Desarrollo del pensamiento algebraico
Bloque 4
Representación algebraica de relaciones parte todo
Presentación
Entre otros, este bloque de actividades se orienta al logro de dos
grandes propósitos: (i) introducir la producción de expresiones algebraicas
para describir relaciones parte-todo y (ii) introducir el uso de las expresiones
algebraicas como herramienta para plantear y resolver problemas.
La habilidad para representar algebraicamente relaciones parte-todo es
de especial importancia para plantear y resolver problemas matemáticos en
muchos contextos, por ejemplo, problemas que involucran porcentajes y
problemas geométricos. En este bloque abordarás algunos problemas clásicos
de carácter geométrico.
De igual manera que en los bloques de actividades que preceden a
éste, es muy relevante el apoyo que brinda un procesador algebraico como el
que está instalado en la calculadora. En las actividades que aquí realizarás se
aprovecha la estructura algebraica de las relaciones parte-todo para introducir
el uso de números negativos y ampliar los conocimientos que has adquirido en
el bloque anterior acerca del concepto de equivalencia entre expresiones
algebraicas.
Te invitamos a abordar estas actividades reflexionando constantemente
sobre el tipo de competencias matemáticas que pueden desarrollar los
alumnos de educación básica al resolverlas. Esta reflexión enriquecerá tu
formación como futuro docente, nuestra mayor expectativa es que esta
experiencia fortalezca tus competencias matemáticas y que esto te sea de
mucha utilidad cuando te desempeñes profesionalmente como educador.
Tenoch Cedillo y Valentín Cruz
Desarrollo del pensamiento algebraico
HOJA DE TRABAJO 32
¿Cómo expreso la parte restante?
1. En una ferretería hay carretes de un tipo de cable que se vende por kilo, todos los
carretes pesan lo mismo. Para saber cuánto cable queda en cada uno, el administrador
de la ferretería construyó un programa que hace lo siguiente:
Si teclea la cantidad que se vende el valor de salida le indica cuánto cable le queda.
Cable vendido Cable que queda
1.7 8.3
2.4 7.6
3.1 6.9
4.06 5.94
5.2 4.8
2. De acuerdo con la información que te da este programa, ¿cuántos kilos de cable hay en
cada carrete? _____________________________________________________
3. ¿Puedes hacer un programa que produzca los mismos valores de salida que el del inciso
(1)? Pruébalo en tu calculadora y escríbelo abajo.
4. Usa tu programa para completar la siguiente tabla.
Cable venido 2.83 3.03 3.5 4.8
Cable que queda 5.01 6.2 7.04 7.32
5. ¿Cómo puedes comprobar que son correctos los valores que encontraste para 5.01, 6.2,
7.04 y 7.32? Explícalo de manera que cualquiera de tus compañeros te pueda entender.
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
Tenoch Cedillo y Valentín Cruz
Desarrollo del pensamiento algebraico
HOJA DE TRABAJO 33
El todo respecto a sus partes (1)
1. Una estudiante construyó un programa que produce lo siguiente:
Valor de Valor de
entrada salida
1.3 18.7
2.5 17.5
3.8 16.2
4.4 15.6
5.9 14.1
2. Si el valor de entrada es 6, ¿qué valor de salida producirá el programa? _______ ¿Y si
el valor de entrada es 7? ____________ ¿Si es 9? _________________________
¿Qué operaciones hiciste para obtener los valores de salida? __________________
________________________________________________________________
3. ¿Puedes programar tu calculadora para que haga lo mismo? Usa la calculadora para
verificar tu respuesta y escribe tu programa en el recuadro.
3. Usa el programa que hiciste para completar la siguiente tabla.
2.83 3.03 - 3.5 - 4.8
5.01 6.2 27.04 37.32
4. ¿Qué ocurre cuando el valor de entrada es un número negativo?
