Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.
Aerodinamics Forces
Focus
1 Bernoulli’s Theorem
2 Aerodinamics Forces
3 Nondimensional Coefficients
4 Wind Tunnel
c www.mec...
Aerodinamics Forces
Bernoulli’s Theorem
Bernoulli’s theorem states that the sum of kinetic energy
1/2qV2 and potential ene...
Aerodinamics Forces
Bernoulli’s Theorem
T2
+ Velocity
- Pressure
- Velocity
+ Pressure
T1 TV
Td
c www.mechanical–enginerin...
Aerodinamics Forces
Bernoulli’s Theorem
The flows can be considered as two pipes, an upper one
T1 toward the ventral side o...
Aerodinamics Forces
Aerodinamics Forces
V
R
-P
F
j
c www.mechanical–enginering.name
Aerodinamics Forces
Nondimensional Coefficients
The component of the resultant parallel to airflow is the
drag R
CR = f (Re)...
Aerodinamics Forces
Center of pressure
C
R
-P
F
j
Xp
c www.mechanical–enginering.name
Aerodinamics Forces
Center of pressure
The point where the line of action of aerodinamics force F
encounters the body is c...
Aerodinamics Forces
NACA Profile 4412
c www.mechanical–enginering.name
Aerodinamics Forces
NACA Profile 4412
V
R
-P
F
i
i −Cp CR
3.6 0.00 0.007
0.0 0.28 0.012
−2.0 0.43 0.019
−4.0 0.58 0.028
−6....
Aerodinamics Forces
Wind Tunnel
V
V=0Laminar
Turbulent
c www.mechanical–enginering.name
Nächste SlideShare
Wird geladen in …5
×

Aerodinamics

479 Aufrufe

Veröffentlicht am

Bernoulli’s Theorem Aerodinamics Forces Nondimensional Coefficients Wind Tunnel

Veröffentlicht in: Ingenieurwesen
  • Loggen Sie sich ein, um Kommentare anzuzeigen.

  • Gehören Sie zu den Ersten, denen das gefällt!

Aerodinamics

  1. 1. Aerodinamics Forces Focus 1 Bernoulli’s Theorem 2 Aerodinamics Forces 3 Nondimensional Coefficients 4 Wind Tunnel c www.mechanical–enginering.name
  2. 2. Aerodinamics Forces Bernoulli’s Theorem Bernoulli’s theorem states that the sum of kinetic energy 1/2qV2 and potential energy (pressure p) is constant and which can be expresed as follows 1 2 qV2 + p = constant , (1) excluding the forces of gravity. c www.mechanical–enginering.name
  3. 3. Aerodinamics Forces Bernoulli’s Theorem T2 + Velocity - Pressure - Velocity + Pressure T1 TV Td c www.mechanical–enginering.name
  4. 4. Aerodinamics Forces Bernoulli’s Theorem The flows can be considered as two pipes, an upper one T1 toward the ventral side of the plate and a lower one T2 toward the dorsal side. In the dorsal part the airflow is forced to travel to rejoin the exiting streamlines with an increase in speed and a loss of pressure energy. In the ventral part, the trajectories are shorter, due to lower velocity, and the area Tv of local pressure is greater. c www.mechanical–enginering.name
  5. 5. Aerodinamics Forces Aerodinamics Forces V R -P F j c www.mechanical–enginering.name
  6. 6. Aerodinamics Forces Nondimensional Coefficients The component of the resultant parallel to airflow is the drag R CR = f (Re) = R 1 2 qSV2 , (2) with S the projected frontal area. The component normal to the flow is the downforce −P and its nondimensional coefficient −CP: CP = f (Re) = − P 1 2 qSV2 , (3) c www.mechanical–enginering.name
  7. 7. Aerodinamics Forces Center of pressure C R -P F j Xp c www.mechanical–enginering.name
  8. 8. Aerodinamics Forces Center of pressure The point where the line of action of aerodinamics force F encounters the body is called the center of pressure. It is located at a distance XP from the leading edge, which varies according to the angle of attack, so that the nondimensional ratio Xp/C, with chord C, varies from 0 to 0.5 for angles to attack from 0 ◦ to 90 ◦ . The curvature, in the plate, creates an angle j between the slope of the tailing edge and the chord line. c www.mechanical–enginering.name
  9. 9. Aerodinamics Forces NACA Profile 4412 c www.mechanical–enginering.name
  10. 10. Aerodinamics Forces NACA Profile 4412 V R -P F i i −Cp CR 3.6 0.00 0.007 0.0 0.28 0.012 −2.0 0.43 0.019 −4.0 0.58 0.028 −6.0 0.73 0.041 −8.0 0.88 0.056 −10.0 1.02 0.076 −12.0 1.15 0.096 −14.0 1.28 0.121 c www.mechanical–enginering.name
  11. 11. Aerodinamics Forces Wind Tunnel V V=0Laminar Turbulent c www.mechanical–enginering.name

×