Cours electrostatique

Office National de L'Electricité (ONEE)
Office National de L'Electricité (ONEE)Agent de Maîtrise Chez ONEE um Office National de L'Electricité (ONEE)
1Cours Physique SEE 2009-2010 – Les applications à la physique
Cours - Physique
Yannick DESHAYES
Maître de conférences
Laboratoire IMS
yannick.deshayes@ims-bordeaux.fr
Tel : 0540002857/0665302965
Page perso IMS : http://extranet.ims-bordeaux.fr/IMS/pages/pageAccueilPerso.php?email=yannick.deshayes
2Cours Physique SEE 2009-2010 – Les applications à la physique
Partie 2
Les applications à l’Electrostatique
3Cours Physique SEE 2009-2010 – Les applications à la physique
Prenons un électron de charge q
A – Représentation Locale
I – Principes de l’Electrostatique
1 – Introduction à l’électrostatique
r
O
M
Mesure d’un champ
électrostatique en M
( )t,rEM
Champ électrostatique –
unité Vm-1
Symétrie sphérique
Une charge électrique crée un champ électrostatique
4Cours Physique SEE 2009-2010 – Les applications à la physique
Exemple de phénomènes électrostatiques
Morceaux de papier attirés par le CD
chargé d’électricité statique
Couches nuageuses chargées d’électricité
statique donnant des éclairs.
B – Effets globaux
1 – Introduction à l’électrostatique
I – Principes de l’Electrostatique
5Cours Physique SEE 2009-2010 – Les applications à la physique
Les charges peuvent s’organisées en ligne, en surface, en volume. Cela dépend de la forme
du support
On prend une plaque métallique
Contenant N électrons par unité de
surface. On définit alors la densité
surfacique par :
dS
dN
=σ
On démontre que loin des bords et
proche de la plaque, le champ
électrostatique est constant et vaut :
( ) x
0
M u
2
xE
ε
σ
±=
M
xO
C – Relations de bases
1 – Introduction à l’électrostatique
+ : x > 0
- : x < 0
I – Principes de l’Electrostatique
1
90 Fm
1036
1 −
π
=ε
6Cours Physique SEE 2009-2010 – Les applications à la physique
Dans un tel dispositif, il règne un champ quasi constant donné par : ( ) x
0
M uxE
ε
σ
=
V(V)
x
O
Le potentiel V crée une quantité de
charge Q :
SQ σ=
S : surface de la plaque. Les charges
sont des « manques » d’électrons
donc Q>0.
Par équilibre des charges, l’autre
plaque se « remplie » d’électron en
créant une charge -Q
SQ σ=
SQ σ=−
( ) x
0
M uxE
ε
σ
=
C – Relations de bases
1 – Introduction à l’électrostatique
I – Principes de l’Electrostatique
On prend deux plaques métalliques
TD d’application
7Cours Physique SEE 2009-2010 – Les applications à la physique
On démontre que la différence de potentiel est reliée au champ électrique
par :
( ) xM u
x
V
xE
∂
∂
−=
V(V)>0
x
O
Faisons l’expérience suivante pour
vérifier nos hypothèses :
Plaçons un électron entre les deux
plaques. L’expérience montre que
l’électron est attiré par la plaque
alimentée par V. Cela revient à dire
que la plaque est chargé
positivement.
SQ σ=
SQ σ=−
électron
C – Relations de bases
1 – Introduction à l’électrostatique
I – Principes de l’Electrostatique
8Cours Physique SEE 2009-2010 – Les applications à la physique
Il existe donc une différence de potentiel (V-0=V) ente les deux plaques. Cela crée un
champ électrique opposé. C’est ce champ électrique qui est à l’origine du déplacement des
électrons
V(V)>0
x
O
La force de Lorentz est donnée par :
SQ σ=
SQ σ=−
électron
V(V)>0
( ) ( )xEqxF MM =
Où « q » représente la charge de
l’électron situé entre les deux
plaques.
C – Relations de bases
1 – Introduction à l’électrostatique
I – Principes de l’Electrostatique
9Cours Physique SEE 2009-2010 – Les applications à la physique
On considère un proton ayant au point O une vitesse nulle soumis au système décrit par
la figure 1.
1. Donner le signe de V pour que le proton se déplace vers les x positifs
2. Déterminer et représenter le sens du champ électrique.
3. En déduire la vitesse de la particule au point M ainsi que son énergie cinétique.
Exercice 1
X27
13
Effet d’un champ électrostatique sur un proton
V
O M x
y
10Cours Physique SEE 2009-2010 – Les applications à la physique
A – Le tube cathodique
Nous avons vu que nous pouvions déplacer un électron avec un champ électrique dans le
vide. A quoi cela peut-il bien servir.
Le tube cathodique
Permet de générer des
électron dans le vide
Zone d’accélération des
électrons
Visualisation de l’image
sur un écran
Chambre sous vide
secondaire
2 – Quelques applications à l’électrostatique
I – Principes de l’Electrostatique
11Cours Physique SEE 2009-2010 – Les applications à la physique
Le tube cathodique – Canon d’électrons
Le filament est chauffé (par le
passage du courant) à haute
température afin que le métal
émette des électrons
Énergie de liaison des électrons
avec la matière :
A – Le tube cathodique
2 – Quelques applications à l’électrostatique
I – Principes de l’Electrostatique
12Cours Physique SEE 2009-2010 – Les applications à la physique
Le tube cathodique – Canon d’électrons
Électron libre
Électron lié à
l’atome
E(eV)
E2 = 0 eV : énergie du vide
E1 = -13,7 eV : énergie de liaison
électron-proton (atome
d’hydrogène stable)
Exemple avec l’hydrogène
T(K)
A – Le tube cathodique
2 – Quelques applications à l’électrostatique
I – Principes de l’Electrostatique
13Cours Physique SEE 2009-2010 – Les applications à la physique
Le tube cathodique – Canon d’électrons
Électron libre
Électron lié à
La matière
E(eV)
E2 = 0 eV : énergie du vide
Cas du Tungstène
T(K)
Niveau de Fermi
A – Le tube cathodique
2 – Quelques applications à l’électrostatique
I – Principes de l’Electrostatique