________________________________________________________________________
________________________________________________________________________
¿A qué crees que se deba eso? _______________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
Tenoch Cedillo y Valentín Cruz
Desarrollo del pensamiento algebraico
HOJA DE TRABAJO 34
Aplicaciones de la relación parte todo (1)
1. Hay varios trozos de cable, todos
miden 16 cm. Se quieren cortar en
dos partes. En la siguiente figura se
muestran algunas posibilidades:
4 cm 12 cm
11 cm 5 cm
3 cm 13 cm
9 cm 7 cm
14 cm 2 cm
6 cm 10 cm
2. ¿Puedes construir un programa de manera que si le das la medida de una de las
partes te dé como resultado la medida de la otra?
Escribe el programa que hiciste en el cuadro de abajo.
3. Describe cómo razonaste para construir tu programa. Hazlo de manera que
cualquiera de tus compañeros te pueda entender. ________________________
__________________________________________________________________
__________________________________________________________________
__________________________________________________________________
__________________________________________________________________
4. Usa el programa que hiciste para completar la siguiente tabla.
Valor de 1.7 3.8 6.8 7.9
entrada
Valor de 12.8 14.9 15.6 17.4
salida
5. ¿Cómo puedes comprobar que los valores que encontraste para los números 12.8,
14.9, 15.6 y 17.4 son los correctos?___________________________________
_____________________________________________________________
_____________________________________________________________
_____________________________________________________________
_____________________________________________________________
_____________________________________________________________
_____________________________________________________________
_____________________________________________________________
Tenoch Cedillo y Valentín Cruz
Desarrollo del pensamiento algebraico
HOJA DE TRABAJO 35
Aplicaciones de la relación parte todo (2)
1.
Hay una pieza cuadrada de cartón que se usará para hacer
una caja recortando cuadrados en cada esquina de la pieza
de cartón y luego doblando hacia arriba (figura 3).
El tamaño de los cuadrados que se recorten determinan cuánto van
a medir la base y la altura de la caja. Las figuras 1 y 2 muestran dos
posibles maneras de armar la caja.
Figura 1 Figura 2 Fig. 3
4 cm 8 cm
16 cm 8 cm
4 cm 8 cm
16 cm 8 cm
1. ¿Cuánto mide por lado la pieza de cartón? _________________ ¿Cuál es su área?
_____________ ¿Qué operaciones que hiciste para calcular el área de la pieza de cartón?
____________________________________________________________________________
____________________________________________________________________________
2. Completa la siguiente tabla:
En la Figura 1 En la figura 2
Área de la base
Altura de la caja
Volumen de la caja
3. Se quiere que la caja tenga el mayor volumen posible. Únicamente puedes hacer un
intento para obtener la caja de volumen máximo porque sólo se tiene esta pieza de
cartón. ¿Puedes programar tu calculadora para obtener el volumen de cualquier caja
que pueda formar con esta pieza de cartón cortando cuadrados en las esquinas?
Escribe tu programa en el cuadro de abajo.
4. Usa tu programa para encontrar cuánto deben medir el lado de la base y la altura de la
caja para obtener el volumen máximo. Anota en el cuadro de abajo las medidas que
encontraste para que la caja tenga volumen máximo.
Lado de la base Altura de la caja Volumen máximo
Tenoch Cedillo y Valentín Cruz
Desarrollo del pensamiento algebraico
HOJA DE TRABAJO 36
Aplicaciones de la relación parte todo (3)
1. Se tiene una pieza de cartón de forma rectangular. El
largo de la pieza de cartón mide 38 cm y el ancho 20
cm. Se quiere usar este cartón para hacer una caja
recortando cuadrados en cada esquina de la pieza de
cartón y luego doblando hacia arriba (figura 3).
El tamaño de los cuadrados que se recorten determina cuánto
van a medir el largo y ancho de la base de la caja y también
cuánto va a medir su altura. Las figuras 1 y 2 muestran dos
posibles maneras de armar la caja.
Fig. 3
Fig.1 Fig.2
2. ¿Qué operaciones necesitas realizar para calcular el área de la pieza de cartón? ____
________________________________________________________________
________ ¿Qué operaciones tendrías que hacer para calcular el volumen de la caja
una vez que esté armada? ____________________________________________
________________________________________________________________
3. Completa la siguiente tabla.
Largo=30; Ancho=12 Largo=32; Ancho=14
Área de la base
Altura de la caja
Volumen de la caja
5. Se quiere que la caja que armes tenga el mayor volumen posible. Únicamente se cuenta
con esta pieza de cartón, por esto solamente puedes hacer un intento para obtener la
caja con volumen máximo. ¿Puedes construir un programa para calcular el volumen de
cualquier caja que se pueda formar cortando cuadrados en las esquinas? Escribe tu
programa en el cuadro de abajo.
