Yurii Pashchenko: Unlocking the potential of Segment Anything Model (UA)

Lviv Startup Club
Lviv Startup ClubLviv Startup Club
Unlocking the potential of
Segment Anything Model
AI&BigData Online Day 2023
About me
❏ Yurii Pashchenko
❏ Principal Machine Learning Engineer at Depositphotos
❏ Over 10 years of research and commercial experience in
applying Deep Learning models
❏ Object Detection/Segmentation and Face Recognition
Specialist
Unlocking the potential of Segment Anything Model
● Image segmentation
● Segment Anything Model
● Examples of use
● Limitations
Image
Segmentation
Basic Image Segmentation
“Image segmentation is a sub-domain of computer vision and digital image processing which aims at
grouping similar regions or segments of an image under their respective class labels”
https://www.v7labs.com/blog/image-segmentation-guide#h3
Entity Segmentation
http://luqi.info/Entity_Web/
Open-Vocabulary Segmentation
https://paperswithcode.com/task/open-vocabulary-semantic-segmentation
SAM: Segment
Anything Model
Yurii Pashchenko: Unlocking the potential of Segment Anything Model (UA)
Segment Anything Model (SAM)
SAM: A generalized
approach to
segmentation
https://ai.meta.com/blog/segment-anything-foundation-model-image-segmentation/
Segment Anything Model (SAM)
SAM.Task
Prompt -> Valid mask
prompt can be
● a set of foreground/ background points
● rough box or mask
● free-form text, or, in general, any information
indicating what to segment in an image.
“valid” mask simply means that even when a
prompt is ambiguous and could refer to multiple
objects the output should be a reasonable mask for
at least one of those objects.
SAM.Data Engine
Stage Avg
Annotation
time,s
Avg
Masks/image
Collected
Assisted-manual
stage
34->14 20->44 4.3M masks from
120k images
Semi-automatic
stage
14->34 44 -> 72 5.9M masks in
180k images
Fully automatic
stage
- - 1.1 masks from
11M images
SAM.Dataset
SA-1B consists of 11M diverse, high-resolution, privacy protecting images and 1.1B high-quality segmentation
masks that were collected with our data engine.
SAM.Model
CLIP: Contrastive Language-Image Pre-training
Learning Transferable Visual Models From Natural Language Supervision
● 400 million (image, text) pairs
collected from Internet.
● Trained modifications of
ResNet-50 and ViT-B
● Batch size 32 768 for 32 epochs
SAM.Model text encoder
Zero-Shot Transfer Experiments
● Single Point Valid Mask Evaluation
● Edge Detection
● Object Proposals
● Instance Segmentation
● Text-to-Mask
Examples of use
Auto-Label Data with SAM
● Encord
● v7
● Roboflow
Matting Anything
https://chrisjuniorli.github.io/project/Matting-Anything/
Matting Anything
https://chrisjuniorli.github.io/project/Matting-Anything/
Inpaint Anything
https://github.com/geekyutao/Inpaint-Anything
Limitations
Quality
https://github.com/SysCV/sam-hq
Quality
https://github.com/SysCV/sam-hq
Meta didn't release the text prompt feature for SAM
Text Encoder.CLIP
CLIP Surgery for Better Explainability with Enhancement in Open-Vocabulary Tasks
Meta didn't release the text prompt feature for SAM
Text Encoder.CLIP
https://github.com/xmed-lab/CLIP_Surgery/blob/master/demo.ipynb
Text Encoder.DINO
https://github.com/IDEA-Research/Grounded-Segment-Anything
Semantic and Panoptic Segmentation
A pipeline for panoptic segmentation can be like this:
1. Use Grounding DINO to detect the "thing" categories (categories with
instances)
2. Get instance segmentation masks for the detected boxes using SAM
3. Use CLIPSeg to obtain rough segmentation masks of the "stuff" categories
4. Sample points in these rough segmentation masks and feed these to SAM
to get fine segmentation masks
5. Combine the background "stuff" masks with the foreground "thing" masks
to obtain a panoptic segmentation label
https://github.com/segments-ai/panoptic-segment-anything
Speed.FastSAM
https://github.com/CASIA-IVA-Lab/FastSAM
The Fast Segment Anything Model(FastSAM) is
a CNN SAM trained using only 2% of the SA-1B
dataset published by SAM authors.
FastSAM achieves comparable performance with
the SAM method at 50× higher run-time speed.
Speed.Fast SAM
https://github.com/CASIA-IVA-Lab/FastSAM
Speed.MobileSAM
https://github.com/ChaoningZhang/MobileSAM
Speed.MobileSAM
https://github.com/ChaoningZhang/MobileSAM
Thank you for your attention!
AI&BigData Online Day 2023
Yurii Pashchenko
Principal Machine Learning
Engineer at Depositphotos
yurii_pas
george.pashchenko@gmail.com
1 von 35