14Cours Physique SEE 2009-2010 – Les applications à la physique
Le tube cathodique – Canon d’électrons
Électron libre
Électron lié à la
matière
E(eV)
E2 = 0 eV : énergie du vide
Cas du Tungstène
T(K)
Niveau de Fermi
kTWEEE F2 ==−= Température en
Kelvin
Constante de Boltzmann
8,62.10-5 eV/K
Energie en eV
)C(10.6,1
)J(E
q
)J(E
)eV(E 19−
==
W : Travail de sortie du Tungstène est de
190 meV → TL = 2200 K
A – Le tube cathodique
2 – Quelques applications à l’électrostatique
I – Principes de l’Electrostatique
15Cours Physique SEE 2009-2010 – Les applications à la physique
Le tube cathodique – Ecran
A – Le tube cathodique
2 – Quelques applications à l’électrostatique
I – Principes de l’Electrostatique
16Cours Physique SEE 2009-2010 – Les applications à la physique
Le tube cathodique – Ecran
A – Le tube cathodique
2 – Quelques applications à l’électrostatique
I – Principes de l’Electrostatique
17Cours Physique SEE 2009-2010 – Les applications à la physique
Le tube cathodique – Ecran
A – Le tube cathodique
2 – Quelques applications à l’électrostatique
I – Principes de l’Electrostatique
18Cours Physique SEE 2009-2010 – Les applications à la physique
Le tube cathodique – Ecran (luminophore)
e-
Oxyde d’Yttrium dopé Europium
A – Le tube cathodique
2 – Quelques applications à l’électrostatique
I – Principes de l’Electrostatique
Photons
19Cours Physique SEE 2009-2010 – Les applications à la physique
Le tube cathodique – Ecran (luminophore)
e-
V = 30 kV
Sulfure de Zinc : sulfure de cadmium dopé Argent
Sulfate de Gadolinium dopé Terbium
A – Le tube cathodique
2 – Quelques applications à l’électrostatique
I – Principes de l’Electrostatique
Photons
20Cours Physique SEE 2009-2010 – Les applications à la physique
Le tube cathodique – Ecran (luminophore)
e-
Oxyde d’Yttrium dopé Europium
A – Le tube cathodique
2 – Quelques applications à l’électrostatique
I – Principes de l’Electrostatique
Photons
21Cours Physique SEE 2009-2010 – Les applications à la physique
Le Condensateur plan
B – Le condensateur plan
2 – Quelques applications à l’électrostatique
V
Q
-Q
TD :
1/ Déterminer la valeur de la capacité en
effectuant la démonstration,
2/ Le diélectrique est de l’aire. Calculer la
valeur de la capacité
3/ Le diélectrique est du BaTiO3. Même
question que 2.
4/ Conclure
I – Principes de l’Electrostatique
22Cours Physique SEE 2009-2010 – Les applications à la physique
Le Condensateur – Technique d’élaboration
B – Le condensateur plan
2 – Quelques applications à l’électrostatique
Poudre Préparation
de la pâte
Bande
céramique
Impréssion
des électrodes
EmpilementPressagePavés
Cuisson
et
Frittage
Fixation des contacts
et application d'une couche
conductrice
I – Principes de l’Electrostatique
23Cours Physique SEE 2009-2010 – Les applications à la physique
Le Condensateur plan – Structure interne
B – Le condensateur plan
2 – Quelques applications à l’électrostatique
I – Principes de l’Electrostatique
24Cours Physique SEE 2009-2010 – Les applications à la physique
Le Condensateur plan – Les condensateurs inter digités (1)
B – Le condensateur plan
2 – Quelques applications à l’électrostatique
Electrode
Diélectrique
Terminaison
I – Principes de l’Electrostatique
25Cours Physique SEE 2009-2010 – Les applications à la physique
On considère un condensateur inter digité ayant pour épaisseur 1 mm et comme
surface 2 mm par 3 mm. Le matériau est du BaTiO3
1. Déterminer l’épaisseur moyenne entre les différents conducteur (on considère
que l’épaisseur du conducteur est de 10 µm
2. Déterminer alors la capacité du condensateur.
Exercice 2
X27
13
Calcul de la capacité d’un condensateur céramique
26Cours Physique SEE 2009-2010 – Les applications à la physique
A – Concepts fondamentaux
1 – Principe de base de l’électrocinétique
La différence de potentiel – Tension (en Volt)
E
BA
Milieu où règne un champ
électrostatique uniforme
E
BA
VA
VB
UAB
En A et B, il existe un potentiel VA et VB et donc
une différence de potentiel entre A et B (UAB)
VgradE −=
∫ ∫∫ −=−=−==
B
A
BA
B
A
B
A
AB VVdVdx.gradVdx.EU
II – Electrocinétique
27Cours Physique SEE 2009-2010 – Les applications à la physique
A – Concepts fondamentaux
1 – Principe de base de l’électrocinétique
Flux et déplacement d’électrons – Courant (en Ampère)
On considère un
tube cylindrique
Electrons libres
Petit élément de volume dτ
n la densité d’électrons (porteurs libres) par unité de volume (en générale par cm3)
Le nombre de porteurs dn dans un petit élément de volume dτ
τ
=⇒τ=
d
dn
nnddn
Exemple du cuivre :
M = 63,5 g.mol.l-1
µ = 9.103 kg.m-3
3
3
m.......n
m.mol.......n
−
−
=
=
II – Electrocinétique
28Cours Physique SEE 2009-2010 – Les applications à la physique
II – Electrocinétique
A – Concepts fondamentaux
1 – Principe de base de l’électrocinétique
Flux et déplacement d’électrons – Courant (en Ampère)
On considère un
tube cylindrique
Electrons libres
Petit élément de volume dτ
ρ la densité de charge locale (chaque électron porte une charge de 1,6.10-19 C)
319
m.C10.6,1.nq.n −−
−==ρ
Exemple du cuivre :
M = 63,5 g.mol.l-1
µ = 9.103 kg.m-3
3
m.C....... −
=ρ
29Cours Physique SEE 2009-2010 – Les applications à la physique
II – Electrocinétique
A – Concepts fondamentaux
1 – Principe de base de l’électrocinétique
Flux et déplacement d’électrons – Courant (en Ampère)
On considère un
tube cylindrique
Le déplacement des
électrons se fait à
l’aide d’une champ
électrique créé par
un générateur
E
VA
VB
30Cours Physique SEE 2009-2010 – Les applications à la physique