6. Usa tu programa para encontrar cuánto deben medir el lado de la base y la altura de la
caja con volumen máximo. Anota en el cuadro de abajo las medidas que encontraste.
Lado de la base Altura de la caja Volumen máximo
Tenoch Cedillo y Valentín Cruz
Desarrollo del pensamiento algebraico
HOJA DE TRABAJO 37
El todo respecto a sus partes (2)
1. Unos estudiantes construyeron un
programa que produce la siguiente tabla de Valor de Valor de
valores: entrada salida
1 0
2 -1
3 -2
4 -3
5 -2
2. Si el valor de entrada es 6, ¿qué valor de salida va a producir el programa?
________ Si el valor de entrada es 7, ¿qué valor de salida va a producir la
calculadora? _______ ¿Qué valor de entrada produce 17 como valor de
salida? ____________________________________________________
3. ¿Qué operaciones hiciste para obtener esos resultados? Explícalo mediante un
ejemplo. ___________________________________________________
4. ¿Puedes programar tu calculadora para que haga lo mismo que el programa que
crearon esos estudiantes? Escríbelo en el recuadro.
5. Construye un programa distinto que produzca los mismos resultados. Pruébalo
en tu calculadora y si funciona como esperas anótalo en el cuadro de abajo.
Tenoch Cedillo y Valentín Cruz
Desarrollo del pensamiento algebraico
HOJA DE TRABAJO 38
¡Esta no es una relación parte todo!
1. Se creó un programa que produce esta
tabla de valores: Valor de Valor de
entrada salida
1 4
2 9
3 14
4 19
5 24
2. Si el valor de entrada es 7, ¿qué valor de salida producirá ese programa?
______ ¿Y si el valor de entrada es 10? ___________ ¿Cuál es el valor de
entrada si el valor de salida es 19? ________________________________
3. ¿Qué operaciones hiciste para obtener esos resultados?
__________________________________________________________
__________________________________________________________
4. ¿Puedes crear un programar que produzca los mismos valores que el del inciso
(1)? Verifica tu respuesta con la calculadora y escribe tu programa en el
recuadro.
5. Construye un programa equivalente al que hiciste para contestar la pregunta
anterior. Verifica si tu programa funciona como esperas y escríbelo en el
recuadro.
Tenoch Cedillo y Valentín Cruz
Desarrollo del pensamiento algebraico
HOJA DE TRABAJO 39
¡Esta tampoco es una relación parte todo!
1. Hay un programa que produce los siguientes
Valor de Valor de
valores de salida:
entrada salida
1 -1.5
2 -2.5
3 -2.5
4 -3.5
5 -5.5
2. Si el valor de entrada es 7, ¿qué valor de salida producirá ese programa? _______
¿Si el valor de entrada es 8? _____________ ¿Qué valor de entrada produce
como valor de salida -7? ___________________________________________
3. ¿Qué operaciones hiciste para obtener esos resultados? ___________________
_____________________________________________________________
_____________________________________________________________
4. ¿Puedes crear un programar para que produzca los mismos valores de salida que el
del inciso (1)? Verifica que tu programa funcione como esperas y escríbelo en el
recuadro.
5. Construye dos programas equivalentes al programa que hiciste para contestar la
pregunta anterior. Verifica que funcionen correctamente y escríbelos en los
recuadros de abajo.
