mobility systems are the most mature ones as of today and lead the way in mobility performance. Stockholm (57.4), Amsterdam (57.2) and Copenhagen (56.4 points) head the table – while Athens (40.0 points), Rome (40.9 points) and Lisbon (41.3) are the worst European cities in the sample. nn Latin American and Asian Pacific cities show slightly below average performance.The continents’ average scores are well below Western Europe (43.9 and 42.8 points respectively) but outperform other regions in public transport-related criteria (financial attractiveness of PT, share of modal split, smart cards). Most cities in Latin America show an average performance of between 40 and 47 points, while Asian Pacific cities show the broadest range in performance, from Hong Kong and Singapore with scores of 58.2 and 55.6 respectively – sitting at the top of the global table – down to Hanoi with 30.9 points. nn USA/Canada shows average performance with 39.5 points. Given their orientation towards cars, USA/Canadan cities rank bottom worldwide in terms of maturity. In terms of performance, they perform above average overall, but show poor results with regard to number of cars per capita and CO2 emissions. NewYork leads the way with 45.6 points, followed closely by Montreal with 45.4 points. nn Africa and the Middle East are the lowest performing regions with respective average point totals of 37.1 and 34.1. Whilst urban mobility systems in Africa perform well on several criteria due to the lower number of cars, they are still at an evolving stage and haven’t reached sufficient maturity yet. Middle East cities have high levels of cars per capita and are expected to invest in development of environmental modes of transport in the mid-term perspective. What is holding back change? A comprehensive review of technologies and urban mobility business models reveals sufficient availability of solutions to address the mobility challenges. In its 2011 study1 , Arthur D. Little identified three long-term business models archetypes 1 Arthur D. Little, “Future of Urban Mobility.Towards Networked, Multimodal Cities of 2050”, 2011
  • 7. 7 A FUM for mobility suppliers (the “Amazon”, “Apple” and “Dell” of urban mobility).Those business models still hold true today and each have interesting development potential. However, these solutions and archetypes are currently not being applied comprehensively. There is a clear trend towards shared mobility: in complement to conventional public transport, more cars and bikes are being shared in cities, both via peer-to-peer and business-to-consumer models, but many of those concepts haven’t yet managed to take off as providers are still testing different business models. Why is the innovation potential not being unleashed?There is a key reason: the management of urban mobility operates in an environment that is too fragmented and hostile to innovation. Our urban management systems do not allow market players to compete and establish business models that bring demand and supply into a natural balance. It is one of the toughest system- level challenges facing actors of the mobility ecosystems. There are plenty of solutions and business models available, but very few have managed to smartly integrate them to unleash their full business potential. What is needed is system- level collaboration between all stakeholders of the mobility ecosystem to come up with innovative and integrated business models. Moreover, many mature cities do not yet have a clear vision and strategy on how their mobility systems should look in the future.The lack of synergies between isolated initiatives leads to a sub-optimal outcome in terms of mobility performance, which calls for a more holistic approach. At a different level, integration between regional mobility systems still remains very low in comparison to other parts of the economy as transport infrastructures were historically designed to serve regional rather than supra-regional goals. In that context, there is a need for stronger alignment between regional mobility strategies while respecting each-others accountabilities and ensuring solutions are adapted to local contexts. 1.2. Strategic imperatives for cities to shape extended mobility systems of tomorrow Three strategic directions for cities To meet the urban mobility challenge, cities need to implement one of the following three strategies dependent on their matu­ rity and the share of sustainable transport in their modal split: nn Rethink the System: Cities in mature countries with a high proportion of motorized individual transport need to shape political agendas to fundamentally redesign their mobility systems so that they become more orientated towards public transport and sustainability.The majority of cities in the index (53 out of 84) belong to this group. nn Network the System: For mature cities with a high share of sustainable transport modes, the next step must be to fully integrate the travel value chain to foster seamless, multimodal mobility while ensuring “one face to the customer” and to increase the overall attractiveness of public transport by service extension.This group contains the majority of cities in Europe as well as Hong Kong, Singapore, Seoul,Tokyo,Toronto and Buenos Aires. nn Establish Sustainable Core: For cities in emerging countries with partly underdeveloped mobility systems, the aim must be to establish a sustainable mobility core that can satisfy short term demand at a reasonable cost without replicating mistakes from developed countries. With access to emerging transport infrastructure and technologies, these cities have the opportunity to become the test-bed and breeding ground for tomorrow’s urban mobility systems. Four dimensions for cities to consider when defining sustainable urban mobility policies nn Visionary Strategy and Ecosystem: Establishing sustainable urban mobility policies requires cities to develop a political vision and urban mobility objectives based on strategic alignment between all key public and private stakeholders of the extended mobility ecosystem.This should inform a visionary urban mobility strategy (priorities and investments to achieve mobility objectives), which ensures the right balance between stretch and achievability. nn Mobility Supply (solutions and lifestyles): Responding to increasing demand for urban mobility and to consumer and business needs for seamless, multimodal urban mobility requires cities to extend their public transport offering and adapt it from “delivering transport” to “delivering solutions”. This transformation can be achieved through a combination of quality improvements to the current public transport offering and an increase of customer experience via service offering extension through partnerships and alliances with third parties. nn Mobility Demand Management: The limited capacity of current mobility systems and the level of investment required for the development of transport infrastructure means mobility service extension must also be complemented with measures to manage the demand side. Mobility demand management is a delicate discipline which can easily meet strong resistance if not properly planned and executed. However, a number of measures exist and some of these have already derived clear benefits, the relevance of which should be assessed by cities against the local context.
  • 8. 8 A FUM nn Public Transport Financing: Devising the right funding mix for public transport is a critical priority for cities to ensure its financial viability, particularly given that funding needs are increasing significantly due to growing supply, rising quality expectations and the rising cost of production factors. As fare revenues do not always evolve in line with the costs of production factors and the public debt crisis is increasing pressure on public resources, transport authorities and operators need to assess opportunities to derive additional revenues from aggregation of third party services and to perceive charges from indirect beneficiaries of public transport. A system-level approach across these four dimensions is critical: sustainable improvements of a city’s mobility performance requires simultaneous improvement on each of the four dimensions as the weakest link will influence overall mobility performance. In this study Arthur D. Little and the UITP elaborate further on those dimensions and identify 25 imperatives for cities to consider when defining sustainable urban mobility policies.The study also includes case studies of cities demonstrating good practice.