II – Electrocinétique
A – Concepts fondamentaux
1 – Principe de base de l’électrocinétique
Densité de courant (en Ampère/cm²)
Le volume dτ infiniment
petit / dimension du
conducteur et grand / atomes
VA
VB
( ) τ= dt,Mndn
( ) τ−= edt,Mndq
( ) ( ) ( )t,Mvt,Mt,Mj ρ=
( )t,Mv
31Cours Physique SEE 2009-2010 – Les applications à la physique
II – Electrocinétique
A – Concepts fondamentaux
1 – Principe de base de l’électrocinétique
Intensité du courant électrique (en Ampère)
On considère une surface
orientée
( ) ( ) ( )t,Mvt,Mt,Mj ρ=
( )t,Mj
n
dl = v.dt
( ) ( )t,Mvnet,Mj −=
( ) dtdS.t,Mjdq = ( )dS.t,MjdI =
32Cours Physique SEE 2009-2010 – Les applications à la physique
II – Electrocinétique
B – Régime permanent
1 – Principe de base de l’électrocinétique
Définitions
• La tension appliquée au conducteur est indépendante du temps,
• Le champ électrostatique moyen en tout points du conducteur est
indépendant du temps
• Les effets moyens sont indépendants du temps
( )t,Mρ ( )t,Mv indépendants du temps
33Cours Physique SEE 2009-2010 – Les applications à la physique
II – Electrocinétique
B – Régime permanent
1 – Principe de base de l’électrocinétique
Description du problème
( )t,Mj1n
Ln
2n
S1
SL
0dS.jdS.jdS.jdS.j
21 S
2
S
L
S
1
S
=++−= ∫∫∫∫∫∫∫∫
S2
Le système est à flux conservatif car pas
d’accumulation de charge en tous points
du conducteur
21
S
2
S
1 iidS.jdS.j
21
=⇔= ∫∫∫∫
34Cours Physique SEE 2009-2010 – Les applications à la physique
II – Electrocinétique
B – Régime permanent
1 – Principe de base de l’électrocinétique
Loi des nœuds
S
i3
i1
i2 0dS.j
S
=∫∫n
321
S
3
S
2
S
1
iii
0dS.jdS.jdS.j
321
+=
=++− ∫∫∫∫∫∫
35Cours Physique SEE 2009-2010 – Les applications à la physique
II – Electrocinétique
B – Régime permanent
1 – Principe de base de l’électrocinétique
Loi d’ohm locale – modèle de la conduction métallique
On considère un métal homogène et isotrope à température constante et uniforme.
e-
Champ nul
( ) 0t,Mv ≠ ( ) 0t,Mv =
Champ non nul
En moyenne, il n’y a pas de
déplacement d’électrons
e-
( ) 0t,Mv ≠ ( ) vt,Mv =
En moyenne, il y a déplacement
d’électrons dans le sens opposé au
champ électrique
36Cours Physique SEE 2009-2010 – Les applications à la physique
II – Electrocinétique
B – Régime permanent
1 – Principe de base de l’électrocinétique
Loi d’ohm locale – modèle de la conduction métallique
Relions la vitesse moyenne des électrons <v> au champ E.
Entre deux chocs, on peut appliquer la loi de Newton sur l’électron :
( ) ( )
( ) ( ) 0
e
vtt,ME
m
q
t,Mv
t,MEq
dt
t,Mvd
m
+=
=
La vitesse juste avant le choc est donnée par :
( ) ( ) 0cc vtt,ME
m
q
t,Mv +=
En moyenne
( ) ctt,ME
m
q
v =
v0 est nulle car pour E = 0, la vitesse moyenne est nulle
37Cours Physique SEE 2009-2010 – Les applications à la physique
II – Electrocinétique
B – Régime permanent
1 – Principe de base de l’électrocinétique
Loi d’ohm locale – modèle de la conduction métallique
L’expression usuelle de la vitesse d’ensemble (moyenne) des électrons est donnée par :
( )τ= .t,ME
m
q
v
τ : durée moyenne entre deux chocs ≈ 10-14 s
q : charge de l’électron = 1,6.10-19 C
m: masse de l’électron = 9.10-31 kg
( ) ( )t,ME
m
ne
.t,ME
m
q
vj
2
τ
=τρ=ρ=
Aptitude du matériau à conduire une densité de courant sous l’action d’un
champ électrique = conductivité électrique
( )t,MEj σ=
38Cours Physique SEE 2009-2010 – Les applications à la physique
II – Electrocinétique
B – Régime permanent
1 – Principe de base de l’électrocinétique
Loi d’ohm locale – modèle de la conduction métallique
L’expression de la conductivité électrique :
m
ne2
τ
=σ
n et τ sont des paramètres dépendant du
matériau
Unité : le Siemens.m-1 (S.m-1)
τ
=
σ
=ρ 2m
ne
m1
Résistivité Unité : ohm.m (Ω.m)
39Cours Physique SEE 2009-2010 – Les applications à la physique
II – Electrocinétique
B – Régime permanent
1 – Principe de base de l’électrocinétique
Loi d’ohm locale – modèle de la conduction métallique
On considère un conducteur et une ligne de courant élémentaire
∫∫
σ
=−⇒
⎪
⎭
⎪
⎬
⎫
σ==
−= B
A
BA
BA
B
A
dl.
dS
dI
VV
EdSdS.jdI
VVdl.E
I est invariant entre A et B
1n
dS
B
A
∫∫∫
∫
σ
=−
=
σ
=−
condV
BA
B
A
BA
dS
dl
.IVV
rdI
dS
dl
dIVV
Résistance totale R (en Ohm)
40Cours Physique SEE 2009-2010 – Les applications à la physique
II – Electrocinétique
2 – Exercice d’application
On considère un conducteur cylindrique de longueur l
1n
dS
A
B
1. Donner l’expression de la résistance du
dispositif
2. On prend comme matériau du cuivre, calculer
sa résistant linéaire pour un câble de 2,5 mm²
3. La densité de courant limite du cuivre est de
1000 A.cm-², déterminer le courant limite
admissible dans ce conducteur.
41Cours Physique SEE 2009-2010 – Les applications à la physique
II – Electrocinétique
3 – Energie et puissance
On considère un conducteur cylindrique de longueur l
1n
On calcule le travail de la force électrostatique
entre A et B sur une ligne
dS
A
B
A – Définition de l’énergie électrostatique
u
dl
dV
VgradE
EqF
−=−=
=
∫=
B
A
dl.FW
( )BA
B
A
VVqqdVW −=−= ∫
( )BA VVqW −=
Energie en Joules (J)
42Cours Physique SEE 2009-2010 – Les applications à la physique
II – Electrocinétique
3 – Energie et puissance
On considère un conducteur cylindrique de longueur l
1n
dS
A
B
On calcule la puissance sur un temps t
correspondant la quantité de charge qui à traversée
la surface SA d’entrée
B – Définition de la puissance électrostatique
( )BA VVqW −=
q = I.t t.Iq =
( ) ( ) 2
BABA RIIVVVV
t
q
t
W
P =−=−==
L’effet principal est l’effet Joules (P en Watt)
1 von 42