Recomendados

Math of Explaining SAM von
Math of Explaining SAMMath of Explaining SAM
Math of Explaining SAMLian Sabella Castillo
77 views13 Folien
Segment Anything von
Segment AnythingSegment Anything
Segment Anythingfake can
503 views28 Folien
論文読み会@AIST (Deep Virtual Stereo Odometry [ECCV2018]) von
論文読み会@AIST (Deep Virtual Stereo Odometry [ECCV2018])論文読み会@AIST (Deep Virtual Stereo Odometry [ECCV2018])
論文読み会@AIST (Deep Virtual Stereo Odometry [ECCV2018])Masaya Kaneko
2.8K views53 Folien
[unofficial] Pyramid Scene Parsing Network (CVPR 2017) von
[unofficial] Pyramid Scene Parsing Network (CVPR 2017)[unofficial] Pyramid Scene Parsing Network (CVPR 2017)
[unofficial] Pyramid Scene Parsing Network (CVPR 2017)Shunta Saito
4.7K views32 Folien
【DL輪読会】Segment Anything von
【DL輪読会】Segment Anything【DL輪読会】Segment Anything
【DL輪読会】Segment AnythingDeep Learning JP
4K views24 Folien
[DL輪読会]An Image is Worth 16x16 Words: Transformers for Image Recognition at S... von
[DL輪読会]An Image is Worth 16x16 Words: Transformers for Image Recognition at S...[DL輪読会]An Image is Worth 16x16 Words: Transformers for Image Recognition at S...
[DL輪読会]An Image is Worth 16x16 Words: Transformers for Image Recognition at S...Deep Learning JP
31.3K views30 Folien

Más contenido relacionado

Was ist angesagt?

YOLOv4: optimal speed and accuracy of object detection review von
YOLOv4: optimal speed and accuracy of object detection reviewYOLOv4: optimal speed and accuracy of object detection review
YOLOv4: optimal speed and accuracy of object detection reviewLEE HOSEONG
3.5K views28 Folien
Object Detection Methods using Deep Learning von
Object Detection Methods using Deep LearningObject Detection Methods using Deep Learning
Object Detection Methods using Deep LearningSungjoon Choi
2.4K views70 Folien
State of transformers in Computer Vision von
State of transformers in Computer VisionState of transformers in Computer Vision
State of transformers in Computer VisionDeep Kayal
121 views20 Folien
Semantic segmentation with Convolutional Neural Network Approaches von
Semantic segmentation with Convolutional Neural Network ApproachesSemantic segmentation with Convolutional Neural Network Approaches
Semantic segmentation with Convolutional Neural Network ApproachesFellowship at Vodafone FutureLab
1.2K views29 Folien
Image classification with Deep Neural Networks von
Image classification with Deep Neural NetworksImage classification with Deep Neural Networks
Image classification with Deep Neural NetworksYogendra Tamang
7.6K views29 Folien
Meta learning tutorial von
Meta learning tutorialMeta learning tutorial
Meta learning tutorialJoaquin Vanschoren
1.2K views109 Folien

Was ist angesagt?(20)