  • 9. 9 A FUM All around the globe people are flocking to cities. In 2007, UN population figures showed that more than a half of the world’s population for the first time lived in urban areas.That proportion is set to rise to 60% by 2030 and 67% by 2050. This mushrooming in urban population will be accompanied by a massive growth in the number of individual journeys taken on a daily basis.Today, 64% of all travel kilometers are made in urban environments but the number of urban kilometers travelled is expected to treble by 2050. Such an explosion in the growth of urban mobility systems will present new challenges on a number of different fronts (see Figure1). nn Planet: At a time when sustainability of resources and the environment is increasingly at the forefront of one’s mind, a logarithmic increase in the use of motorized transport raises the specter of a vast rise in air and noise pollution and CO2 emissions. Indeed, it is predicted that by 2050 urban mobility systems will use 17.3% of the planet’s bio capacities, five times more than they did in 1990. nn People: An inevitable consequence of an unreformed and under-invested urban mobility system is gridlock. By 2050, the average time an urban dweller will spend in traffic jams will be 106 hours per year, twice the current rate, with all that entails for the quality of life of the average citizen. nn Profit: Unless far-sighted decisions relating to service expansion and innovation are made now, the cities of the future stand to sleepwalk into a situation where they have insufficient public transport, overloaded infrastructures, a default expansion of motorized means of transport and a concomitant parking capacity problem. Given that urban infrastructure is a key factor in luring businesses to cities, this would be highly damaging commercially. Meanwhile, mobility needs are evolving all over the world. People’s travel habits are changing, as is the mix of transport modes and services offered to them. But it is clear that, going forward, transport providers will have to satisfy demand for services that are increasingly convenient, fast and predictable. At the same time, consumers are becoming more concerned about the sustainability of their mode of travel and some are prepared to sacrifice individual forms of transport in furtherance 2. Plotting the trend Urban mobility systems are on their way to breakdown  Air pollution  CO2 emissions  Noise  Increasing ecological footprint 9,306 CAGR 2010-50 -0.2% p.a. CAGR 2010-50 +1.4% p. a. 2050 33% 67% 2030 8,321 40% 60% 2010 6,896 48% 52% RuralUrban Urban and rural population, 2010-2050 [m people; %] Urban mobility demand, 2010-2050 [trillions pkm p.a.; %] 67.1 2.6x +55% +68% 20502030 43.2 2010 25.8 PlanetPeopleProfit  Traffic chaos  Traffic security  Traffic jam  Decreasing quality of life and convenience  Overloaded infrastructures  Insufficient public transport capacities  Increasing motorization  Limited parking places The world is becoming increasingly urban Urban mobility demand explodes Cities are confronted with new challenges Source: UN Population Division, Schäfer/Victor 2000, Cosgrove/Cargett 2007, Arthur D. Little Figure 1: The future of earth will be urban…
  • 10. 10 A FUM of that cause, leading to the successful introduction and rapid penetration of new mobility services such as car sharing and bike sharing. Due to limits on public financing, however, public transport stakeholders are struggling to improve the attractiveness, capacity and efficiency of public transport and system innovation may be the only answer. At the same time, specialized players from other sectors – notably automotive OEMs, financial institutions/payment providers and internet businesses – are assessing opportunities to play a role in the extended mobility ecosystems of tomorrow. All this raises the question: what will the future business model(s) of urban mobility be? The good news is that people are beginning to get the message. The Siemens Megacity Challenges Study found that mobility was cited as the most important issue for cities when it came to attracting investment, with 27% of respondents mentioning it, three times more than the second mentioned factor, security (see Figure 2). When the above study asked which sectors had the highest need for investment in cities, no less than 86% of the sample opted for mobility as the number one priority, with education and the environment tying in second place with 77%.That said, the scale of investment required to cope with the mobility challenge is immense. In 2010, the global investment in urban mobility amounted to 324 bn EUR. By 2050, it is forecast that 829 bn EUR a year will be required. Figure 2: Mobility is the n°1 priority for cities and will require significant investment Source: Siemens, Bureau of Transport Statistics, Arthur D. Little 1) Siemens “Megacity Challenges Study” 2) % saying high need for investment 3) Percentage of respondents 829 665 534 429 324 245 185 0 200 400 600 800 1.000 1990 2000 2010 2020 2030 2040 2050 3 4 5 6 6 6 6 6 9 27 Water supply Health Environment Culture Energy supply Education ICT City management Security Mobility Global urban mobility investment volume in bn EURUrban mobility infrastructure is the n°1 priority area for cities in attracting investors 1) 3)  In 1990 investment amount in global urban mobility equaled 185 bn EUR  For 2050 the need of 829 bn EUR is being forecasted (growth by the factor 4.5) Mobility: Priority n°1 for cities Constant growth of investments in urban mobility Public housing Social services 66 Energy supply 67 77 Education 69 Water supply 70 74 Security 71 Health 71 Environment Mobility Waste management 86 77 Highest needs for investment in cities 2007-2017 1) 2)
  • 11. 11 A FUM 3.1. Index design: scope and methodology The reform of urban mobility systems is one of the biggest challenges confronting policymakers, stakeholders and users today, and to do it justice the urban mobility index required a commensurately ambitious approach. Arthur D Little’s researchers worked on seven geographical areas across six continents to study the status quo, and this year’s index is more comprehensive than ever, with 18 more cities scrutinized than for the last report (see Figure 3). The largest group of cities in the index was the Megacity group of the C40 Climate Leadership Group, a network of the world’s cities committed to addressing climate change.The next biggest was the 24-strong group of cities selected on the basis that they represent the largest metropolises determined by GDP share of region and population, which are not members of the C40 group.This included no fewer than six cities in China and four in India.The final group was made up of smaller cities with good practices, which are useful as role models for others. Europe dominated this group with 14 of the 20 places. The Mobility Index assessed cities on the basis of 19 criteria. 11 of these were related to how mature the city under examination was in terms of its existing infrastructure, from public transport’s share of the modal split to smart card penetration.These indicators made up 58 possible points of the maximum of 100 available.The other 42 points were awarded on the basis of performance, with categories including the level of transport- related CO2 emissions and the mean travel time to work (see Figure 4 overleaf). 3. Where are we now? Arthur D. Little’s Urban Mobility Index 2.0 Americas Europe, Middle East Africa Asia Pacific “Megacities”- cluster of C40 Cities Climate Leadership Group World’s largest cities determined by GDP share1) Smaller cities with good practices 40 24 20 Africa Addis Ababa Cairo Europe Athens Berlin Istanbul Middle East Baghdad Tehran Asia Bangkok Delhi Dhaka Hanoi USA/Canada Chicago Houston Los Angeles New York Philadelphia Toronto Washington D.C. Latin America Bogota Buenos Aires Caracas Lima Mexico City Rio de Janeiro Sao Paulo Pacific Melbourne London Madrid Moscow Johannesburg Lagos Paris Rome Warsaw Ho Chi Minh Hong Kong Jakarta Karachi Mumbai Seoul Tokyo Sydney Munich Stockholm Vienna Zurich Nantes Hanover Kuala Lumpur Singapore Amsterdam Copenhagen Frankfurt Prague Stuttgart Brussels Helsinki Dubai Ankara Bangalore Beijing Chennai Guangzhou Hyderabad Kolkata Atlanta Boston Dallas Miami Europe Barcelona Lisbon St. Petersburg Africa Kinshasa Lahore Manila Osaka Shanghai Shenzhen Tianjin Wuhan 22 33 29 Portland Montreal Curitiba Santiago de Chile Source: Arthur D. Little Urban Mobility Index 2.0; 1) not included into group 1 (C40 Megacities) Figure 3: Our benchmark sample includes 84 cities covering seven geographical regions across all continents
  • 12. 12 A FUM The selection of the criteria used to measure the maturity and performance of the cities under examination was governed by a desire to cover the classical areas of mobility measurements – security, quality, accessibility, affordability, sustainability, innovativeness and convenience – while finding the right balance between the supply side, and the demand side, as well as overall mobility policy initiatives.The selection of the measurement criteria was also driven by the ability to obtain data in all the territories covered, which proved impossible in some cases (e.g. measurement of accessibility by the number of public transport stops per square kilometer) as certain statistics are not collected in some regions of the world. We trust however that, taken as a whole, the 19 criteria make for a representative and comprehensive view of cities’ mobility. When it came to weighting the criteria, it was decided to award a number of them a lower maximum weighting than others.This has been done to avoid penalizing cities unfairly. When it comes to urban agglomeration density, for example, a densely populated city such asTokyo would rate highly for public transport provision over the much less densely populated Atlanta, where such a solution might not be the answer.The authors of the report were also keen not to penalize mature cities with long established road densities, for example, on the basis that this was an indicator over which they had little if any influence (see Figure 5 overleaf). Arthur D. Little Urban Mobility Index 2.0 – Assessment criteria Maturity [max. 58 points] Performance [max. 42 points] Criteria Weight1 1. Financial attractiveness of public transport 4 2. Share of public transport in modal split 6 3. Share of zero-emission modes in modal split 6 4. Roads density 4 5. Cycle path network density 6 6. Urban agglomeration density 2 7. Smart card penetration 6 8. Bike sharing performance 6 9. Car sharing performance 6 10. Public transport frequency 6 11. Initiatives of public sector 6 Criteria Weight1 12. Transport related CO2 emissions 4 13. NO2 concentration 4 14. PM10 concentration 4 15. Traffic related fatalities 6 16. Increase of share public transport in modal split 6 17. Increase of share of zero-emission modes 6 18. Mean travel time to work 6 19. Density of vehicles registered 6 1) The maximum of 100 points is defined by any city in the sample for each criteria Source: Arthur D. Little Urban Mobility Index 2.0 Figure 4: Arthur D. Little Urban Mobility Index 2.0 assessment criteria