Recomendados

Cours electrostatique von
Cours electrostatiqueCours electrostatique
Cours electrostatiquemaidine96
3.4K views32 Folien
Magnétosta cp 2 2017 von
Magnétosta cp 2 2017 Magnétosta cp 2 2017
Magnétosta cp 2 2017 Salah-Eddine MAAFI
1.3K views39 Folien
Electrocinetique von
ElectrocinetiqueElectrocinetique
ElectrocinetiqueMohammed Amine BAGDOURI
7.9K views68 Folien
Chapitre 3 théorème de gauss von
Chapitre 3  théorème de gaussChapitre 3  théorème de gauss
Chapitre 3 théorème de gausscoursuniv
8.2K views14 Folien
Tous les exercices_-_electromagnétisme_pcsi_mpsi von
Tous les exercices_-_electromagnétisme_pcsi_mpsiTous les exercices_-_electromagnétisme_pcsi_mpsi
Tous les exercices_-_electromagnétisme_pcsi_mpsiSmee Kaem Chann
15.7K views106 Folien
Ener1 - CM3 - Puissance électrique von
Ener1  - CM3 - Puissance électriqueEner1  - CM3 - Puissance électrique
Ener1 - CM3 - Puissance électriquePierre Maréchal
7.1K views42 Folien

Más contenido relacionado

Was ist angesagt?

Correction Examen 2014-2015 RDM von
Correction Examen 2014-2015 RDMCorrection Examen 2014-2015 RDM
Correction Examen 2014-2015 RDMMouna Souissi
10.9K views5 Folien
Ener1 - CM1 - Monophasé von
Ener1 - CM1 - MonophaséEner1 - CM1 - Monophasé
Ener1 - CM1 - MonophaséPierre Maréchal
5K views40 Folien
Cours - Lois de l'électricité - Light.pptx von
Cours - Lois de l'électricité - Light.pptxCours - Lois de l'électricité - Light.pptx
Cours - Lois de l'électricité - Light.pptxHarryAndria
120 views62 Folien
Electrocinétique class prépas von
Electrocinétique class prépasElectrocinétique class prépas
Electrocinétique class prépasKhadda Aziz
6.5K views150 Folien
Cours master phys sc chap 3 2015 von
Cours master phys sc chap 3 2015Cours master phys sc chap 3 2015
Cours master phys sc chap 3 2015omar bllaouhamou
6.2K views179 Folien

Was ist angesagt?(20)

Correction Examen 2014-2015 RDM von Mouna Souissi
Correction Examen 2014-2015 RDMCorrection Examen 2014-2015 RDM
Correction Examen 2014-2015 RDM
Mouna Souissi 10.9K views
Cours - Lois de l'électricité - Light.pptx von HarryAndria
Cours - Lois de l'électricité - Light.pptxCours - Lois de l'électricité - Light.pptx
Cours - Lois de l'électricité - Light.pptx
HarryAndria120 views
Electrocinétique class prépas von Khadda Aziz
Electrocinétique class prépasElectrocinétique class prépas
Electrocinétique class prépas
Khadda Aziz6.5K views
Electrotechnique : Exercices corrigés von RAMZI EL IDRISSI
Electrotechnique : Exercices corrigésElectrotechnique : Exercices corrigés
Electrotechnique : Exercices corrigés
RAMZI EL IDRISSI21.9K views
Cellule photovoltaique von badri slimane
Cellule photovoltaique Cellule photovoltaique
Cellule photovoltaique
badri slimane2.6K views
Tp 1 transmission de donné inisiallisation à simulink matlab von hamdinho
Tp 1 transmission de donné inisiallisation à simulink matlabTp 1 transmission de donné inisiallisation à simulink matlab
Tp 1 transmission de donné inisiallisation à simulink matlab
hamdinho18.1K views
Cours - Lois de l'électricité - Light.pptx von Abdo Brahmi
Cours - Lois de l'électricité - Light.pptxCours - Lois de l'électricité - Light.pptx
Cours - Lois de l'électricité - Light.pptx
Abdo Brahmi81 views
Electricité : sécurité électrique (CM1) von Christophe Palermo
Electricité : sécurité électrique (CM1)Electricité : sécurité électrique (CM1)
Electricité : sécurité électrique (CM1)
Christophe Palermo9.5K views
Cours electronique analogique filtrage 2 von Rachid Richard
Cours electronique analogique filtrage 2Cours electronique analogique filtrage 2
Cours electronique analogique filtrage 2
Rachid Richard8.5K views
modèle de l'atome.ppt von amine100226
modèle de l'atome.pptmodèle de l'atome.ppt
modèle de l'atome.ppt
amine100226166 views

Destacado

Em11 histoire von
Em11 histoireEm11 histoire
Em11 histoireJulien Physagreg
187K views45 Folien
Chapitre 1 loi de coulomb et champ électrostatique von
Chapitre 1  loi de coulomb et champ électrostatiqueChapitre 1  loi de coulomb et champ électrostatique
Chapitre 1 loi de coulomb et champ électrostatiquecoursuniv
29.8K views18 Folien
Electricité II von
Electricité IIElectricité II
Electricité IIOUAJJI Hassan
1.1K views34 Folien
Calculs des champs elctromagncatiques von
Calculs des champs elctromagncatiquesCalculs des champs elctromagncatiques
Calculs des champs elctromagncatiquesLiviu Popescu
5.9K views87 Folien
أختبر معارفي von
أختبر معارفيأختبر معارفي
أختبر معارفيAHMED ENNAJI
624 views2 Folien
fasciculeS&C2010 von
fasciculeS&C2010fasciculeS&C2010
fasciculeS&C2010Audrey Lanotte
288 views5 Folien

Destacado(20)

Chapitre 1 loi de coulomb et champ électrostatique von coursuniv
Chapitre 1  loi de coulomb et champ électrostatiqueChapitre 1  loi de coulomb et champ électrostatique
Chapitre 1 loi de coulomb et champ électrostatique
coursuniv29.8K views
Calculs des champs elctromagncatiques von Liviu Popescu
Calculs des champs elctromagncatiquesCalculs des champs elctromagncatiques
Calculs des champs elctromagncatiques
Liviu Popescu5.9K views
أختبر معارفي von AHMED ENNAJI
أختبر معارفيأختبر معارفي
أختبر معارفي
AHMED ENNAJI624 views
Réseaux électriques linéaires théorèmes généraux von coursuniv
Réseaux électriques linéaires théorèmes générauxRéseaux électriques linéaires théorèmes généraux
Réseaux électriques linéaires théorèmes généraux
coursuniv5.3K views
Chapitre 2 potentiel électrostatique von coursuniv
Chapitre 2  potentiel électrostatiqueChapitre 2  potentiel électrostatique
Chapitre 2 potentiel électrostatique
coursuniv13K views
Cours developpements limites von hassan1488
Cours   developpements limitesCours   developpements limites
Cours developpements limites
hassan148814K views
Spécialité Physique Chimie von Labolycee
Spécialité Physique Chimie Spécialité Physique Chimie
Spécialité Physique Chimie
Labolycee12.2K views
Oscilloscope von Labolycee
OscilloscopeOscilloscope
Oscilloscope
Labolycee56.4K views
Ecart-type expérimental et moyenne von Labolycee
Ecart-type expérimental et moyenneEcart-type expérimental et moyenne
Ecart-type expérimental et moyenne
Labolycee46K views