6. Un estudiante dice que el programa -1−(X+X)÷2 produce los mismos resultados
que se muestran en la tabla. ¿Estás de acuerdo con él? Muestra dos ejemplos que
justifiquen tu respuesta. ______________________________________________
__________________________________________________________________
__________________________________________________________________
Tenoch Cedillo y Valentín Cruz
Desarrollo del pensamiento algebraico
HOJA DE TRABAJO 40
Patrones decrecientes (1)
1. Hay un programa que produce los
siguientes valores:
1 4
2 2
3 0
4 −2
5 −4
2. Una estudiante dice que el programa 6−2×a produce esos resultados. ¿Estás de
acuerdo con ella? _______________ Muestra dos ejemplos que justifiquen tu
respuesta. __________________________________________________
__________________________________________________________
3. Construye dos programas equivalentes al programa 6−2×a. Verifica que tus
respuestas sean correctas y anota los programas que creaste en los recuadros
de abajo.
4. Un estudiante dice que el programa 6−a+a es equivalente al programa 6−2×a.
¿Estás de acuerdo con él? ________________ Si tu respuesta es afirmativa
escribe dos ejemplos que la justifiquen. _____________________________
__________________________________________________________
5. Si no estás de acuerdo con él, explica tan claramente como te sea posible por
qué 6−a+a no es equivalente al programa 6−2×a. ________________________
_______________________________________________________________
_______________________________________________________________
_______________________________________________________________
_______________________________________________________________
_______________________________________________________________
_______________________________________________________________
_______________________________________________________________
Tenoch Cedillo y Valentín Cruz
Desarrollo del pensamiento algebraico
HOJA DE TRABAJO 41
Patrones decrecientes (2)
1. Hay un programa que produce los
siguientes valores: 1 -1
2 -2
3 -3
4 -4
5 -5
2. Si el valor de entrada es 7.5, ¿qué valor de salida producirá el programa?
________ ¿Y si es valor de entrada es 10.1? ________ ¿Cuál es el valor de
entrada si el valor de salida es 5.75? _______________________________
3. ¿Qué hiciste para obtener esos valores? ____________________________
__________________________________________________________
__________________________________________________________
__________________________________________________________
4. ¿Puedes crear un programa que produzca los mismos valores de salida que el del
inciso (1)? Escríbelo en el recuadro de abajo.
5. Una estudiante dice que el programa a−2×a produce los resultados que se
muestran en la tabla. ¿Estás de acuerdo con ella? ______________ Da dos
ejemplos que justifiquen tu respuesta. ______________________________
__________________________________________________________
__________________________________________________________
1. ¿Puedes construir otros dos programas que sean equivalentes al programa a−2×a?
Escríbelos a continuación. _______________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
Tenoch Cedillo y Valentín Cruz
Desarrollo del pensamiento algebraico
Actividades que se sugieren para el futuro docente
1. Discute con tus compañeros y tu profesor las actividades de este bloque donde se
aborda la relación parte-todo y concluyan en qué consiste esta relación.
2. Organícense en equipos para redactar tres problemas que involucren la relación
parte-todo y que requieran plantearse mediante una expresión matemática.
Intercambien con los problemas que propusieron y resuélvanlos.
3. Utiliza la calculadora, Excel u otro programa que te permita construir las gráficas
de las funciones (expresiones algebraicas) que generaste para resolver los
problemas de las hojas de trabajo 35 y 36. ¿Qué tan cerca de los valores máximos
que muestran las gráficas están los valores que encontraste para el volumen
máximo usando tu programa en la calculadora?
4. Con base en la experiencia que viviste al completar las hojas de trabajo 32-36,
discute con tus compañeros y tu profesor las ventajas didácticas que ofrece este
tipo de actividades para favorecer las competencias matemáticas de los alumnos
de educación básica.
5. Con base en la experiencia que viviste al completar las hojas de trabajo 32-36,
discute con tus compañeros y tu profesor cuáles pueden ser los obstáculos que
encuentren los alumnos de educación básica y propón alguna estrategia para
ayudarles a superarlos.
6. Con base en la experiencia que viviste al completar las hojas de trabajo 37-41,
discute con tus compañeros y tu profesor las ventajas didácticas que ofrece este
tipo de actividades para favorecer las competencias matemáticas de los alumnos
de educación básica.
7. Con base en la experiencia que viviste al completar las hojas de trabajo 37-41,
discute con tus compañeros y tu profesor cuáles pueden ser los obstáculos que
encuentren los alumnos de educación básica y propón alguna estrategia para
ayudarles a superarlos.
Tenoch Cedillo y Valentín Cruz