  • 13. 13 A FUM Criteria Weight1 1. Financial attractiveness of public transport 4 2. Share of public transport in modal split 6 3. Share of zero-emission in modal split 6 4. Roads density 4 5. Cycle path network density 6 6. Urban agglomeration density 2 7. Smart card penetration 6 8. Bike sharing performance 6 9. Car sharing performance 6 10. Public transport frequency 6 11. Initiatives of public sector 6 Definition  Ratio between the price of a 5 km journey with private means of transport and the price of a 5 km journey with public transport within the agglomeration area  Private means of transport: car or motorcycle, depending on what vehicle type dominates in modal split  Cost of journey with motorized-individual transport: fuel cost only, based on fuel consumption and fuel price including taxes; average for gasoline and diesel cost taken  Cost of public transport journey: ticket cost for a 5 km distance trip  Percentage of the total number of person trips which are made with pubic transport in the last available measurement  Modal split definition: trips made by residents of the urban agglomeration; both motorized and non-motorized trips; trips for all purposes; trips on both working days and weekends  Percentage of the total number of person trips which are made by bicycle and walking in the last available measurement  Ratio between the total road length in an urban agglomeration and the urbanized surface area  Total road length definition: all roads open to public traffic (both paved and non�paved) incl. motorway network and excl. farmland, forest and private roads located within the urban agglomeration borders  Measured as a deviation from an optimum value. Optimum value for road density according to Fei (2011)2) is: average for core city 11,0 km/km2, average for suburbs 3,7 km/km2, average for mixed territories 7,35 km/km2  Ratio between the total length of cycle lanes and cycle paths in an urban agglomeration and the urbanized surface area of this urban agglomeration  Cycle lane: A lane marked on a road with a cycle symbol, which can be used by cyclists only  Cycle path: An off-road path for cycling incl. exclusive cycle paths (for cyclists only), shared-use paths (for both cyclists and pedestrians), and separated paths (where section for cyclists’ use is separated from the pedestrians’ section)  Ratio between the population of an urban agglomeration and its urbanized surface area  Urban agglomerations taken as defined by the United Nations’ in World Urbanization Prospects3)  Urbanized surface area doesn‘t include sea, lakes, waterways, woods, forests etc. and refers to the build-up land surface only  Ratio between the total number of transit smart cards in circulation in an urban agglomeration area and the population of this area  Cards are only considered if they are issued and/or accepted by public transport authorities of public transport operators  Ratio between the total number of bikes in bike sharing systems in an urban agglomeration area and the population of this area  Only bikes in business-to-consumer (B2C) and administration-to-citizen (A2C) schemes are considered. Peer-to-peer (P2P) sharing is excluded  Ratio between the total number of cars in car sharing systems in an urban agglomeration area and the population of this area  Only cars in business-to-consumer (B2C) and administration-to-citizen (A2C) schemes are considered. Peer-to-peer (P2P) sharing is excluded  Both free floating and station based models are considered  Frequency of the busiest public transport line in an urban agglomeration  Frequency of the busiest metro line taken; if metro not available – then frequency of the busiest bus line considered  Qualitative evaluation of strategy and actions of public sector with regard to urban mobility along 5 dimensions: General sustainability and restrictions; Alternative engines; Multimodality; Infrastructure; Incentives Arthur D. Little Urban Mobility Index 2.0 – Assessment criteria Figure 5: Arthur D. Little Urban Mobility Index 2.0 – Definition of assessment criteria Maturity [max. 58 points] Performance [max. 42 points] Criteria Weight1 12. Transport related CO2 emissions 4 13. NO2 concentration 4 14. PM10 concentration 4 15. Traffic related fatalities 6 16. Increase of share of public transport in modal split 6 17. Increase of share of zero- emission in modal split 6 18. Mean travel time to work 6 19. Density of vehicles registered 6 Definition  Ratio between the total amount of carbon dioxide emitted by the agglomeration area p.a. as a consequence of its transport activities and its population  The data considers carbon dioxide emissions from the burning of fossil fuels in transportation only (sectorial approach)  Annual arithmetic average of the daily concentrations of NO2 recorded at all monitoring stations within the agglomeration area  Annual arithmetic average of the daily concentrations of PM10 recorded at all monitoring stations within the agglomeration area  Number of deaths related to transport i.e. an annual number of people killed as a result of transport accidents that occurred in an urban agglomeration area p.a.  Fatality is counted if it occurs during a period of 30 days after the accident  Increase of the percentage of the total people trips which are made daily by public transport in the last available measurement compared to its share in the last but one measurement  Increase of the percentage of the total people trips which are made daily by bicycle and walking in the last available measurement compared to its share in the last but one measurement  Total number of minutes that it usually takes the person to get from home to work each day during the reference week  The elapsed time includes time spent waiting for public transport, picking up passengers in carpools, and time spent in other activities related to getting to work  The ratio between the total number of passenger motorized vehicles (incl. cars, motorcycles, taxis) within the urban agglomeration and its population  Non-active vehicles (“scrap”) excluded from the calculation 1) Maximum number of points achievable 2) Shi Fei (2011) “Theoretical Research on Rational Urban Road Network Density Based on Operations Research”. World Academy of Science, Engineering and Technology 3) United Nations, Department of Economic and Social Affairs, Population Division, Population Estimates and Projections Section, World Urbanization Prospects
  • 14. 14 A FUM 3.2. Ranking of urban mobility systems The results of the Urban Mobility Index 2.0 report make grim reading as it finds most cities are badly equipped to cope with the challenges ahead.The global average score is 43.9 points, meaning that, on average, the 84 cities achieve less than half of the potential that could be reached today when applying best practice across all operations (see Figure 6). Only 11 cities score above 52 points (top 20% of the score range).The highest score (58.2 points) went to Hong Kong followed closely by Stockholm (57.4 points) and Amsterdam (57.2 points), still indicating potential for improvement. 16 of the cities surveyed were below average. While most of these were in developing economies, four were in the US – Atlanta, Dallas, Houston and Miami – fresh evidence that the Americans’ addiction to cheap gas is impeding the development of sustainable mobility models. At the opposite end of the spectrum, among the cities with above average scores, all but two were in Europe. Exceptions in this group are Hong Kong, the city with the world’s most well integrated and sustainable mobility ecosystem, and Singapore. Perhaps surprisingly, the cities of the C40 Climate Leadership Group perform slightly worse, than all 84 cities in the sample, with an average of 42.6 points against a global average of 43.9. There are big differences between the top- and low- end performers in various regions: nn Europe achieves the highest average score of all the regions surveyed. With an average of 49.8 points (51.5 points for Western Europe and 45.2 for (South)-Eastern Europe) and nine out of the 26 analyzed European cities scoring above 52 points, European urban mobility systems are the most mature ones as of today and lead the way in mobility performance. It is a clear leader in three categories in the Maturity bucket: cycle path network, car sharing and bike sharing. Stockholm (57.4), Amsterdam (57.2) and Copenhagen (56.4 points) head the table – while Athens (40.0 points), Rome (40.9 points) and Lisbon (41.3) are the worst scoring European cities in the sample (see Figure 7 overleaf). nn Latin American and Asian Pacific cities show slightly below average performance.The continents’ average scores are well below Western Europe (43.9 and 42.8 points respectively) but outperform other regions in public transport-related criteria: fares are financially attractive, services are frequent, smart card use is well developed and public transport represents a dominant part of the modal split. Most cities in Latin America show average performance of between 40 and 47 points while Asian Pacific cities show the broadest range in performance, from Hong Kong and Singapore with scores of 58.2 and 55.6 Urban Mobility Index Global Average 43.9 Source: Arthur D. Little Urban Mobility Index 2.0; UITP is independent of this index, which does not necessarily reflect its opinion; 100 index points for city that would achieve best performance on each criteria. Ranking below average average above average 28 32 36 40 44 48 52 56 60 Baghdad Hanoi Atlanta Delhi Tehran Lahore Dallas Kuala Lumpur Houston Johannesburg Bangkok Addis Ababa Lagos Rome Miami Cairo Jakarta Los Angeles Bangalore Chicago Osaka Portland Dhaka Athens Hyderabad Boston Lisbon Melbourne Mexico City Buenos Aires Tianjin Saint Petersburg Lima Manila Washington, D.C. Curitiba Ankara New York Nantes Istanbul Prague Frankfurt Zurich Paris Singapore Vienna Copenhagen Amsterdam Hong Kong Philadelphia Chennai Sydney Mumbai Rio de Janeiro Toronto Moscow Montreal São Paulo Bogota Kolkata Santiago de Chile Guangzhou Beijing Shenzhen Warsaw Shanghai Barcelona Seoul Tokyo Brussels Berlin Wuhan Hanover Munich HelsinkiCaracas Karachi Dubai Ho Chi Minh City Kinshasa Madrid Stuttgart London Stockholm Figure 6: Arthur D. Little’ Urban Mobility Index 2.0