Similar a Cours electrostatique

Cours_Physique_des_Composants_dElectroni.pptx von
Cours_Physique_des_Composants_dElectroni.pptxCours_Physique_des_Composants_dElectroni.pptx
Cours_Physique_des_Composants_dElectroni.pptxAbdo Brahmi
43 views25 Folien
La fusion thermonucléaire - B. Weyssow von
La fusion thermonucléaire - B. WeyssowLa fusion thermonucléaire - B. Weyssow
La fusion thermonucléaire - B. Weyssownicolas_julemont
648 views28 Folien
Soutenance.ppt von
Soutenance.pptSoutenance.ppt
Soutenance.pptCharafeddineELBAHJA
6 views59 Folien
Soutenance.ppt von
Soutenance.pptSoutenance.ppt
Soutenance.pptFayalA2
5 views59 Folien
Soutenance.ppt von
Soutenance.pptSoutenance.ppt
Soutenance.pptmohamedlamrani9
6 views59 Folien
Poly td ea von
Poly td eaPoly td ea
Poly td eaSalah-Eddine MAAFI
2.8K views14 Folien

Similar a Cours electrostatique(20)

Cours_Physique_des_Composants_dElectroni.pptx von Abdo Brahmi
Cours_Physique_des_Composants_dElectroni.pptxCours_Physique_des_Composants_dElectroni.pptx
Cours_Physique_des_Composants_dElectroni.pptx
Abdo Brahmi43 views
La fusion thermonucléaire - B. Weyssow von nicolas_julemont
La fusion thermonucléaire - B. WeyssowLa fusion thermonucléaire - B. Weyssow
La fusion thermonucléaire - B. Weyssow
nicolas_julemont648 views
Soutenance.ppt von FayalA2
Soutenance.pptSoutenance.ppt
Soutenance.ppt
FayalA25 views
Présentation von m_sidki
Présentation Présentation
Présentation
m_sidki1.3K views
Cours master phys sc chap 2 2015 von omar bllaouhamou
Cours master phys sc chap 2 2015Cours master phys sc chap 2 2015
Cours master phys sc chap 2 2015
omar bllaouhamou12.7K views
Cem 2004 von Ali Bcn
Cem 2004Cem 2004
Cem 2004
Ali Bcn4.9K views
Tp chimie minerale du solide 2015 von Jamal Bennazha
Tp chimie minerale du solide 2015Tp chimie minerale du solide 2015
Tp chimie minerale du solide 2015
Jamal Bennazha5.6K views
1- Les Grands Principes du Rayonnement.ppt von TITANIUMALFREDO
1- Les Grands Principes du Rayonnement.ppt1- Les Grands Principes du Rayonnement.ppt
1- Les Grands Principes du Rayonnement.ppt
TITANIUMALFREDO12 views
Gauchard pierre alexis_p01 von Ihabhenry Ali
Gauchard pierre alexis_p01Gauchard pierre alexis_p01
Gauchard pierre alexis_p01
Ihabhenry Ali3.5K views
loi des maille. Loi de Coulomb... von sami165171
loi des maille.                                                Loi de Coulomb...loi des maille.                                                Loi de Coulomb...
loi des maille. Loi de Coulomb...
sami1651713 views
Cours Haute Tension champs électrique von Amine Slama
Cours Haute Tension champs électriqueCours Haute Tension champs électrique
Cours Haute Tension champs électrique
Amine Slama4.4K views

Más de Office National de L'Electricité (ONEE)

Learn english for free by ( www.lfaculte.com ) von
Learn english for free by ( www.lfaculte.com )Learn english for free by ( www.lfaculte.com )
Learn english for free by ( www.lfaculte.com )Office National de L'Electricité (ONEE)
4.6K views29 Folien
حياة بلا توتر von
حياة بلا توترحياة بلا توتر
حياة بلا توترOffice National de L'Electricité (ONEE)
3.5K views160 Folien
Contrôles Corrigées SMP & SMC- S1 par www.lfaculte.com von
Contrôles Corrigées SMP & SMC- S1 par www.lfaculte.comContrôles Corrigées SMP & SMC- S1 par www.lfaculte.com
Contrôles Corrigées SMP & SMC- S1 par www.lfaculte.comOffice National de L'Electricité (ONEE)
20.4K views73 Folien
Difficultés du français par : www.lfaculte.com von
Difficultés du français par : www.lfaculte.comDifficultés du français par : www.lfaculte.com
Difficultés du français par : www.lfaculte.comOffice National de L'Electricité (ONEE)
7.8K views47 Folien
1300 Pièges du Français Parlé et Ecrit Gratuitement [Www.lfaculte.Com] von
1300 Pièges du Français Parlé et Ecrit Gratuitement [Www.lfaculte.Com]1300 Pièges du Français Parlé et Ecrit Gratuitement [Www.lfaculte.Com]
1300 Pièges du Français Parlé et Ecrit Gratuitement [Www.lfaculte.Com]Office National de L'Electricité (ONEE)
12.1K views159 Folien
كتاب قوة عقلك الباطن : www.lfaculte.com von
كتاب  قوة عقلك الباطن : www.lfaculte.comكتاب  قوة عقلك الباطن : www.lfaculte.com
كتاب قوة عقلك الباطن : www.lfaculte.comOffice National de L'Electricité (ONEE)
5.3K views326 Folien

Más de Office National de L'Electricité (ONEE)(12)