YOLOv4: optimal speed and accuracy of object detection review von LEE HOSEONG
YOLOv4: optimal speed and accuracy of object detection reviewYOLOv4: optimal speed and accuracy of object detection review
YOLOv4: optimal speed and accuracy of object detection review
LEE HOSEONG3.5K views
Object Detection Methods using Deep Learning von Sungjoon Choi
Object Detection Methods using Deep LearningObject Detection Methods using Deep Learning
Object Detection Methods using Deep Learning
Sungjoon Choi2.4K views
State of transformers in Computer Vision von Deep Kayal
State of transformers in Computer VisionState of transformers in Computer Vision
State of transformers in Computer Vision
Deep Kayal121 views
Image classification with Deep Neural Networks von Yogendra Tamang
Image classification with Deep Neural NetworksImage classification with Deep Neural Networks
Image classification with Deep Neural Networks
Yogendra Tamang7.6K views
Object Detection using Deep Neural Networks von Usman Qayyum
Object Detection using Deep Neural NetworksObject Detection using Deep Neural Networks
Object Detection using Deep Neural Networks
Usman Qayyum1.3K views
Transfer Learning and Fine-tuning Deep Neural Networks von PyData
 Transfer Learning and Fine-tuning Deep Neural Networks Transfer Learning and Fine-tuning Deep Neural Networks
Transfer Learning and Fine-tuning Deep Neural Networks
PyData10.5K views
[DL輪読会]Monaural Audio Source Separationusing Variational Autoencoders von Deep Learning JP
[DL輪読会]Monaural Audio Source Separationusing Variational Autoencoders[DL輪読会]Monaural Audio Source Separationusing Variational Autoencoders
[DL輪読会]Monaural Audio Source Separationusing Variational Autoencoders
Deep Learning JP904 views
camera-based Lane detection by deep learning von Yu Huang
camera-based Lane detection by deep learningcamera-based Lane detection by deep learning
camera-based Lane detection by deep learning
Yu Huang4.1K views
Detection of Number Plate using Yolo von ijtsrd
Detection of Number Plate using YoloDetection of Number Plate using Yolo
Detection of Number Plate using Yolo
ijtsrd378 views
Semantic Segmentation Methods using Deep Learning von Sungjoon Choi
Semantic Segmentation Methods using Deep LearningSemantic Segmentation Methods using Deep Learning
Semantic Segmentation Methods using Deep Learning
Sungjoon Choi1.9K views
論文紹介:Grad-CAM: Visual explanations from deep networks via gradient-based loca... von Kazuki Adachi
論文紹介:Grad-CAM: Visual explanations from deep networks via gradient-based loca...論文紹介:Grad-CAM: Visual explanations from deep networks via gradient-based loca...
論文紹介:Grad-CAM: Visual explanations from deep networks via gradient-based loca...
Kazuki Adachi5.2K views
Image Translation with GAN von Junho Cho
Image Translation with GANImage Translation with GAN
Image Translation with GAN
Junho Cho2.6K views
PyTorchLightning ベース Hydra+MLFlow+Optuna による機械学習開発環境の構築 von Kosuke Shinoda
PyTorchLightning ベース Hydra+MLFlow+Optuna による機械学習開発環境の構築PyTorchLightning ベース Hydra+MLFlow+Optuna による機械学習開発環境の構築
PyTorchLightning ベース Hydra+MLFlow+Optuna による機械学習開発環境の構築
Kosuke Shinoda1.5K views
Deep convolutional neural fields for depth estimation from a single image von Wei Yang
Deep convolutional neural fields for depth estimation from a single imageDeep convolutional neural fields for depth estimation from a single image
Deep convolutional neural fields for depth estimation from a single image
Wei Yang2.2K views
DeNAにおける先端AI技術活用のチャレンジ von Yusuke Uchida
DeNAにおける先端AI技術活用のチャレンジDeNAにおける先端AI技術活用のチャレンジ
DeNAにおける先端AI技術活用のチャレンジ
Yusuke Uchida5K views
[DL輪読会]PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection von Deep Learning JP
[DL輪読会]PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection[DL輪読会]PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection
[DL輪読会]PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection
Deep Learning JP1.4K views
Transformer 動向調査 in 画像認識 von Kazuki Maeno
Transformer 動向調査 in 画像認識Transformer 動向調査 in 画像認識
Transformer 動向調査 in 画像認識
Kazuki Maeno807 views

Similar a Yurii Pashchenko: Unlocking the potential of Segment Anything Model (UA)