  • 15. 15 A FUM respectively – sitting at the top of the global table – down to Hanoi with 30.9 points. nn USA/Canada shows average performance with 39.5 points. Given their orientation towards cars, USA/Canadan cities rank bottom worldwide in terms of maturity. In terms of performance, they perform above average overall, but show poor results with regard to number of cars per capita and CO2 emissions. NewYork leads the way with 45.6 points, closely followed by Montreal with 45.4 points. nn Africa and the Middle East are the lowest performing regions with respective average point totals of 37.1 and 34.1. While urban mobility systems in Africa perform well on several criteria due to the relatively low number of cars per capita and the large number of journeys made on foot, they are still evolving and lack maturity. Middle East cities have high levels of cars per capita and are expected to invest in development of environmental modes of transport in the mid-term perspective. War-torn Baghdad came bottom of the class overall, perhaps for obvious reasons. None of the urban mobility systems in the above regions, except Western Europe, reaches 50% of potential maturity, showing that all the world’s cities have a long way to go in terms of developing their travel networks. It was a slightly more encouraging story when it came to performance, with Europe leading the way with a score of 24.8 out of 42 (59%). Eleven cities belong to the above average group worldwide nn Hong Kong – study winner: 58.2 points, 1 out of 84 worldwide, 1 out of 28 in Asia Pacific Despite – or perhaps because of – being one of the most densely populated areas in the world, with more than 7 million people packed into a land mass of just 1,100 sq km, Hong Kong has developed the most advanced urban mobility system in the world. Public transport represents no less than 64% of the modal split, the number of vehicles registered per capita is amongst the lowest in the survey, and smart card penetration stands at 3.1 cards per person.This latter point can be explained by the fact that some people have two cards, one personalized and one anonymous; some cardholders work in Hong Kong but live in China; and others belong to tourists. Hong Kong fares even better when it comes to performance factors with a low level of transport- related emissions per capita, a low rate of traffic-related deaths, and a respectable mean travel time to work given its population density (see Figure 8 overleaf). nn Stockholm: 57.4 points, 2 out of 84 worldwide, 1 out of 19 in Western Europe The Swedish capital stands out for having one of the best- developed networks of cycle paths: its bike lane network is the third most dense in the world, with 4,041km of lanes per 1,000 sq km. It has a high rate of public sector initiatives, and its multi-modal SL-Access smart card has a penetration of 0.64 cards per capita. As a result of this forward-thinking approach, it ranks above average for transport-related emissions, with one of the lowest concentrations of nitrogen dioxide and particulates (NO2 and PM10 ) in the air in the world. What’s more, its traffic-related death rate is amongst the lowest in the survey. nn Amsterdam: 57.2 points, 3 out of 84 worldwide, 2 out of 19 in Western Europe There is a car for only one in three citizens in Amsterdam, which makes it well below the Western European average of 0.45 vehicles per capita. Cycling on the other hand has a very high share of the modal split (33%) thanks partly to a Number of cities in index 19 7 9 28 13 5 3 51.5 45.2 43.9 42.8 39.5 37.1 34.1 (South-) Eastern Europe Asia Pacific USA/ Canada Latin America Western Europe Middle East Africa Figure 7: Ranking by regions [average points] Source: Arthur D. Little Urban Mobility Index 2.0  Western Europe ranks top out of all regions surveyed followed by (South-) Eastern Europe  European urban mobility systems are the most mature ones as of today – They also lead the way in mobility performance  USA/Canada: cities rank bottom worldwide in maturity given their orientation toward cars  Developing regions perform well on several criteria due to low number of cars so far
  • 16. 16 A FUM dense cycling lanes network occupying 3,502 km per 1,000 sq km. Add to this, the second best car-sharing performance worldwide (1.219 shared cars per million citizens) and it’s no surprise to hear that transport-related CO2 emissions are significantly lower than the Western European average (844 kg per capita per annum in Amsterdam compared to an average of 1,330 kg in Western Europe as a whole). nn Copenhagen: 56.4 points, 4 out of 84 worldwide, 3 out of 19 in Western Europe The Danish capital has the safest urban mobility system in the world, with 4.1 traffic deaths per million citizens. It also has the lowest penetration rate of cars in Western Europe at 0.24 per capita, and the use of individual transport is on the decrease.This coupled with the fact it has a dense cycle- lane network, helps explain why its transport-related CO2 emissions are significantly below the European average at 812 kg per capita, compared to a Western European average of 1,330 kg. nn Vienna: 56.0 points, 5 out of 84 worldwide, 4 out of 19 in Western Europe Alongside Zurich, Vienna’s public transport system has the highest share of journeys in Western Europe, with 39% of trips made on its services. It has pioneered the use of a new generation of Liquefied Petroleum Gas (LPG)- powered engines in its bus fleet, whose emissions fall more than 50% below the EU-5 standard. It also has a below average number of private cars per capita and encourages cycling. One innovative initiative in this regard is Bike City, a housing estate equipped with extra-large lifts to accommodate bicycles and limited space for car parking.The combined effect of all this is clean air, with a particularly low concentration of NO2 and PM10 . nn Singapore: 55.6 points, 6 out of 84 worldwide, 2 out of 28 in Asia Pacific With a population density of 7,300 inhabitants per square kilometer, Singapore’s public transport is highly developed; accounting for no less than 48% of the modal split, and mobility card penetration is at 2.9 cards per capita.Thanks, at least in part, to high taxes and duties, car ownership has been reduced to 0.18 cars per capita and car-use is also Figure 8: Top 11 cities with above average mobility score Source: Arthur D. Little Urban Mobility Index 2.0 Fin.attract.ofPT(costof 5kmPT/costof5kmcar) Shareofpublictransportin modalsplit[%] Shareofzero-emissionmodes inmodalsplit[%] Roadsdensity(deviationfrom optimum)[km/km 2 ] Cyclepathnetworkdensity [km/thskm 2 ] Urbanagglomerationdensity [citizens/km 2 ] Smartcardpenetration [cards/capita] Bikesharingperformance [sharedbikes/millioncitizens] Carsharingperformance [sharedcars/millioncitizens] Densityofvehiclesregistered [vehicles/capita] Frequencyofthebusiestpublic transportline[times/day] Initiativesofpublicsector (0to10scale) TransportrelatedCO2 emissions[kg/capita] AnnualaverageNO2 concentration[mcg/m 3 ] AnnualaveragePM10 concentration[mcg/m 3 ] Trafficrelatedfatalitiesper 1millioncitizens Dynamicsofsharepublic transportinmodalsplit[%] Dynamicszero-emission modesinmodalsplit[%] Meantraveltimetowork [minutes] OVERALLSCORE 1.7 55% 38% 2.0 187 6.5 3.1 0 0 0.07 324 10 776 50.0 50.0 16.2 +20% 0% 36.6 58.2 6.7 33% 34% 0.5 4,041 3.7 0.6 852 400 0.40 212 10 1,348 12.5 16.7 9.4 -7% +89% 33.7 57.4 3.0 8% 50% 1.7 3,502 3.2 0.7 527 1,219 0.32 130 10 844 30.0 24.7 19.5 +12% +13% 35.5 57.2 4.8 27% 33% 2.7 3,977 2.7 0.1 1,025 246 0.24 238 10 812 56.0 28.0 4.1 +123% -15% 29.7 56.4 3.9 39% 34% 0.6 2,948 3.8 0.0 692 415 0.39 277 10 1,111 21.7 21.5 16.1 +15% +13% 29.3 56.0 2.6 48% 23% 2.6 280 7.3 2.9 19 57 0.18 233 9 1,381 22.0 29.0 32.5 +17% +64% 36.8 55.6 2.9 34% 50% 8.8 3,520 3.8 0.6 2,224 219 0.46 267 10 1,163 39.2 38.0 23.9 +7% 0% 38.6 55.4 3.8 39% 31% 0.7 3,700 4.2 0.0 232 1,064 0.54 149 10 1,200 30.1 19.1 15.4 +15% +3% 30.4 54.7 3.9 34% 26% 10.8 254 5.6 3.1 1,012 253 0.39 468 10 1,050 37.0 22.9 26.6 +10% +4% 44.1 53.2 3.6 27% 40% 2.1 4,678 2.3 0.9 0 70 0.48 246 10 1,228 28.0 20.2 13.9 -16% +8% 28.5 53.2 4.6 21% 42% 0.1 3,862 3.0 0.0 727 640 0.56 210 10 1,351 35.3 21.7 15.3 0% +11% 30.1 53.0 Hong Kong Stockholm Amsterdam Copenhagen Vienna Singapore Paris Zurich London Helsinki Munich 1 2 3 4 5 6 7 8 9 11 Performance indicatorsMaturity indicators 9
  • 17. 17 A FUM discouraged via congestion pricing, which charges drivers more for using roads during the rush hour. nn Paris: 55.4 points, 7 out of 84 worldwide, 5 out of 19 in Western Europe In addition to the outstanding performance of its extensive rail network, the French capital boasts the third best bike- sharing performance in the world afterWuhan and Brussels, with 2,224 shared bikes per million citizens. Its cycle-lane network is also well advanced, accounting for 3,520 km per thousand square kilometers. An innovative car sharing scheme has proved highly successful too, with 2,000 electric Bluecars attracting more than 100,000 registered subscribers. On the commercial front, a grouped goods delivery system, Distripolis, uses low-emission vehicles to reduce transport- related pollution. nn Zurich: 54.7 points, 8 out of 84 worldwide, 6 out of 19 in Western Europe The Swiss banking center saw public transport’s share of the modal mix increase by five percentage points between 2005 and 2010 to 39%, putting Zurich alongside Vienna as the best-performing city in Western Europe. Its ‘good practice’ urban mobility strategy has led to a dense cycle-lane network – 3,700 km per thousand square kilometers – and the world’s third best car sharing performance after Stuttgart and Amsterdam, with 1,064 shared cars per million citizens. nn London: 53.2 points, 9 out of 84 worldwide (ex aequo with Helsinki), 7 out of 19 in Western Europe Like Hong Kong, London’s smart card penetration rate is at saturation level and it boasts dynamic and efficient public transport sector operators. Despite having a far from optimum level of road density, its rate of traffic-related fatalities is below average and its level of harmful emissions is average or below average. But while it has frequent services on public transport, its mean travel time to work is below average. nn Helsinki: 53.2 points, 9 out of 84 worldwide (ex aequo with London), 7 out of 19 in Western Europe The world’s most dense cycle-lane network can be found in Helsinki, which has a total of 1,000 km of segregated bike lanes, or 4,678km per thousand square kilometers of city area. One innovation, the 1.3 km Baana pathway for cyclists and pedestrians, was used by 320,000 cyclists in one six- month period in 2012.The city also boasts a high penetration of its HSLTravel Card at 0.9 cards per capita, with the result that Helsinki has a low concentration of both NO2 and PM10 . nn Munich: 53 points, 11 out of 84 worldwide, 9 out of 19 in Western Europe The level of zero-emission modes in the capital of Bavaria’s modal split is an impressive 42%. A significant contributor to this has been Munich’s Cycle Capital Campaign, which has a vision of turning Munich into Germany’s most bicycle-friendly large city. Between 2002 and 2012, cycling’s share of the modal split rose from 10% to 17%, aided by the creation of a dense network of cycle lanes that now stretches to 3,862 km per thousand square kilometers. Munich is also enjoying a dense and high quality multimodal public transport system, especially by rail (tram, metro, S-bahn) (see Figure 9 overleaf). Trends towards