Último

La dissertation von
La dissertationLa dissertation
La dissertationGabriel Gay-Para
21 views19 Folien
La conscience d'être libre est-elle illusoire ? (G. Gay-Para) von
La conscience d'être libre est-elle illusoire ? (G. Gay-Para)La conscience d'être libre est-elle illusoire ? (G. Gay-Para)
La conscience d'être libre est-elle illusoire ? (G. Gay-Para)Gabriel Gay-Para
19 views54 Folien
Newsletter SPW Agriculture en province de LIEGE du 28-11-23 von
Newsletter SPW Agriculture en province de LIEGE du 28-11-23Newsletter SPW Agriculture en province de LIEGE du 28-11-23
Newsletter SPW Agriculture en province de LIEGE du 28-11-23BenotGeorges3
26 views21 Folien
Formation M2i - Cadre réglementaire des IA Génératives : premiers éléments de... von
Formation M2i - Cadre réglementaire des IA Génératives : premiers éléments de...Formation M2i - Cadre réglementaire des IA Génératives : premiers éléments de...
Formation M2i - Cadre réglementaire des IA Génératives : premiers éléments de...M2i Formation
22 views36 Folien
FORMATION SUR LES PICTOGRAMMES DE SECURITE KKW.pptx von
FORMATION SUR LES PICTOGRAMMES DE SECURITE KKW.pptxFORMATION SUR LES PICTOGRAMMES DE SECURITE KKW.pptx
FORMATION SUR LES PICTOGRAMMES DE SECURITE KKW.pptxKOUADIO WILLIAMS KOUAME
20 views17 Folien
ONU.pdf von
ONU.pdfONU.pdf
ONU.pdfChristopheFontaine13
35 views2 Folien