Build, Train, and Deploy ML Models at Scale von
Build, Train, and Deploy ML Models at ScaleBuild, Train, and Deploy ML Models at Scale
Build, Train, and Deploy ML Models at ScaleAmazon Web Services
950 views34 Folien
Lunch and learn as3_frameworks von
Lunch and learn as3_frameworksLunch and learn as3_frameworks
Lunch and learn as3_frameworksYuri Visser
653 views25 Folien
Single Page Applications – Know The Ecosystem system von
Single Page Applications – Know The Ecosystem systemSingle Page Applications – Know The Ecosystem system
Single Page Applications – Know The Ecosystem systemSynerzip
12 views85 Folien
Challenges of Deep Learning in Computer Vision Webinar - Tessellate Imaging von
Challenges of Deep Learning in Computer Vision Webinar - Tessellate ImagingChallenges of Deep Learning in Computer Vision Webinar - Tessellate Imaging
Challenges of Deep Learning in Computer Vision Webinar - Tessellate ImagingAdhesh Shrivastava
21 views23 Folien
Strata CA 2019: From Jupyter to Production Manu Mukerji von
Strata CA 2019: From Jupyter to Production Manu MukerjiStrata CA 2019: From Jupyter to Production Manu Mukerji
Strata CA 2019: From Jupyter to Production Manu MukerjiManu Mukerji
104 views30 Folien
Deep Learning on Amazon Sagemaker (July 2019) von
Deep Learning on Amazon Sagemaker (July 2019)Deep Learning on Amazon Sagemaker (July 2019)
Deep Learning on Amazon Sagemaker (July 2019)Julien SIMON
709 views25 Folien

Similar a Yurii Pashchenko: Unlocking the potential of Segment Anything Model (UA)(20)

Lunch and learn as3_frameworks von Yuri Visser
Lunch and learn as3_frameworksLunch and learn as3_frameworks
Lunch and learn as3_frameworks
Yuri Visser653 views
Single Page Applications – Know The Ecosystem system von Synerzip
Single Page Applications – Know The Ecosystem systemSingle Page Applications – Know The Ecosystem system
Single Page Applications – Know The Ecosystem system
Synerzip12 views
Challenges of Deep Learning in Computer Vision Webinar - Tessellate Imaging von Adhesh Shrivastava
Challenges of Deep Learning in Computer Vision Webinar - Tessellate ImagingChallenges of Deep Learning in Computer Vision Webinar - Tessellate Imaging
Challenges of Deep Learning in Computer Vision Webinar - Tessellate Imaging
Strata CA 2019: From Jupyter to Production Manu Mukerji von Manu Mukerji
Strata CA 2019: From Jupyter to Production Manu MukerjiStrata CA 2019: From Jupyter to Production Manu Mukerji
Strata CA 2019: From Jupyter to Production Manu Mukerji
Manu Mukerji104 views
Deep Learning on Amazon Sagemaker (July 2019) von Julien SIMON
Deep Learning on Amazon Sagemaker (July 2019)Deep Learning on Amazon Sagemaker (July 2019)
Deep Learning on Amazon Sagemaker (July 2019)
Julien SIMON709 views
[AWS Innovate 온라인 컨퍼런스] 간단한 Python 코드만으로 높은 성능의 기계 학습 모델 만들기 - 김무현, AWS Sr.데이... von Amazon Web Services Korea
[AWS Innovate 온라인 컨퍼런스] 간단한 Python 코드만으로 높은 성능의 기계 학습 모델 만들기 - 김무현, AWS Sr.데이...[AWS Innovate 온라인 컨퍼런스] 간단한 Python 코드만으로 높은 성능의 기계 학습 모델 만들기 - 김무현, AWS Sr.데이...
[AWS Innovate 온라인 컨퍼런스] 간단한 Python 코드만으로 높은 성능의 기계 학습 모델 만들기 - 김무현, AWS Sr.데이...
Easy path to machine learning von wesley chun
Easy path to machine learningEasy path to machine learning
Easy path to machine learning
wesley chun307 views
Yurii Pashchenko: Tips and tricks for building your own automated visual data... von Lviv Startup Club
Yurii Pashchenko: Tips and tricks for building your own automated visual data...Yurii Pashchenko: Tips and tricks for building your own automated visual data...
Yurii Pashchenko: Tips and tricks for building your own automated visual data...
Julien Simon, Principal Technical Evangelist at Amazon - Machine Learning: Fr... von Codiax
Julien Simon, Principal Technical Evangelist at Amazon - Machine Learning: Fr...Julien Simon, Principal Technical Evangelist at Amazon - Machine Learning: Fr...
Julien Simon, Principal Technical Evangelist at Amazon - Machine Learning: Fr...
Codiax205 views
Amazon SageMaker (December 2018) von Julien SIMON
Amazon SageMaker (December 2018)Amazon SageMaker (December 2018)
Amazon SageMaker (December 2018)
Julien SIMON2.3K views
Adobe MAX 2008: HTML/CSS + Fireworks von Nathan Smith
Adobe MAX 2008: HTML/CSS + FireworksAdobe MAX 2008: HTML/CSS + Fireworks
Adobe MAX 2008: HTML/CSS + Fireworks
Nathan Smith2K views
Clean architecture on android von Benjamin Cheng
Clean architecture on androidClean architecture on android
Clean architecture on android
Benjamin Cheng2.9K views
The New Design Workflow von Phase2
The New Design WorkflowThe New Design Workflow
The New Design Workflow
Phase29.3K views
AWS Toronto Summit 2019 - AIM302 - Build, train, and deploy ML models with Am... von Jonathan Dion
AWS Toronto Summit 2019 - AIM302 - Build, train, and deploy ML models with Am...AWS Toronto Summit 2019 - AIM302 - Build, train, and deploy ML models with Am...
AWS Toronto Summit 2019 - AIM302 - Build, train, and deploy ML models with Am...
Jonathan Dion113 views