shared mobility An important finding of the study is that progress is being made in the field of shared mobility.With every year that passes, more and more cars and bikes are being shared than ever before. In 2011, Arthur D. Little found that in the 66 cities surveyed in the context of the first edition of the urban mobility index, an average of 89 cars were shared per million citizens. In 2013 – just two years later – in the 84 cities surveyed, 115 cars per million were shared – that represents a global compounded annual growth rate of +14% per annum. On a like-for-like basis, the increase was almost identical: +13% p.a. It was a similar story when it came to bike use.The number of bikes shared per million citizens increased from 344 to 383 (+6% p.a.) between the two studies. On a like-for-like basis, the increase was even more impressive: +12% p.a. Integrated mobility platforms Smart card use is also on the increase, pointing to a growth in the integration of services worldwide. In 2011, the average pene­­­ tration of smart cards was 0.34 cards per capita in the 66 cities surveyed. In 2013, in the 84 cities surveyed, this had increased to 0.44 cards per capita (+14% p.a.). On a like-for-like basis, penetration was up +21% p.a. It should be noted that most of this growth is being driven by developing cities such as Dubai, Buenos Aires, Delhi, Kuala Lumpur andTehran, while, in contrast, smart card penetration is stagnating in developed cities. There are some very good examples of successfully integrated mobility platform initiatives at local level, of which probably the most well-known one is the Octopuscard launched by Hong Kong in 1997. Other successful initiatives worth mentioning include SMILE (Vienna),Trafiken.nu (Stockholm), Path2Go (San Francisco Bay Area), and Goroo (Chicago Metropolitan Region). In Germany, Stuttgart and Berlin, recently received major subsidies from the central government to speed up implementation and are good examples of strong integration between several actors of different plumages: nn SMILE (Smart Mobility Information and ticketing system Leading the way for Effective e-mobility services) is a prototype of the multimodal mobility platform of the City of
  • 18. 18 A FUM Western Europe USA/Canada Average 51.5 Average 39.5 Stockholm 57.4 Amsterdam 57.2 Copenhagen 56.4 Vienna 56.0 Paris 55.4 Zurich 54.7 London 53.2 Helsinki 53.2 Munich 53.0 Stuttgart 51.9 Hanover 50.1 Berlin 51.7 Madrid 50.3 Barcelona 49.1 Frankfurt 48.8 Nantes 47.7 Lisbon 41.3 New York 45.6 Montreal 45.4 Toronto 44.4 Washington 43.7 (D.C.) Boston 40.9 Philadelphia 40.3 Chicago 39.1 Los Angeles 38.1 Portland 37.8 Miami 37.3 Rome 40.9 Houston 34.7 Dallas 33.8 Atlanta 32.5 Figure 9: Urban Mobility Index by regions and cities Brussels 49.7 (South-)Eastern Europe Average 45.2 Prague 47.8 Warsaw 47.8 Istanbul 47.2 Ankara 46.1 Moscow 44.4 St. Petersb. 43.4 Athens 40.0 25 30 35 40 45 50 55 60
  • 19. 19 A FUM Latin America Asia Pacific Middle East/Africa Average 43.9 Average 42.8 Average 36.0 Santiago de Chile 47.1 Bogota 46.3 Sao Paulo 45.7 Rio de Janeiro 44.0 Curitiba 44.0 Lima 43.5 Buenos Aires42.4 Mexico City 42.2 Caracas 40.1 Wuhan 51.1 Seoul 49.3 Tokyo 49.2 Shanghai 49.1 Shenzhen 47.7 Beijing 47.2 Guangzhou 47.2 Kolkata 47.0 Mumbai 43.9 Manila 43.6 Sydney 43.1 Tianjin 42.6 Melbourne 41.9 Chennai 40.7 Hyderabad 40.7 Ho Chi Minh 39.8 Karachi 39.5 Dhaka 39.2 Bangalore 38.9 Osaka 38.5 Jakarta 37.4 Bangkok 35.0 Kuala Lumpur 34.6 Lahore 33.1 Delhi 33.5 Hanoi 30.9 Cairo 37.4 Lagos 37.1 Addis Ababa 36.5 Johannesburg 35.0 Tehran 33.0 Baghdad 28.6 Kinshasa 39.4 Dubai 40.6 Hong Kong 58.2 Singapore 55.6
  • 20. 20 A FUM Vienna.This smartphone-based platform was developed with public transport as a backbone. It integrates diverse mobility offerings into multiple unified travel options taking into account unique customer needs. SMILE provides intelligent customer information, and enables electronic booking and payment. It is open to third-parties and is expected to develop into a nation-wide platform for Austria in the medium term. nn Trafiken.nu is a multimodal planning tool that was piloted in Stockholm (a joint initiative of the local PTO, PTA, city administration and road building authority) and financed via toll revenue. It was later rolled out in other areas, such as the Gothenburg Region and Skane Country.This tool compares different multimodal chains door-to-door with regard to cost, time and climate impact. However, innovative mobility ser­ vices, such as car or bike sharing, are not integrated so far. nn Path2go is a trip-planning tool for the San Francisco Bay Area that combines real-time information on transit, traffic and parking in order to provide personalized intermodal chains for travelers.The platform also includes en-route incident alerts and navigation to connect with transit. Tool roll out in Los Angeles is planned in the short term. Reservation and ticket- purchasing functionalities are not yet available however. nn Goroo, a multimodal journey planner in the Chicago Metropolitan Region was developed by the local PTA in collaboration with PTOs, the traffic authority, the tourism bureau, the parking services provider, the regional transportation department and other stakeholders. Apart from urban mobility the platform also offers entertainment, shopping, sport, recreation, gastronomy and other value- added services. nn Stuttgart Services Mobility Platform is a prototype system that provides real-time intermodal information and can be used as a booking and reservation system.The platform provides real-time information for all modes of transport. Routes can be planned according to the availability of transport means (for car and bike sharing) and the actual traffic situation. Users can obtain the most suitable mobility solution in each specific situation. While we are yet to discover any example of best practice when it comes to integrated mobility platforms at supra-regional level, private companies such as Daimler, Citroen, Google, Nokia and the German Railway are making interesting attempts to establish platforms integrating multiple local players: nn Daimler’s moovel is focused on its captive car sharing service car2go as well as other third-party mobility services, including taxis, public transport, bike sharing, carpooling etc. It covers five German agglomerations – Stuttgart, Berlin, Rhine-Ruhr, Nuremberg and Munich. Expansion to other cities, regions and continents, as well as aggregation of further mobility providers, is expected. nn Citroen’s Multicity has integrated car-sharing, flights, railway, hotels and other tourist services, but, at this stage, is active only in Germany and France. nn Google Now is an intelligent personal assistant with voice recognition that makes mobility-related recommendations for users based on their location, calendar entries etc. Besides traffic, transit, flight and hotel information, the platform assists users with car rentals, event tickets and reminders. nn Nokia Here provides public transport information for 700 cities across 50 countries. Modes covered include bus, train, ferry, tram and walking.The system also provides navigation for car drivers in 94 countries including real-time information on congestion, accidents, and road-works. Unlike its competitor Google Now, Nokia Here doesn’t offer bicycling directions. nn German Railway’s Qixxit platform is open to third parties. It is currently available only as a beta-version and aggregates railway, long-distance buses, airlines, taxis, car rental, car sharing, bike sharing and local public transport in Germany. nn Platforms currently being created globally around Visa PayWave and Mastercard PayPass are also worth mentioning. The integrator type of business models are expected to change their core. While transit smart cards have been at the core of such business models until now and smart cards penetration continues to increase, we expect that over the next five to ten years smartphone-based mobility platforms will become increasingly important for mobility integrators and will constitute major revenue generators. 3.3. Overall conclusions It is clear that no city has a perfect urban mobility system. Overall, only 11 cities are performing “above average” – the top 20% of the score range. Even the city with the highest score – Hong Kong with 58.2 out of 100 – still has significant potential for improvement. On average, less than half of the potential of urban mobility systems is unleashed today. Action is needed, and fast. Out of seven regions surveyed, Western Europe ranks top followed by (South-) Eastern Europe and Latin America: Not only are European urban mobility systems the most mature ones as of today, they also lead the way in mobility performance. USA/ Canadan cities rank bottom worldwide in terms of maturity
  • 21. 21 A FUM given their orientation towards cars. Developing regions, on the other hand, perform well on several criteria due to the low number of cars and the share of individual motorized transport in the modal mix so far. Significant progress has been made in certain sectors since we published our previous urban mobility index in 2011. In terms of the trend towards shared mobility, more cars and bikes are being shared in cities, via both peer-to-peer and business-to- consumer models. Integrated mobility platforms are also gaining traction: the penetration of mobility smart cards is increasing, driven by developing cities, and there is a growing number of examples of good practice in integrated mobility platforms at the local level.There is currently no good example of best practice for a supra-regional integrated mobility platform. A near-perfect mobility system does not yet exist in the world today and full satisfaction with urban transport is not observed in any of the cities studied. Even among the cities that score highest, the scope for improving toward the maximum score of 100 is still significant: nn Hong Kong, for example, scores very high in terms of modal split, smart card penetration and vehicles per capita but lags in terms of car and bike sharing. nn Amsterdam is a cycling oriented city with a good cycling network, car and bike sharing systems, but public transport has a poor share of the modal split (only 8%). nn Vienna and Zurich have safe mobility systems with well- balanced modal splits, but have no mobility card so far, etc. What would a city that would perform well across all criteria look like? A hypothetical best-in-class urban mobility system would: nn Be as affordable as Hong Kong, with a similar modal split and level of smart-card acceptance. It would also have as few vehicles as Hong Kong. nn Ensure air is as pure as Stockholm’s nn Promote cycling like Amsterdam nn Be as safe as Copenhagen nn Have best-in-class bike sharing as demonstrated in Brussels and Paris nn Have a public transport service as frequent as the London Tube nn Have best-in-class car sharing as demonstrated in Stuttgart nn Have as minor an impact on climate as in Wuhan nn Ensure travel times as short as they are in Nantes
