Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

MOVIMIENTO ARMONICO SIMPLE

9.432 Aufrufe

Veröffentlicht am

también denominado movimiento vibratorio armónico simple, es un movimiento periódico, oscilatorio y vibratorio en ausencia de fricción, producido por la acción de una fuerza recuperadora que es directamente proporcional a la posición pero en sentido opuesto

Veröffentlicht in: Ingenieurwesen

MOVIMIENTO ARMONICO SIMPLE

  1. 1. MOVIMIENTO ARMÓNICO SIMPLE
  2. 2. Movimiento Armónico Simple
  3. 3. Movimiento Armónico Simple
  4. 4. Movimiento Armónico Simple
  5. 5. Movimiento Armónico Simple
  6. 6. Movimiento Armónico Simple
  7. 7. Movimiento Armónico Simple
  8. 8. Movimiento Armónico Simple
  9. 9. Movimiento Armónico Simple
  10. 10. Movimiento Armónico Simple
  11. 11. Movimiento Armónico Simple
  12. 12. Movimiento Armónico Simple
  13. 13. Movimiento Armónico Simple
  14. 14. Movimiento Armónico Simple
  15. 15. Movimiento Armónico Simple
  16. 16. Movimiento Armónico Simple
  17. 17. Movimiento Armónico Simple
  18. 18. MAS y Movimiento Circular
  19. 19. Energía del MAS
  20. 20. Energía del MAS
  21. 21. Energía del MAS
  22. 22. Energía del MAS • Gráfica de E, K y U contra desplazamiento en un MAS.
  23. 23. Ejemplo 01 Si un objeto en una superficie horizontal sin fricción se une a un resorte, se desplaza y después se suelta, oscilará. Si se desplaza 0.120 m de su posición de equilibrio y se suelta con rapidez inicial cero, después de 0.800 s su desplazamiento es de 0.120 m en el lado opuesto, habiendo pasado la posición de equilibrio una vez durante este intervalo. Calcule a) la amplitud b) el periodo c) la frecuencia.
  24. 24. En la figura se muestra el desplazamiento de un objeto oscilante en función del tiempo. Calcule a) la frecuencia, b) la amplitud, c) el periodo y d) la frecuencia angular de este movimiento. Ejemplo 02
  25. 25. Un bloque de 2.00 kg, que se desliza sin fricción, se conecta a un resorte ideal con constante de fuerza de 300 N/m. En t = 0, el resorte no está estirado ni comprimido, y el bloque se mueve en la dirección negativa a 12.0 m/s. Calcule a) la amplitud y b) el ángulo de fase. c) Escriba una ecuación para la posición en función del tiempo. Ejemplo 03
  26. 26. El desplazamiento en función del tiempo de una masa de 1.50 kg en un resorte está dado por la ecuación 𝑥𝑥 𝑡𝑡 = 7.40 𝑐𝑐𝑐𝑐 cos[ 4.16 𝑠𝑠−1 𝑡𝑡 − 2.42] Calcule a) el tiempo que tarda una vibración completa; b) la constante de fuerza del resorte; c) la rapidez máxima de la masa; d) la fuerza máxima que actúa sobre la masa; e) la posición, rapidez y aceleración de la masa en t = 1.00 s; f ) y la fuerza que actúa sobre la masa en ese momento. Ejemplo 04
  27. 27. Dentro de un vehículo de prueba de la NASA, se tira de una esfera de 3.50 kg mediante un resorte ideal horizontal que está unido a una mesa sin fricción. La constante de fuerza del resorte es de 225 N/m. El vehículo tiene una aceleración constante de 5.00 𝑚𝑚/𝑠𝑠2 , y la esfera no oscila. De repente, cuando la rapidez del vehículo llega a 45.0 m/s, sus motores se apagan, eliminando así su aceleración pero no su velocidad. Calcule a) la amplitud y b) la frecuencia de las oscilaciones resultantes de la esfera. c) ¿Cuál será la rapidez máxima de la esfera en relación con el vehículo? Ejemplo 05
  28. 28. Péndulo simple Sistema realizado en el Laboratorio
  29. 29. Péndulo simple
  30. 30. Péndulo simple
  31. 31. Péndulo simple
  32. 32. Péndulo simple
  33. 33. Se tira de un péndulo simple de 0.240 m de longitud para moverlo 3.50° a un lado y luego se suelta. a) ¿Cuánto tarda la lenteja del péndulo en alcanzar su rapidez máxima? b) ¿Cuánto tarda si el ángulo es de 1.75° en vez de 3.50°? Ejemplo 06
  34. 34. Un péndulo simple de 3,00 m de largo oscila con un desplazamiento angular máximo de 0,4 rad. a) Calcule su rapidez lineal v en su punto más bajo. b) Calcule su aceleración lineal a en los extremos de su movimiento. Ejemplo 07
  35. 35. Una manzana pesa 1N. si la colgamos del extremo de un resorte largo con k = 2 N/m y masa insignificante, rebota verticalmente con un MAS. Si tenemos el rebote y dejamos que la manzana oscile de lado a lado con un ángulo pequeño, la frecuencia de este movimiento es la mitad de la del movimiento de rebote. ¿Qué longitud tiene el resorte no estirado? Ejemplo 08