Más de Lviv Startup Club

Sergiy Kharytonov: Keep Your Business Going via Growth During A Recession (UA) von
Sergiy Kharytonov: Keep Your Business Going via Growth During A Recession (UA)Sergiy Kharytonov: Keep Your Business Going via Growth During A Recession (UA)
Sergiy Kharytonov: Keep Your Business Going via Growth During A Recession (UA)Lviv Startup Club
4 views13 Folien
Andrii Burlutskyi: Account-based marketing в світі AI: що і як робити у 2024 ... von
Andrii Burlutskyi: Account-based marketing в світі AI: що і як робити у 2024 ...Andrii Burlutskyi: Account-based marketing в світі AI: що і як робити у 2024 ...
Andrii Burlutskyi: Account-based marketing в світі AI: що і як робити у 2024 ...Lviv Startup Club
2 views29 Folien
Max Sidorenko: LinkedIn 2024: які стратегії працюватимуть в новому році? (UA) von
Max Sidorenko: LinkedIn 2024: які стратегії працюватимуть в новому році? (UA)Max Sidorenko: LinkedIn 2024: які стратегії працюватимуть в новому році? (UA)
Max Sidorenko: LinkedIn 2024: які стратегії працюватимуть в новому році? (UA)Lviv Startup Club
26 views21 Folien
Pavel Obod: Трансформація мислення CEO: чому зростати в 10 разів швидше і лег... von
Pavel Obod: Трансформація мислення CEO: чому зростати в 10 разів швидше і лег...Pavel Obod: Трансформація мислення CEO: чому зростати в 10 разів швидше і лег...
Pavel Obod: Трансформація мислення CEO: чому зростати в 10 разів швидше і лег...Lviv Startup Club
15 views33 Folien
Valeriy Kozlov: Transition to Fact-Based, Data-Driven Decision Making in B2B ... von
Valeriy Kozlov: Transition to Fact-Based, Data-Driven Decision Making in B2B ...Valeriy Kozlov: Transition to Fact-Based, Data-Driven Decision Making in B2B ...
Valeriy Kozlov: Transition to Fact-Based, Data-Driven Decision Making in B2B ...Lviv Startup Club
7 views20 Folien
Maryna Ruban: Рецесія? Чи є світло в кінці тунелю та коли будуть ліди з SEO? ... von
Maryna Ruban: Рецесія? Чи є світло в кінці тунелю та коли будуть ліди з SEO? ...Maryna Ruban: Рецесія? Чи є світло в кінці тунелю та коли будуть ліди з SEO? ...
Maryna Ruban: Рецесія? Чи є світло в кінці тунелю та коли будуть ліди з SEO? ...Lviv Startup Club
21 views25 Folien