  • 22. 22 A FUM 4.1. Business model archetypes for urban mobility Confronting the challenges of the future will often require the adoption of new technology and business models. A comprehen­­­ sive review of technologies and urban mobility business models reveals that the majority of them are at the growth or maturity stage. However, there are sufficient solutions available to address the mobility challenges. In its 2011 study2 , Arthur D. Little identified three long-term sustainable business models for the future of urban mobility, which it dubbed the “Amazon”, “Apple” and “Dell” models of urban mobility (see Figure 10). nn The Amazon model: So-called because – like the online retailer – it is an aggregator of third-party services. It relies on a single point of access for mobile and supplementary services, including information, planning, booking and payment/billing functions.These are largely virtual services, with little physical infrastructure required, which form a one-stop shop. Examples of this model in the public transport sphere include German Railway’s Qixxit, Daimler’s moovel or Viennna’s SMILE. Car rental variants include Check 24, carrentals.com and eBookers, while examples 2 Arthur D. Little, “The Future of Urban Mobility –Towards networked, multimodal cities of 2050, 2011 in the hotel market include HRS, Expedia, Opodo and TripAdvisor. However, market research shows that no one is currently operating a truly integrated intermodal routing and compilation of travel chains, e.g. taxi-rail-rental-car-hotel, in both directions of travel. A fully implemented service of this sort has the potential to attract significant volume. nn The Apple model: Like the desktop-to-smartphone giant, the key to this model is deep vertical integration of services. The goal here is a completely seamless user experience of the sort epitomized by car hire company Avis’s acquisition of car-sharing firm ZipCar and Sixt’s car-and-driver service MyDriver and its car-sharing joint venture with BMW, DriveNow. Other examples of the Apple business model archetype are German Railway, offering also car sharing (“Flinkster”) and bike sharing (“call-a-bike”) services or Transdev operating train, tram-train, metro, light rail, coach, bus, BRT, paratransit, ferry, taxi, car-sharing, shared-ride airport shuttle and bicycle sharing. 4. What is holding back changes? Business model archetypes for urban mobility Figure 10: Three long term sustainable business model archetypes for the future of urban mobility “Amazon of mobility“  Aggregator of third party services: Single point of access for mobility and supplementary services (information, planning, booking, payment) – One-stop-shop concept  Virtual services, minimal physical infrastructure needed “Apple of mobility“  Integrator of own services: A number of mobility solutions under one strong brand; deep vertical integration  Goal: Integrated mobility services for end consumers that provide a seamless, multimodal journey experience “Dell of mobility“  Singe mode specialist: Stand alone mobility services, e.g. car or bike sharing, no intermodal integration  Also providers of disruptive technologies (drive-in-drive-out, be-in-be-out (BIBO), NFC solutions for mobility etc.) Business model: Vision: Insights: Source: Arthur D. Little Own services Third party services Business archetypes for urban mobility suppliers
  • 23. 23 A FUM nn The Dell model: While others diversified in response to excess supply and deteriorating margins in the PC market of the mid-90s, US PC manufacturer Dell thrived by concentrating on online sales and supply chain excellence. In the urban mobility context, this model refers to single mode specialists such as local public transport (e.g.Transport for London), car and bike sharing providers (e.g. Volkswagen’s Quicar), car pooling platforms (e.g. carpooling.com), taxi and limo services. All these sectors are expected to enjoy rapid growth over the next few years. Bike sharing in the US, for example, is expected to grow 51% p.a. between 2013 and 2016. B2C car-sharing is expected to mushroom too. In Europe it is tipped to increase by 43% p.a. between 2013 and 2016 and in Japan by 64% p.a. in the same period. These models need not stand alone.The Amazon and Apple archetypes can be combined, whereby a mobility provider could integrate its own services with those of third parties and provide “one face to the customer”. Figure 11 shows how this could work from the perspective respectively of an automotive OEM and a PTA/PTO. Those three business model archetypes still hold true today and each has interesting development potential. However, these solutions and archetypes are currently not being applied comprehensively and only a few players have managed to smartly integrate them to unleash their full business potential. Note: SU=Suburban, LD = Long-Distance, HW = Hardware, SW = Software Source: Arthur D. Little “Total Mobility Provider” – Illustrative Business Model from an Automotive OEMs perspective Car sharing Car rental Car pooling Limou- sine Parking SW Taxi Bike sharing LD train Reg. bus Reg. train SU train Air Bus Metro Tram Parking HW Bike rental Cars AGGREGATOR INTEGRATOR CORE BUSINESS Figure 11: Combined “Amazon” and “Apple” business models (“Total Mobility Provider”) “Total Mobility Provider” – Illustrative Business Model from a PTA/PTO perspective Bike sharing Car rental Car pooling Reg. train Bike rental Taxi Limou- sine LD train Parking HW Parking SW Reg. bus Car sharing SU train Air Local public transport AGGREGATOR INTEGRATOR CORE BUSINESS
  • 24. 24 A FUM There is a clear trend toward shared mobility: more cars and bikes are being shared in cities, both via peer-to-peer and business-to-consumer models. Car sharing is one mobility mode set to become much more ubiquitous in the next few years.The strongest growth is expected to be seen in regions with mature urban mobility systems, such as Western Europe, North America and some Asian Pacific cities, because they are easier to target due to their existing infrastructure and an openness on the part of economically and environmentally conscious consumers to embrace options that are cheaper and more sustainable (see Figure 12). Car sharing has evolved from a community-based, collaborational exercise between eco- and/or cost-oriented customers with an average age of 40 (car sharing 1.0), to a big business which has attracted some of the world’s major car manufacturers, and a younger customer base thanks, in part, to the need for them to be app-savvy (car sharing 2.0). Currently operators are looking for the next levers that will turn car sharing into a mass market 3.0 business model. Depending on the type of operator, Arthur D. Little has identified four business model archetypes in the car sharing sector:Traditionalists, Citizen Networkers, Mobility Integrators and Innovative OEMs. nn Traditionalists: These service providers offer a broad range of unsually low-cost cars3 stationed in dedicated parking spaces around the city or region they serve.This type of operator may well be established on a not-for- profit or co-operative basis and thus offer comparatively low usage fees. Because the reservation of cars is usually possible without smartphone usage, the older generation find this type of car sharing user friendly. The German car-sharing company Greenwheels/StattAuto is one of the pioneers in this. Its members can reserve a car at any time over the phone or online, with the driver accessing the car or key-deposit box with a chip card and pin code. At the end of a trip, the member returns the car to the distribution station and fills out a short driving report. The disadvantages of such operations are that the cars can be found at defined stations only4 (and the network of such stations is sometimes insufficiently dense) and customer processes can be relatively complex. Other examples of operators in this area include Stadtmobil, Communauto, etc. (see Figure 13) 3 Still a minor share of premium cars is also being offered, e.g. Stadtmobil has Mercedes, BMW and Audi in its fleet. 4 ButTraditionalists also start to penetrate the free-floating operating model, e.g, Auto-mobile car sharing service of Communauto in Montreal. nn Citizen Networkers: Unlike theTraditionalists, Citizen Networkers connect private car owners and people looking to rent their vehicles for short periods of time. P2P car sharing is a comparatively new business model, having emerged in 2001 in Germany with the establishment of the RentMyCar platform. In the US this business model was first piloted by RelayRides in 2010 in San Francisco.The advantages of this model is that it tends to offer cheaper rides than any other car-based system, insurance is built in and there is no need for anyone to invest in a fleet. The down side is that it does not become an effective and reliable option until a critical mass of car owners has been established.They also tend to be neighbourhood schemes with limited geographic scope and sometimes car theft problems can arise. Examples includeTamyca, Jolly Wheels, Getaround, etc. nn Mobility Integrators: Entrepreneurial public transport operators have increasingly developed a clear vision of becoming integrated mobility providers.Thus they have started offering car sharing and other services in addition to their core business.These operators belong to the “Apple of Mobility” business model archetype. These operators can leverage their existing customer base to reach the critical mass of users needed for a profitable car sharing business more quickly. Captive users of such PTOs can also use the same mobility cards to access shared cars and same smartphone apps designed to reserve and pay for shared cars. There are no additional disadvantages for users if the car sharing service is being provided by a Mobility Integrator, rather than, for example, aTraditionalist. As station based car sharing is currently the only operating model being offered by Mobility Integrators, the disadvantages on this model apply. Examples include Deutsche Bahn’s Flinkster (countrywide in Germany plus in Austria’s capitalVienna),Transdev’s Autobleue (in Nice) and Keolis’ Autocool, Lilas, Auto’Tao, IDElib’ (in Bordeaux, Lille, Orléans and Pau respectively). nn Innovative OEMs: This model relies on providers offering middle segment or premium cars to user communities who typically identify available vehicles and their locations via a smartphone app. The advantage this free-floating model has overother car sharing options is that users are not restricted to picking up cars from fixed points and can hire a car at a moment’s notice. Just intermodal apps are available and (same as in other archetypes) customers often have the choice of an electric car as well as a conventional petrol or diesel-powered. Such Car sharing 3.0. – What is the next lever that will turn car sharing into a mass market?