Cours electrostatique

  • 1. 1Cours Physique SEE 2009-2010 – Les applications à la physique Cours - Physique Yannick DESHAYES Maître de conférences Laboratoire IMS yannick.deshayes@ims-bordeaux.fr Tel : 0540002857/0665302965 Page perso IMS : http://extranet.ims-bordeaux.fr/IMS/pages/pageAccueilPerso.php?email=yannick.deshayes
  • 2. 2Cours Physique SEE 2009-2010 – Les applications à la physique Partie 2 Les applications à l’Electrostatique
  • 3. 3Cours Physique SEE 2009-2010 – Les applications à la physique Prenons un électron de charge q A – Représentation Locale I – Principes de l’Electrostatique 1 – Introduction à l’électrostatique r O M Mesure d’un champ électrostatique en M ( )t,rEM Champ électrostatique – unité Vm-1 Symétrie sphérique Une charge électrique crée un champ électrostatique
  • 4. 4Cours Physique SEE 2009-2010 – Les applications à la physique Exemple de phénomènes électrostatiques Morceaux de papier attirés par le CD chargé d’électricité statique Couches nuageuses chargées d’électricité statique donnant des éclairs. B – Effets globaux 1 – Introduction à l’électrostatique I – Principes de l’Electrostatique
  • 5. 5Cours Physique SEE 2009-2010 – Les applications à la physique Les charges peuvent s’organisées en ligne, en surface, en volume. Cela dépend de la forme du support On prend une plaque métallique Contenant N électrons par unité de surface. On définit alors la densité surfacique par : dS dN =σ On démontre que loin des bords et proche de la plaque, le champ électrostatique est constant et vaut : ( ) x 0 M u 2 xE ε σ ±= M xO C – Relations de bases 1 – Introduction à l’électrostatique + : x > 0 - : x < 0 I – Principes de l’Electrostatique 1 90 Fm 1036 1 − π =ε
  • 6. 6Cours Physique SEE 2009-2010 – Les applications à la physique Dans un tel dispositif, il règne un champ quasi constant donné par : ( ) x 0 M uxE ε σ = V(V) x O Le potentiel V crée une quantité de charge Q : SQ σ= S : surface de la plaque. Les charges sont des « manques » d’électrons donc Q>0. Par équilibre des charges, l’autre plaque se « remplie » d’électron en créant une charge -Q SQ σ= SQ σ=− ( ) x 0 M uxE ε σ = C – Relations de bases 1 – Introduction à l’électrostatique I – Principes de l’Electrostatique On prend deux plaques métalliques TD d’application
  • 7. 7Cours Physique SEE 2009-2010 – Les applications à la physique On démontre que la différence de potentiel est reliée au champ électrique par : ( ) xM u x V xE ∂ ∂ −= V(V)>0 x O Faisons l’expérience suivante pour vérifier nos hypothèses : Plaçons un électron entre les deux plaques. L’expérience montre que l’électron est attiré par la plaque alimentée par V. Cela revient à dire que la plaque est chargé positivement. SQ σ= SQ σ=− électron C – Relations de bases 1 – Introduction à l’électrostatique I – Principes de l’Electrostatique
  • 8. 8Cours Physique SEE 2009-2010 – Les applications à la physique Il existe donc une différence de potentiel (V-0=V) ente les deux plaques. Cela crée un champ électrique opposé. C’est ce champ électrique qui est à l’origine du déplacement des électrons V(V)>0 x O La force de Lorentz est donnée par : SQ σ= SQ σ=− électron V(V)>0 ( ) ( )xEqxF MM = Où « q » représente la charge de l’électron situé entre les deux plaques. C – Relations de bases 1 – Introduction à l’électrostatique I – Principes de l’Electrostatique
  • 9. 9Cours Physique SEE 2009-2010 – Les applications à la physique On considère un proton ayant au point O une vitesse nulle soumis au système décrit par la figure 1. 1. Donner le signe de V pour que le proton se déplace vers les x positifs 2. Déterminer et représenter le sens du champ électrique. 3. En déduire la vitesse de la particule au point M ainsi que son énergie cinétique. Exercice 1 X27 13 Effet d’un champ électrostatique sur un proton V O M x y
  • 10. 10Cours Physique SEE 2009-2010 – Les applications à la physique A – Le tube cathodique Nous avons vu que nous pouvions déplacer un électron avec un champ électrique dans le vide. A quoi cela peut-il bien servir. Le tube cathodique Permet de générer des électron dans le vide Zone d’accélération des électrons Visualisation de l’image sur un écran Chambre sous vide secondaire 2 – Quelques applications à l’électrostatique I – Principes de l’Electrostatique
  • 11. 11Cours Physique SEE 2009-2010 – Les applications à la physique Le tube cathodique – Canon d’électrons Le filament est chauffé (par le passage du courant) à haute température afin que le métal émette des électrons Énergie de liaison des électrons avec la matière : A – Le tube cathodique 2 – Quelques applications à l’électrostatique I – Principes de l’Electrostatique
  • 12. 12Cours Physique SEE 2009-2010 – Les applications à la physique Le tube cathodique – Canon d’électrons Électron libre Électron lié à l’atome E(eV) E2 = 0 eV : énergie du vide E1 = -13,7 eV : énergie de liaison électron-proton (atome d’hydrogène stable) Exemple avec l’hydrogène T(K) A – Le tube cathodique 2 – Quelques applications à l’électrostatique I – Principes de l’Electrostatique
  • 13. 13Cours Physique SEE 2009-2010 – Les applications à la physique Le tube cathodique – Canon d’électrons Électron libre Électron lié à La matière E(eV) E2 = 0 eV : énergie du vide Cas du Tungstène T(K) Niveau de Fermi A – Le tube cathodique 2 – Quelques applications à l’électrostatique I – Principes de l’Electrostatique
  • 14. 14Cours Physique SEE 2009-2010 – Les applications à la physique Le tube cathodique – Canon d’électrons Électron libre Électron lié à la matière E(eV) E2 = 0 eV : énergie du vide Cas du Tungstène T(K) Niveau de Fermi kTWEEE F2 ==−= Température en Kelvin Constante de Boltzmann 8,62.10-5 eV/K Energie en eV )C(10.6,1 )J(E q )J(E )eV(E 19− == W : Travail de sortie du Tungstène est de 190 meV → TL = 2200 K A – Le tube cathodique 2 – Quelques applications à l’électrostatique I – Principes de l’Electrostatique
  • 15. 15Cours Physique SEE 2009-2010 – Les applications à la physique Le tube cathodique – Ecran A – Le tube cathodique 2 – Quelques applications à l’électrostatique I – Principes de l’Electrostatique
  • 16. 16Cours Physique SEE 2009-2010 – Les applications à la physique Le tube cathodique – Ecran A – Le tube cathodique 2 – Quelques applications à l’électrostatique I – Principes de l’Electrostatique
  • 17. 17Cours Physique SEE 2009-2010 – Les applications à la physique Le tube cathodique – Ecran A – Le tube cathodique 2 – Quelques applications à l’électrostatique I – Principes de l’Electrostatique
  • 18. 18Cours Physique SEE 2009-2010 – Les applications à la physique Le tube cathodique – Ecran (luminophore) e- Oxyde d’Yttrium dopé Europium A – Le tube cathodique 2 – Quelques applications à l’électrostatique I – Principes de l’Electrostatique Photons
  • 19. 19Cours Physique SEE 2009-2010 – Les applications à la physique Le tube cathodique – Ecran (luminophore) e- V = 30 kV Sulfure de Zinc : sulfure de cadmium dopé Argent Sulfate de Gadolinium dopé Terbium A – Le tube cathodique 2 – Quelques applications à l’électrostatique I – Principes de l’Electrostatique Photons
  • 20. 20Cours Physique SEE 2009-2010 – Les applications à la physique Le tube cathodique – Ecran (luminophore) e- Oxyde d’Yttrium dopé Europium A – Le tube cathodique 2 – Quelques applications à l’électrostatique I – Principes de l’Electrostatique Photons
  • 21. 21Cours Physique SEE 2009-2010 – Les applications à la physique Le Condensateur plan B – Le condensateur plan 2 – Quelques applications à l’électrostatique V Q -Q TD : 1/ Déterminer la valeur de la capacité en effectuant la démonstration, 2/ Le diélectrique est de l’aire. Calculer la valeur de la capacité 3/ Le diélectrique est du BaTiO3. Même question que 2. 4/ Conclure I – Principes de l’Electrostatique
  • 22. 22Cours Physique SEE 2009-2010 – Les applications à la physique Le Condensateur – Technique d’élaboration B – Le condensateur plan 2 – Quelques applications à l’électrostatique Poudre Préparation de la pâte Bande céramique Impréssion des électrodes EmpilementPressagePavés Cuisson et Frittage Fixation des contacts et application d'une couche conductrice I – Principes de l’Electrostatique
