Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

Matt Wensing (Founder, SimSaaS) - 1 Startup In 10 Years vs 1,000 Startups in 10 Minutes

109 Aufrufe

Veröffentlicht am

This video for this talk from Business of Software Conference USA 2018 will be published here soon: http://businessofsoftware.org/videos

Veröffentlicht in: Business
  • Als Erste(r) kommentieren

  • Gehören Sie zu den Ersten, denen das gefällt!

Matt Wensing (Founder, SimSaaS) - 1 Startup In 10 Years vs 1,000 Startups in 10 Minutes

  1. 1. @mattwensing This is 1 of 14,000,605 futures … 2008 2013
  2. 2. 2016
  5. 5. Pattern Recognition Simulation 20th century linear production 21st century non-linear production Metrics → Forecast Model → Forecast → Metrics → Model Deterministic → one scenario Probabilistic → many scenarios Limited inputs due to complexity. Complexity only limited by computational capacity. Output forced to fit a pattern. Output can surprise you!
  6. 6. I. Human sales reps have a finite capacity. II. All distribution channels eventually saturate. III. New hires have a ramp-up period. IV. Time is the enemy of all deals. V. All systems, including humans, make mistakes. VI. Engineers build value. VII. Marketing communications value. VIII. Customer success delivers value. IX. Sales captures value. X. Drag on organization increases as it scales. Laws (Governing Equations)
  7. 7. Starting Conditions (from ex. Stripe, Baremetrics, etc.) Or Estimations.
  8. 8. Slow climb to profitability then — wait what?!
  9. 9. Startup B is (suddenly) not a happy place to work.
  10. 10. 2,002 STARTUPS OVER 4YEARS
  11. 11. IN _____ WETRUST “Guys, I think we’re living in a 
 simulation …”
  12. 12. THE ROLE OF SIMULATION Bringing beginners up to the knowledge level of veterans. Running experiments before real-world trial-and-error. Focusing us on business model definition, not forecasting. Understanding all metrics are output of your engine. Yielding surprise solutions we hadn’t considered: ML? @mattwensing