  • 25. 25 A FUM services do, however, command higher usage fees, rely on smartphone skills and do not allow the reserving of a car in advance (orders tend to be taken only 15 or 30 minutes beforehand). Examples include BMW’s DriveNow, Daimler’s car2go,Volkswagen’s Quicar, Citroen’s Multicity, etc. While growth will be rapid in this sector, it is from a low base and providers are currently still assessing long term profitability of different business models.Very few examples boast a significant number of members or users and the challenge is to find a way to turn car sharing from the province of a relatively small number of early adopters into a mass-market option. Levers for potential growth exist in four main areas: geographical expansion, developing the sales platform, creating or extending a partner network and fostering loyalty by becoming more locally responsive. Source: Arthur D. Little Car sharing 1.0: Eco niche Car sharing 2.0: OEMs get on Car sharing 3.0: Mass market Features Demand Time1948 2008 2012-2015 Swiss self driver coperative (SEFAGE)  Station based model  Complicated customer processes: reservation, information provisioning  Target group – Eco-oriented customers Witkar  Free floating private P2P models  Smart phone based  Premium cars pilots  Is it about community?  Is it about seamless and integrated solutions?  Is it about convenience? Car sharing innovation curves – Selective Figure 12: Car sharing innovation curves Figure 13: Car sharing business model archetypes Innovative OEMsMobility integratorsCitizen networkers Unique Selling Proposition Advantages Disadvantages  Mainly low-cost cars  Full service model  Broad range of vehicle types Source: Arthur D. Little 1) Except Quicar Examples  Greenwheels/StattAuto  Stadtmobil  Communauto  Tamyca  Jolly Wheels  RelayRides  Getaround  Deutsche Bahn – Flinkster  Veolia Transdev – Autobleue  Keolis – Autocool, Lilas, Auto'Tao, IDElib'  BMW DriveNow  Daimler car2go  Volkswagen Quicar  Citroën Multicity  Lower usage fees  Booking possible without smartphone usage skills  Appropriate for older customer groups  Mainly station based services  Less flexibility  Sometimes complicated processes for customers  Leveraging existing customer base  Integration into own intermodal apps (e.g. Qixxit) and mobility cards (e.g. BahnCard)  Mainly free floating1)  spontaneous hire  Intermodal apps (e.g. moovel)  Usually minute based charging  Premium cars also  User communities  Value add location based services  Strong OEM brand  Higher usage fees  Smartphone usage skills needed  Booking in advance ( 30 minutes before) not possible  PTOs enlarging their service portfolio in order to offer door-to- door mobility  Strong PTO brand  Mainly station based services  Less flexibility  Sometimes complicated processes for customers  Critical mass decisive  Car theft issues  Neighborhood based geographic scope  No full service model  “Virtual” fleet made up of vehicles from participating owners  Usually large selection of cars  Insurance included  Cheaper compared to car sharing/rental  Suitable for less density populated areas Traditionalists
  • 26. 26 A FUM 4.2. What is holding back changes? Given the scale of the looming crisis in urban mobility and the fact that the solutions to it are already available, it is reasonable to ask: why has the potential for innovation not been unleashed? The answer is that the management of urban mobility operates in an environment that is too fragmented and hostile to innovation. Our urban management systems do not allow market players to compete and establish business models that bring demand and supply into a natural balance. Current mobility systems adapt poorly to changing demands, are weak in combining single steps of the travel chain into an integrated offering, find it difficult to learn from other systems, and shun an open, competitive environment. Collaboration on solutions is rare. Rewards for investors are rather meagre. Moreover, a lot of mature cities do not yet have a clear vision and strategy on how their mobility systems should look in the future. In all too many cases, urban mobility plans look like “Christmas wish lists” with no clear reflection of the synergies or incompatibilities between the initiatives, too limited integration between the different modes of transportation and no convincing explanation of how desired results should be achieved by allotting responsibilities, setting deadlines, and instituting monitoring procedures.This lack of synergies between isolated initiatives leads to a sub-optimal outcome in terms of mobility performance, which calls for
a more holistic approach. There is also often a poor interlinking of urban mobility strategy and other urban strategies. For example, if a city is committed in its environmental strategy to reduce CO2 emissions, it should ask what contribution transport should make to achieve this goal. Finally, decisions are often mainly based on “public sector actions” and do not sufficiently address interfaces with the private sector and what contribution it could make to the achievement of urban mobility goals.The private sector needs to be involved in the goal-setting process. At a different level, integration between regional mobility systems still remains very low
in comparison to other parts of the economy as transport infrastructures were historically designed to serve regional rather than supra-regional goals. In that context, there is a need for stronger alignment between regional mobility strategies while respecting each-others accountabilities and ensuring solutions are adapted to local contexts. Urban mobility is one of the toughest system-level challenges facing actors of the mobility ecosystems. In the future, innovative mobility services will be driven less by improvements in single transport modes than by integration. What is needed is system-level collaboration between all stakeholders of the mobility ecosystem to come up with innovative and integrated business models.
  • 27. 27 A FUM 5.1. Three strategic directions for cities The urban mobility study was conducted in 84 cities around the globe, a sample consisting of the largest cities in the world as measured by GDP share, C40 members, and a group of smaller cities, which had demonstrated some level of good practice with regards to mobility. We tried to put the index results in perspective by looking at city characteristics and analyzing their correlation with the mobility scores of cities. We looked more specifically at the following city characteristics: nn Prosperity: This was determined by the GDP per capita as of 2012, with those having a GDP per capita of more than 25,000 USD being defined as ‘mature’ and those below that level defined as ‘emerging’. nn Modal split: This criterion was applied by assessing the respective shares of individual motorized mobility, public transport and walking/cycling in the modal split. Cities with less than 50% of individual motorized transport in the modal split were categorized as ‘public mobility-oriented cities’.The others were categorized as ‘individual mobility cities’. nn City size: This was determined by the population of the city agglomerations as of 2012. Cities with more than five million residents were defined as ‘large’ and those below defined as ‘smal’. The analysis revealed wildly divergent performances but allowed for a number of interesting conclusions: nn City size does not matter – City size does not have a signifi­ cant influence on the mobility score. However, the two other city characteristics that we studied, namely city prosperity and the prevalence of public transport, do have a significant influence on the mobility score: the richer the city and the lower the share of individual transport, the higher the score. nn Mature cities are not necessarily a model – Cities in emerging regions should not necessarily aspire to emulate their counterparts in mature regions. If cities in emerging regions replicate the pathway that cities in mature regions have followed, they run the risk of introducing the very same problems of poor modal split, high carbon emissions and low travel speed. nn Innovation is key – One thing all cities have in common is that they need to innovate to improve their performance. We can distinguish three typical city clusters depending on urban mobility system positioning on the evolutionary curve: 5. Shaping the future: Strategic directions and imperatives for cities Figure 14: City clusters of urban mobility and their performance with regards to triple bottom line Source: Arthur D. Little Mobility Index Performance level: good bad Cluster Challenges and opportunities associated with current performance level Planet People Profit Public Mature cities with high share of public transport/walking cycling Sustainability - often a goal of master plans; public transport less environmentally harmful Sufficient infrastructure supply and convenient usage/access Mature cities with high mobility budgets; able to implement high-end technologies Individual Mature cities with high share of individual transport in modals split Often most dirtiest cities in the world (mobility related impact), e.g., 7 t CO2/ capita High congestion and accidents level lead to lowering quality of life Less interesting markets for infrastructure provides, due to lower demand for public mobility Emerging Emerging cities with partly underdeveloped mobility systems Weak environmental impact due to underdevelopment of infrastructure Low satisfaction with mobility supply esp. in Africa, South-East Asia; Main mode: by foot Often problems with financing of mobility infrastructure. Affordability challenges Public Individual Emerging