Más de Lviv Startup Club(20)

Sergiy Kharytonov: Keep Your Business Going via Growth During A Recession (UA) von Lviv Startup Club
Sergiy Kharytonov: Keep Your Business Going via Growth During A Recession (UA)Sergiy Kharytonov: Keep Your Business Going via Growth During A Recession (UA)
Sergiy Kharytonov: Keep Your Business Going via Growth During A Recession (UA)
Andrii Burlutskyi: Account-based marketing в світі AI: що і як робити у 2024 ... von Lviv Startup Club
Andrii Burlutskyi: Account-based marketing в світі AI: що і як робити у 2024 ...Andrii Burlutskyi: Account-based marketing в світі AI: що і як робити у 2024 ...
Andrii Burlutskyi: Account-based marketing в світі AI: що і як робити у 2024 ...
Max Sidorenko: LinkedIn 2024: які стратегії працюватимуть в новому році? (UA) von Lviv Startup Club
Max Sidorenko: LinkedIn 2024: які стратегії працюватимуть в новому році? (UA)Max Sidorenko: LinkedIn 2024: які стратегії працюватимуть в новому році? (UA)
Max Sidorenko: LinkedIn 2024: які стратегії працюватимуть в новому році? (UA)
Pavel Obod: Трансформація мислення CEO: чому зростати в 10 разів швидше і лег... von Lviv Startup Club
Pavel Obod: Трансформація мислення CEO: чому зростати в 10 разів швидше і лег...Pavel Obod: Трансформація мислення CEO: чому зростати в 10 разів швидше і лег...
Pavel Obod: Трансформація мислення CEO: чому зростати в 10 разів швидше і лег...
Valeriy Kozlov: Transition to Fact-Based, Data-Driven Decision Making in B2B ... von Lviv Startup Club
Valeriy Kozlov: Transition to Fact-Based, Data-Driven Decision Making in B2B ...Valeriy Kozlov: Transition to Fact-Based, Data-Driven Decision Making in B2B ...
Valeriy Kozlov: Transition to Fact-Based, Data-Driven Decision Making in B2B ...
Maryna Ruban: Рецесія? Чи є світло в кінці тунелю та коли будуть ліди з SEO? ... von Lviv Startup Club
Maryna Ruban: Рецесія? Чи є світло в кінці тунелю та коли будуть ліди з SEO? ...Maryna Ruban: Рецесія? Чи є світло в кінці тунелю та коли будуть ліди з SEO? ...
Maryna Ruban: Рецесія? Чи є світло в кінці тунелю та коли будуть ліди з SEO? ...
Danylo Fedirko: Marketing as an ecosystem: how to be in front of your TA ever... von Lviv Startup Club
Danylo Fedirko: Marketing as an ecosystem: how to be in front of your TA ever...Danylo Fedirko: Marketing as an ecosystem: how to be in front of your TA ever...
Danylo Fedirko: Marketing as an ecosystem: how to be in front of your TA ever...
Taras Bachynskyy: M&A, як спосіб масштабування бізнесу. Що було, є і чого вар... von Lviv Startup Club
Taras Bachynskyy: M&A, як спосіб масштабування бізнесу. Що було, є і чого вар...Taras Bachynskyy: M&A, як спосіб масштабування бізнесу. Що було, є і чого вар...
Taras Bachynskyy: M&A, як спосіб масштабування бізнесу. Що було, є і чого вар...
Igor Dumbur: Кейс: встановлення базових планів в Enterprise Level проекті (UA) von Lviv Startup Club
Igor Dumbur: Кейс: встановлення базових планів в Enterprise Level проекті (UA)Igor Dumbur: Кейс: встановлення базових планів в Enterprise Level проекті (UA)
Igor Dumbur: Кейс: встановлення базових планів в Enterprise Level проекті (UA)
Anna Kompanets: Інтеграція проєктного менеджменту та управління змінами. Якос... von Lviv Startup Club