  36. 36. Péndulo físico
  37. 37. Péndulo físico
  38. 38. Una llave inglesa de 1,5 kg pivota en un extremo y oscila como un péndulo físico. El periodo para oscilaciones de ángulo pequeño es de 0,82 s, y el pivote esta a 0,3 m del centro de masa. a) ¿Qué momento de inercia tiene la llave respecto a un eje que pasa por el pivote? b) Si la llave inicialmente se desplaza 0,6 rad de la posición de equilibrio, ¿Qué velocidad angular tiene al pasar por dicha posición? Ejemplo 09
  39. 39. Un adorno navideño con forma de esfera sólida de masa M = 0,015 kg y radio R = 0,05 m se cuelga de una rama un trozo de alambre unido a la superficie de la esfera. Si el adorno se desplaza una distancia corta y se suelta, oscila como un péndulo físico. Calcule su periodo (Ignore la fricción en el pivote. EL momento de inercia de esfera respecto al pivote en la rama es 7 5 𝑀𝑀𝑅𝑅2 ) Ejemplo 10
  40. 40. Sistemas oscilantes: muelle vertical
  41. 41. Sistemas oscilantes: muelle vertical
  42. 42. Sistemas oscilantes: muelle vertical
  43. 43. Sistemas oscilantes: muelle vertical
  44. 44. Un orgulloso pescador de alta mar cuelga un pez de 65.0 kg de un resorte ideal con masa despreciable, estirando el resorte 0.120 m. a) Calcule la constante de fuerza del resorte. Ahora se tira del pez 5.00 cm hacia abajo y luego se suelta. b) ¿Qué periodo de oscilación tiene el pez? c) ¿Qué rapidez máxima alcanzará? Ejemplo 11
  45. 45. Un oscilador consiste de un bloque sujetado a un resorte (k=400 N/m). En algún tiempo (medido desde la posición de equilibrio), velocidad y aceleración del bloque son: x=0.100m, v=-13.6m/s y a=-123 𝑚𝑚/𝑠𝑠2 . Calcular: (a) La frecuencia de oscilación. (b)La masa del bloque. (c) La amplitud del movimiento. Problema01
  46. 46. Un oscilador armónico consiste de un bloque de masa de 2.00 kg sujetado a un resorte de constante 100 N/m. Cuando t=1.00 s, la posición y la velocidad del bloque es x=0.129m y v=3.415m/s. (a) ¿Cuál es la amplitud de la oscilación? (b)La posición y la velocidad del bloque en t=0s. Problema02
  47. 47. En la figura posición vs. Tiempo la gráfica de una partícula en movimiento armónico simple. (a) ¿Cuál es la constante de fase? (b)¿Cuál es la velocidad en t=0s? (c) ¿Cuál es la velocidad máxima? Problema03
  48. 48. La figura muestra la velocidad vs. Tiempo de una partícula en movimiento armónico simple. (a) ¿Cuál es la amplitud de la oscilación? (b)¿Cuál es la constante de fase? (c) ¿Cuál es la posición en t=0s? Problema04
  49. 49. Las dos gráficas de la figura son de dos sistemas masa-resorte vertical. (a) ¿Cuál es la frecuencia del sistema A? ¿Cuál es el primer tiempo en el cual la masa tiene la máxima velocidad mientras viaja en la dirección hacia arriba? (b) ¿Cuál es el periodo del sistema B? ¿Cuál es el primer tiempo en el cual la energía es solo potencial? (c) Si ambos sistemas tienen las mismas masas, cual es la razón 𝑘𝑘𝐴𝐴/𝑘𝑘𝐵𝐵 de las constantes de los resortes? Problema05
  50. 50. Un bloque está sobre un émbolo que se mueve verticalmente con movimiento armónico simple. (a) ¿A qué amplitud del movimiento se separarán el bloque y el émbolo si el periodo del movimiento del émbolo es de 1.18 s? (b)Si el émbolo tiene una amplitud de 5.12 cm en su movimiento, halle la frecuencia máxima a la cual estarán en contacto el bloque y el émbolo continuamente. Problema06
  51. 51. (a) Cuando el desplazamiento es la mitad de la amplitud ¿qué fracción de la energía total es cinética y que fracción es potencial en el movimiento armónico simple? (b)¿A qué desplazamiento es la energía mitad cinética y mitad potencial? Problema07
  52. 52. Una partícula de 12.3 kg se halla en movimiento armónico simple con una amplitud de 1.86 mm. La aceleración máxima de la partícula es de 7.93 km/𝑠𝑠2 . (a) Halle el periodo del movimiento. (b)¿Cuál es la velocidad máxima de la partícula? (c) Calcule la energía mecánica total de este oscilador armónico simple. Problema08
  53. 53. Un objeto de 5.13 kg se mueve sobre una superficie horizontal sin fricción bajo la influencia de un resorte de constante de fuerza 9.88 N/cm. El objeto es desplazado 53.5 cm y se le da una velocidad inicial de 11.2 m/s hacia la posición de equilibrio. Halle: (a) La frecuencia del movimiento (b)La energía potencial inicial del sistema (c) La energía cinética inicial (d)La amplitud del movimiento. Problema09

×