  • 28. 28 A FUM public, individual and emerging, each of them with specific opportunities and challenges to address and overcome (see Figure 14 overleaf): nn “Public” city cluster: The key here is to further improve performance in terms of sustainability and smart infrastructure – both targets which would benefit from networking of the mobility system and other efforts to reduce still further the role of individual motorized transport in the modal split. nn “Individual” city cluster: Cities in this cluster tend to be among the dirtiest and most congested in the world thanks to a disproportionate reliance on car use. In the interests of both sustainability and quality of life there is a pressing need to change the mobility culture. nn “Emerging” city cluster: Cities in this cluster have under­ developed infrastructure and the resources to change this are scarce.The good news is that there is an opportunity to create a mobility system that does not repeat the errors made in mature markets. Each of these city clusters requires a different approach to make them fit for the future, as illustrated in Figure 15: nn Rethink the System (for the “individual” city cluster): Cities in mature countries with a high proportion of motorized individual transport need to shape political agendas to fundamentally redesign their mobility systems so that they become more orientated towards public transport and sustainability.The majority of cities in the index (53 out of 84) belong to this group. nn Network the System (for the “public” city cluster): For mature cities with a high share of sustainable transport modes, the next step must be to fully integrate the travel value chain to foster seamless, multimodal mobility while ensuring “one face to the customer” and to increase the overall attractiveness of public transport by service extension.This group contains the majority of cities in Europe as well as Hong Kong, Singapore, Seoul,Tokyo, Toronto and Buenos Aires. nn Establish Sustainable Core (for the “emerging” city cluster): For cities in emerging countries with partly underdeveloped mobility systems, the aim must be to establish a sustainable mobility core that can satisfy short term demand at a reasonable cost without replicating mistakes from developed countries. With access to emerging transport infrastructure and technologies, these cities have the opportunity to become the test-bed and breeding ground for tomorrow’s urban mobility systems. That said, different strategic directions can be combined. In addition to rethinking their mobility system, cities in the “individual” cluster can initiate action to network the system. But these initiatives will only bring significant benefits if sustainable modes of transport make up a sufficient percentage Baghdad Hong Kong SeoulAddis Ababa Johannes- burg Wuhan Munich Zurich Amsterdam Time Maturity Features:  Innovative thinking  Seamless integration with “one key” for citizens  High convenience  Sharing concepts Establish Sustainable Core: Invest in sustainable urban mobility infrastructure Rethink the System: Shape political agenda towards shift to public sustainability Network the System: Integration of different market players and networking of citizens Prerequisite Way forward Establish your own way (do not replicate) Figure 15: Three strategic directions for cities Source: Arthur D. Little Emerging Emerging cities with partly underdeveloped mobility systems Individual Mature cities with high share of individual transport in modals split Public Mature cities with high share of public transport/ walking cycling Networked mobility Integration of all modes to reduce share of individual motorized transport
  • 29. 29 A FUM of the modal split. Hence “rethinking the system” is a prerequisite to obtaining the full benefits of “Network the System”. Similarly, cities in the “emerging” city cluster should undertake the right set of actions in order not to be forced to rethink the system in a second stage, and once the basic elements of a sustainable mobility system are in place, start introducing initiatives to network the system. 5.2. Four dimensions for cities to consider when defining sustainable urban mobility systems Improving urban mobility is a challenge of epic proportions. As urban populations grow and economic prosperity increases, cities are increasingly under pressure to deliver fast, safe and environment-friendly transport to citizens and businesses. Fortunately, there is a wealth of good-practice examples, technologies and business models on which the various stakeholders can draw to devise effective and sustainable mobility policy. Arthur D. Little and the UITP have identified four key dimensions to be considered by mobility actors in cities seeking to put in place sustainable urban mobility systems (see Figure 16): nn Visionary Strategy and Ecosystem nn Mobility Supply (solutions and lifestyles) nn Mobility Demand Management nn PublicTransport Financing If an urban mobility policy based on implementing the above four dimensions is to succeed in achieving its aims, it is vital that all four dimensions are improved simultaneously as the overall results will be influenced by the performance of the weakest link. In this context, 25 imperatives should be carefully assessed by cities as a basis for setting up sustainable urban mobility policies and converted into a concrete set of actions.The relevance of the imperatives to each city will vary depending on the urban mobility city cluster to which they belong (see Figure 17 overleaf). 5.2.1 First dimension of sustainable urban mobility systems: Visionary Strategy and Ecosystem Establishing sustainable urban mobility policies requires cities to develop a political vision and a set of urban mobility objectives based on a strategic alignment between all key public and private stakeholders of the extended mobility ecosystem. This should forge a visionary urban mobility strategy, in which priorities – and the investments required to achieve them – are identified, in a way that strikes the right balance between stretch and achievability. The time has come for mobility actors to step up and to drive innovation in urban mobility as there is now a real window of opportunity. In order to exploit this, public transport authorities and operators will need to open their minds and take a much more holistic view on public transport than they have done up to now.They will need to work closely with each other, and the new market players, to deliver creative and entrepreneurial mobility solutions guided by a strategic vision of how cities and regions can be planned and organized. The establishment of a visionary urban mobility strategy involves addressing seven key imperatives: Imperative 1: Establish a transparent, viable and stable regulatory framework for public transport, integrating national and regional mobility powers, and ensuring a clear allocation of roles and responsibilities An unstable regulatory framework is the enemy of strategic planning in both private and public sectors. Constant changes to the legal and organizational framework are a particular problem for the public transport sector. In such a context it is vital that transparent rules are developed to allocate roles among the system’s stakeholders, with risks and responsibilities clearly split between authorities, operators, as well as private actors and associations alike. Source: Arthur D. Little UITP FUM 2.0 System-level framework for sustainable mobility Mobility Supply (solutions lifestyles) Mobility Demand Management PublicTransport Financing Visionary Strategy Ecosystem 1 2 3 4 Figure 16: System-level framework for sustainable urban mobility system
  • 30. 30 A FUM MobilityDemandManagement Awareness creation MDM measures to influence behavior of individuals MDM measures to influence behavior of businesses MobilitySupply(solutions lifestyle) Core PT offering Offering characteristics Value-Added Services Integrated mobility PublicTransportFinancing Fare revenue Additional revenues Public funding Earmarked charges Private funding Cities in emerging countries with partly underdeveloped mobility systems: Develop Sustainable Core Cities with high maturity and low share of public transport, walking, cycling: Rethink the System Cities with high maturity and high share of PT, walking, cycling: Network the System VisionaryStrategyandEcosystem Vision and objectives Strategy and master plan Integration of urban policies Level playing field Figure 17: 25 imperatives to be considered by cities as a basis for defining sustainable urban mobility policies Source : Arthur D. Little UITP FUM 2.0 5. Ensure coordination of transport planning with other policies 2. Professionalize PTO and formalize public transport 4. Develop a visionary urban mobility strategy and master plan ensuring the right balance between stretch and achievability and shift focus from “supply oriented” to “demand oriented” measures 3. Develop a political vision and urban mobility objectives based on strategic alignment between all key stakeholders 7. Initiate fair competition between modes and business models 6. Develop an integrated approach for transport planning and other urban policies to shift from isolated decision-making toward integrated urban management 8. Invest to establish a sustainable mobility offering and do not replicate mistakes of developed cities 9. Develop competitive position of public transport by evolving from “transport provider” to “solution provider” via introduction of innovative business models and partnerships 10.Shift PTO culture from fleet manager mindset toward customer-centric culture and progressively enhance quality of public transport offering and customer experience 11.Further improve customer experience via service offering extension through partnerships and alliances with third parties 12.Encourage interoperability and develop multi-modal packages 13. Integrate the travel value chain via development of integrated mobility platforms 15.Introduce traffic calming measures to optimize streets usage conditions and increase quality of life for residents and businesses 16.Introduce pricing measures to steer mobility demand through financial incentives and better synchronize supply and demand 17.Introduce and enforce parking policy as a critical instrument to steer mobility choices, while gradually increasing sophistication of fee and regulation structure 18.Define appropriate land-use policies to influence long-term mobility patterns and encourage transit-oriented development 19. Encourage businesses to develop active corporate mobility strategy to improve mobility of individuals and goods while minimizing costs 21.Further individualize mobility offering by providing bundles of services targeting different customer groups at different prices 22.Assess opportunities to exploit PT assets to derive additional revenues through aggregation of third party services 23. Prioritize public funding for capital investments into projects with sound business cases demonstrating policy benefits and long term viability 25.Further stimulate partnerships with private investors while focusing on preserving business model solidity over short term funding opportunities 14.Engage with citizens and business community to encourage pragmatic, well-informed and sustainable travel and location choices 24.Explore opportunities to perceive charges from indirect beneficiaries of PT and earmark them for PT financing 20.Drive demand for public transport to maximize fare revenue by focusing on gradual increase of service offering quality and ensure transparency of fare adjustments 1. Establish a transparent, viable and stable regulatory framework for PT, integrating national and regional mobility prerogatives and ensuring clear allocation of roles and responsibilities