Anna Kompanets: Інтеграція проєктного менеджменту та управління змінами. Якос...Anna Kompanets: Інтеграція проєктного менеджменту та управління змінами. Якос...
Anna Kompanets: Інтеграція проєктного менеджменту та управління змінами. Якос...
Constantine Om: Використання принципів управління проєктами в повсякденному ж... von Lviv Startup Club
Constantine Om: Використання принципів управління проєктами в повсякденному ж...Constantine Om: Використання принципів управління проєктами в повсякденному ж...
Constantine Om: Використання принципів управління проєктами в повсякденному ж...
Anastasiia Terletska: How to manage endangered RnD species (UA) von Lviv Startup Club
Anastasiia Terletska: How to manage endangered RnD species (UA)Anastasiia Terletska: How to manage endangered RnD species (UA)
Anastasiia Terletska: How to manage endangered RnD species (UA)
Viktoriia Honcharova: Вища освіта в управлінні проєктами: пацієнт скоріше жив... von Lviv Startup Club
Viktoriia Honcharova: Вища освіта в управлінні проєктами: пацієнт скоріше жив...Viktoriia Honcharova: Вища освіта в управлінні проєктами: пацієнт скоріше жив...
Viktoriia Honcharova: Вища освіта в управлінні проєктами: пацієнт скоріше жив...
Oleh Oleksiuk: Гордість та упередження в SMM. Чи потрібні соцмережі продукту?... von Lviv Startup Club
Oleh Oleksiuk: Гордість та упередження в SMM. Чи потрібні соцмережі продукту?...Oleh Oleksiuk: Гордість та упередження в SMM. Чи потрібні соцмережі продукту?...
Oleh Oleksiuk: Гордість та упередження в SMM. Чи потрібні соцмережі продукту?...
Chyngys Barynov: Історія Worksection. Розвиток продукту: з нуля, без досвіду ... von Lviv Startup Club
Chyngys Barynov: Історія Worksection. Розвиток продукту: з нуля, без досвіду ...Chyngys Barynov: Історія Worksection. Розвиток продукту: з нуля, без досвіду ...
Chyngys Barynov: Історія Worksection. Розвиток продукту: з нуля, без досвіду ...
Diana Natkhir: Управління змінами та втрата управлінського контролю (UA) von Lviv Startup Club
Diana Natkhir: Управління змінами та втрата управлінського контролю (UA)Diana Natkhir: Управління змінами та втрата управлінського контролю (UA)
Diana Natkhir: Управління змінами та втрата управлінського контролю (UA)
Dmytro Velykoivanenko: What dreams may come or how to practically use vision ... von Lviv Startup Club
Dmytro Velykoivanenko: What dreams may come or how to practically use vision ...Dmytro Velykoivanenko: What dreams may come or how to practically use vision ...
Dmytro Velykoivanenko: What dreams may come or how to practically use vision ...
Anton Hlazkov: Роздутий хайп Agile трансформацій, або хто такий справжній Agi... von Lviv Startup Club
Anton Hlazkov: Роздутий хайп Agile трансформацій, або хто такий справжній Agi...Anton Hlazkov: Роздутий хайп Agile трансформацій, або хто такий справжній Agi...
Anton Hlazkov: Роздутий хайп Agile трансформацій, або хто такий справжній Agi...
Dmytro Lukianov: Agile System Engineering (UA) von Lviv Startup Club
Dmytro Lukianov: Agile System Engineering (UA)Dmytro Lukianov: Agile System Engineering (UA)
Dmytro Lukianov: Agile System Engineering (UA)