  • 23. 23Cours Physique SEE 2009-2010 – Les applications à la physique Le Condensateur plan – Structure interne B – Le condensateur plan 2 – Quelques applications à l’électrostatique I – Principes de l’Electrostatique
  • 24. 24Cours Physique SEE 2009-2010 – Les applications à la physique Le Condensateur plan – Les condensateurs inter digités (1) B – Le condensateur plan 2 – Quelques applications à l’électrostatique Electrode Diélectrique Terminaison I – Principes de l’Electrostatique
  • 25. 25Cours Physique SEE 2009-2010 – Les applications à la physique On considère un condensateur inter digité ayant pour épaisseur 1 mm et comme surface 2 mm par 3 mm. Le matériau est du BaTiO3 1. Déterminer l’épaisseur moyenne entre les différents conducteur (on considère que l’épaisseur du conducteur est de 10 µm 2. Déterminer alors la capacité du condensateur. Exercice 2 X27 13 Calcul de la capacité d’un condensateur céramique
  • 26. 26Cours Physique SEE 2009-2010 – Les applications à la physique A – Concepts fondamentaux 1 – Principe de base de l’électrocinétique La différence de potentiel – Tension (en Volt) E BA Milieu où règne un champ électrostatique uniforme E BA VA VB UAB En A et B, il existe un potentiel VA et VB et donc une différence de potentiel entre A et B (UAB) VgradE −= ∫ ∫∫ −=−=−== B A BA B A B A AB VVdVdx.gradVdx.EU II – Electrocinétique
  • 27. 27Cours Physique SEE 2009-2010 – Les applications à la physique A – Concepts fondamentaux 1 – Principe de base de l’électrocinétique Flux et déplacement d’électrons – Courant (en Ampère) On considère un tube cylindrique Electrons libres Petit élément de volume dτ n la densité d’électrons (porteurs libres) par unité de volume (en générale par cm3) Le nombre de porteurs dn dans un petit élément de volume dτ τ =⇒τ= d dn nnddn Exemple du cuivre : M = 63,5 g.mol.l-1 µ = 9.103 kg.m-3 3 3 m.......n m.mol.......n − − = = II – Electrocinétique
  • 28. 28Cours Physique SEE 2009-2010 – Les applications à la physique II – Electrocinétique A – Concepts fondamentaux 1 – Principe de base de l’électrocinétique Flux et déplacement d’électrons – Courant (en Ampère) On considère un tube cylindrique Electrons libres Petit élément de volume dτ ρ la densité de charge locale (chaque électron porte une charge de 1,6.10-19 C) 319 m.C10.6,1.nq.n −− −==ρ Exemple du cuivre : M = 63,5 g.mol.l-1 µ = 9.103 kg.m-3 3 m.C....... − =ρ
  • 29. 29Cours Physique SEE 2009-2010 – Les applications à la physique II – Electrocinétique A – Concepts fondamentaux 1 – Principe de base de l’électrocinétique Flux et déplacement d’électrons – Courant (en Ampère) On considère un tube cylindrique Le déplacement des électrons se fait à l’aide d’une champ électrique créé par un générateur E VA VB
  • 30. 30Cours Physique SEE 2009-2010 – Les applications à la physique II – Electrocinétique A – Concepts fondamentaux 1 – Principe de base de l’électrocinétique Densité de courant (en Ampère/cm²) Le volume dτ infiniment petit / dimension du conducteur et grand / atomes VA VB ( ) τ= dt,Mndn ( ) τ−= edt,Mndq ( ) ( ) ( )t,Mvt,Mt,Mj ρ= ( )t,Mv
  • 31. 31Cours Physique SEE 2009-2010 – Les applications à la physique II – Electrocinétique A – Concepts fondamentaux 1 – Principe de base de l’électrocinétique Intensité du courant électrique (en Ampère) On considère une surface orientée ( ) ( ) ( )t,Mvt,Mt,Mj ρ= ( )t,Mj n dl = v.dt ( ) ( )t,Mvnet,Mj −= ( ) dtdS.t,Mjdq = ( )dS.t,MjdI =
  • 32. 32Cours Physique SEE 2009-2010 – Les applications à la physique II – Electrocinétique B – Régime permanent 1 – Principe de base de l’électrocinétique Définitions • La tension appliquée au conducteur est indépendante du temps, • Le champ électrostatique moyen en tout points du conducteur est indépendant du temps • Les effets moyens sont indépendants du temps ( )t,Mρ ( )t,Mv indépendants du temps
  • 33. 33Cours Physique SEE 2009-2010 – Les applications à la physique II – Electrocinétique B – Régime permanent 1 – Principe de base de l’électrocinétique Description du problème ( )t,Mj1n Ln 2n S1 SL 0dS.jdS.jdS.jdS.j 21 S 2 S L S 1 S =++−= ∫∫∫∫∫∫∫∫ S2 Le système est à flux conservatif car pas d’accumulation de charge en tous points du conducteur 21 S 2 S 1 iidS.jdS.j 21 =⇔= ∫∫∫∫
  • 34. 34Cours Physique SEE 2009-2010 – Les applications à la physique II – Electrocinétique B – Régime permanent 1 – Principe de base de l’électrocinétique Loi des nœuds S i3 i1 i2 0dS.j S =∫∫n 321 S 3 S 2 S 1 iii 0dS.jdS.jdS.j 321 += =++− ∫∫∫∫∫∫
  • 35. 35Cours Physique SEE 2009-2010 – Les applications à la physique II – Electrocinétique B – Régime permanent 1 – Principe de base de l’électrocinétique Loi d’ohm locale – modèle de la conduction métallique On considère un métal homogène et isotrope à température constante et uniforme. e- Champ nul ( ) 0t,Mv ≠ ( ) 0t,Mv = Champ non nul En moyenne, il n’y a pas de déplacement d’électrons e- ( ) 0t,Mv ≠ ( ) vt,Mv = En moyenne, il y a déplacement d’électrons dans le sens opposé au champ électrique
  • 36. 36Cours Physique SEE 2009-2010 – Les applications à la physique II – Electrocinétique B – Régime permanent 1 – Principe de base de l’électrocinétique Loi d’ohm locale – modèle de la conduction métallique Relions la vitesse moyenne des électrons <v> au champ E. Entre deux chocs, on peut appliquer la loi de Newton sur l’électron : ( ) ( ) ( ) ( ) 0 e vtt,ME m q t,Mv t,MEq dt t,Mvd m += = La vitesse juste avant le choc est donnée par : ( ) ( ) 0cc vtt,ME m q t,Mv += En moyenne ( ) ctt,ME m q v = v0 est nulle car pour E = 0, la vitesse moyenne est nulle
  • 37. 37Cours Physique SEE 2009-2010 – Les applications à la physique II – Electrocinétique B – Régime permanent 1 – Principe de base de l’électrocinétique Loi d’ohm locale – modèle de la conduction métallique L’expression usuelle de la vitesse d’ensemble (moyenne) des électrons est donnée par : ( )τ= .t,ME m q v τ : durée moyenne entre deux chocs ≈ 10-14 s q : charge de l’électron = 1,6.10-19 C m: masse de l’électron = 9.10-31 kg ( ) ( )t,ME m ne .t,ME m q vj 2 τ =τρ=ρ= Aptitude du matériau à conduire une densité de courant sous l’action d’un champ électrique = conductivité électrique ( )t,MEj σ=
  • 38. 38Cours Physique SEE 2009-2010 – Les applications à la physique II – Electrocinétique B – Régime permanent 1 – Principe de base de l’électrocinétique Loi d’ohm locale – modèle de la conduction métallique L’expression de la conductivité électrique : m ne2 τ =σ n et τ sont des paramètres dépendant du matériau Unité : le Siemens.m-1 (S.m-1) τ = σ =ρ 2m ne m1 Résistivité Unité : ohm.m (Ω.m)
  • 39. 39Cours Physique SEE 2009-2010 – Les applications à la physique II – Electrocinétique B – Régime permanent 1 – Principe de base de l’électrocinétique Loi d’ohm locale – modèle de la conduction métallique On considère un conducteur et une ligne de courant élémentaire ∫∫ σ =−⇒ ⎪ ⎭ ⎪ ⎬ ⎫ σ== −= B A BA BA B A dl. dS dI VV EdSdS.jdI VVdl.E I est invariant entre A et B 1n dS B A ∫∫∫ ∫ σ =− = σ =− condV BA B A BA dS dl .IVV rdI dS dl dIVV Résistance totale R (en Ohm)
  • 40. 40Cours Physique SEE 2009-2010 – Les applications à la physique II – Electrocinétique 2 – Exercice d’application On considère un conducteur cylindrique de longueur l 1n dS A B 1. Donner l’expression de la résistance du dispositif 2. On prend comme matériau du cuivre, calculer sa résistant linéaire pour un câble de 2,5 mm² 3. La densité de courant limite du cuivre est de 1000 A.cm-², déterminer le courant limite admissible dans ce conducteur.
  • 41. 41Cours Physique SEE 2009-2010 – Les applications à la physique II – Electrocinétique 3 – Energie et puissance On considère un conducteur cylindrique de longueur l 1n On calcule le travail de la force électrostatique entre A et B sur une ligne dS A B A – Définition de l’énergie électrostatique u dl dV VgradE EqF −=−= = ∫= B A dl.FW ( )BA B A VVqqdVW −=−= ∫ ( )BA VVqW −= Energie en Joules (J)
  • 42. 42Cours Physique SEE 2009-2010 – Les applications à la physique II – Electrocinétique 3 – Energie et puissance On considère un conducteur cylindrique de longueur l 1n dS A B On calcule la puissance sur un temps t correspondant la quantité de charge qui à traversée la surface SA d’entrée B – Définition de la puissance électrostatique ( )BA VVqW −= q = I.t t.Iq = ( ) ( ) 2 BABA RIIVVVV t q t W P =−=−== L’effet principal est l’effet Joules (P en Watt)