Último

PMU Launch - Guaranteed Slides von
PMU Launch - Guaranteed SlidesPMU Launch - Guaranteed Slides
PMU Launch - Guaranteed Slidespmulaunch
16 views64 Folien
Bloomerang Thank Yous Dec 2023.pdf von
Bloomerang Thank Yous Dec 2023.pdfBloomerang Thank Yous Dec 2023.pdf
Bloomerang Thank Yous Dec 2023.pdfBloomerang
123 views66 Folien
The Talent Management Navigator Performance Management von
The Talent Management Navigator Performance ManagementThe Talent Management Navigator Performance Management
The Talent Management Navigator Performance ManagementSeta Wicaksana
29 views36 Folien
Top 10 IT Tasks Small Businesses Can Entrust to Offshore Professionals von
Top 10 IT Tasks Small Businesses Can Entrust to Offshore ProfessionalsTop 10 IT Tasks Small Businesses Can Entrust to Offshore Professionals
Top 10 IT Tasks Small Businesses Can Entrust to Offshore Professionalsaltafhsayyednimetler
25 views14 Folien
Imports Next Level.pdf von
Imports Next Level.pdfImports Next Level.pdf
Imports Next Level.pdfBloomerang
120 views32 Folien
Defcon Network.pdf von
Defcon Network.pdfDefcon Network.pdf
Defcon Network.pdfJesse Mauck
18 views4 Folien

Último(20)

PMU Launch - Guaranteed Slides von pmulaunch
PMU Launch - Guaranteed SlidesPMU Launch - Guaranteed Slides
PMU Launch - Guaranteed Slides
pmulaunch16 views
Bloomerang Thank Yous Dec 2023.pdf von Bloomerang
Bloomerang Thank Yous Dec 2023.pdfBloomerang Thank Yous Dec 2023.pdf
Bloomerang Thank Yous Dec 2023.pdf
Bloomerang123 views
The Talent Management Navigator Performance Management von Seta Wicaksana
The Talent Management Navigator Performance ManagementThe Talent Management Navigator Performance Management
The Talent Management Navigator Performance Management
Seta Wicaksana29 views
Top 10 IT Tasks Small Businesses Can Entrust to Offshore Professionals von altafhsayyednimetler
Top 10 IT Tasks Small Businesses Can Entrust to Offshore ProfessionalsTop 10 IT Tasks Small Businesses Can Entrust to Offshore Professionals
Top 10 IT Tasks Small Businesses Can Entrust to Offshore Professionals
Imports Next Level.pdf von Bloomerang
Imports Next Level.pdfImports Next Level.pdf
Imports Next Level.pdf
Bloomerang120 views
Pitch Deck Teardown: Scalestack's $1M AI sales tech Seed deck von HajeJanKamps
Pitch Deck Teardown: Scalestack's $1M AI sales tech Seed deckPitch Deck Teardown: Scalestack's $1M AI sales tech Seed deck
Pitch Deck Teardown: Scalestack's $1M AI sales tech Seed deck
HajeJanKamps597 views
Top 10 Web Development Companies in California von TopCSSGallery
Top 10 Web Development Companies in CaliforniaTop 10 Web Development Companies in California
Top 10 Web Development Companies in California
TopCSSGallery74 views
Integrating Talent Management Practices von Seta Wicaksana
Integrating Talent Management PracticesIntegrating Talent Management Practices
Integrating Talent Management Practices
Seta Wicaksana134 views
Engaging Senior Leaders to Accelerate Your Continuous Improvement Program von KaiNexus
Engaging Senior Leaders to Accelerate Your Continuous Improvement ProgramEngaging Senior Leaders to Accelerate Your Continuous Improvement Program
Engaging Senior Leaders to Accelerate Your Continuous Improvement Program
KaiNexus12 views
2023 Photo Contest.pptx von culhama
2023 Photo Contest.pptx2023 Photo Contest.pptx
2023 Photo Contest.pptx
culhama32 views
Bloomerang_Forecasting Your Fundraising Revenue 2024.pptx.pdf von Bloomerang
Bloomerang_Forecasting Your Fundraising Revenue 2024.pptx.pdfBloomerang_Forecasting Your Fundraising Revenue 2024.pptx.pdf
Bloomerang_Forecasting Your Fundraising Revenue 2024.pptx.pdf
Bloomerang146 views
Monthly Social Media Update November 2023 copy.pptx von Andy Lambert
Monthly Social Media Update November 2023 copy.pptxMonthly Social Media Update November 2023 copy.pptx
Monthly Social Media Update November 2023 copy.pptx
Andy Lambert30 views

Yurii Pashchenko: Unlocking the potential of Segment Anything Model (UA)