Diese Präsentation wurde erfolgreich gemeldet.
Die SlideShare-Präsentation wird heruntergeladen. ×

Analytical Social CRM

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Nächste SlideShare
Tgcmlog
Tgcmlog
Wird geladen in …3
×

Hier ansehen

1 von 12 Anzeige

Analytical Social CRM

Herunterladen, um offline zu lesen

Social Data can give an even better and in-depth view on your customers. However please mind that it is not about 'more data'. It is about the 'right data' put to work.

A) Start wit the question
B) Combine Structured and Unstructured Data
C) Apply continuous machine learning

Social Data can give an even better and in-depth view on your customers. However please mind that it is not about 'more data'. It is about the 'right data' put to work.

A) Start wit the question
B) Combine Structured and Unstructured Data
C) Apply continuous machine learning

Anzeige
Anzeige

Weitere Verwandte Inhalte

Ähnlich wie Analytical Social CRM (20)

Anzeige

Aktuellste (20)

Analytical Social CRM

  1. 1. Analy&cal(CRM( Start with the Question and Mind the Data…. More is not better… By#@LutzFinger#
  2. 2. Lutz(Finger( ─ #Quantum#Physicist# ─ #Journalist# ─ #Incubator#for#new#Media# ─ #MBA#@#INSEAD#2004# ─ #Sales#Manager#@#Dell# ─ #CoIFounder#of#Fisheye# ─ #Researcher#at#INSEAD# # And 47 different Social Media Profiles # # # ( Not all up-to-date. Mind the Data All#displayed#Logos#are#trademark#protected#by#the#respecMve#companies.#
  3. 3. Segmenta&on(is(missing(something( Two(People:(( Who(are(they?( ●  Male# ●  Born#in#1948# ●  BriMsh#NaMonality# ●  2nd#Marriage# ●  Rich# ●  Well#known# The#missing#informaMon#is#behavior#informaMon.# Source:#Annet#Aris# 3#
  4. 4. Social(as(Indica&on( 10th#June#2011#–#2.6(million(readers(had#to#look#for#a#new#SUNDAY#paper# Source:#www.newsoXheworld.co.uk# 4# All#displayed#Logos#are#trademark#protected#by#the#respecMve#companies.#
  5. 5. To(find(poten&al(customers…( Discussion(in(TwiIer:(Ready(to(Switch?( Sunday(papers(people(may(switch(to( Former#NOTW# Indicated# subscribers# General#/#Misc# desire#to# 4%# Sunday#Sport#Standard## 5%# switch# 2%# The#Observer# 1%# 2%# Star#on# Daily#star#on# Sunday#Star# Sunday# Sunday# 2%# 9%# 15%# Sunday#Time# 7%# Sunday#Herald# Daily#Mail# 2%# 22%# 95%#no#info#on#switching## Sun#On# Sunday# 8%# Sunday#Mirror# 26%# Only#4%:#Choose#the#right#ones! 5# Jul#2011# Source:#Fisheye#AnalyMcs#I#Note:#Twider#Data#only#
  6. 6. And(to(Reach(out( ●  But#even#if#you#got#the# RELEVANT#data# ●  How(to(reach(out?# Reach#out#!# outreach#can#be#creepy Source:#Fisheye#AnalyMcs#
  7. 7. To(get(Social(Data(is(easy…( Aggregate# Via#Filter# Social Media Ask# Aggregate Profiles Consumer# # Find# Use#Email# Aggregate# Profile ## Please#note#that#there#could#be#easily#privacy#concerns.## # All#displayed#Logos#are#trademark#protected#by#the#respecMve#companies.# Source:#Lutz#Finger# 7#
  8. 8. To(organize(not.( Sex:##2#Segments# Male# Female# Level#of#EducaMon:# Second# School# High#School# University# #8#Segments# Degree# Sunday# News# Journal# Products#bought:# Paper# Paper# Paper# ##24#Segments# The Adventurer, Blue Collar, Emerging Adults, Health/ Fitness, Hispanics, Women With Children ... EU#Countries:# ##548#Segments# Social#graph:# “There#are#7#billion#people#in#the#world#and#my#dream#is#to#have#7# ##500#m#Segments# billion#individual#relaMonships”#by#Robert#McDonald## # Source:#Lutz#Finger# 8#
  9. 9. Center:(Customer(or(You?( Customer( Analy&cal( Rela&onship( CRM( Management( ( ( ●  Start#with#the# ●  The#Customer# quesMon# should#be#in#the# ●  It#is#all#about# Center# YOU#and#your# ●  It#starts#with# PRODUCT# the#Customer# ●  Data#Mine#for# ●  Be#open#/#be# your#needs# transparent# Source:#Lutz#Finger# 9#
  10. 10. For(Analy&c(CRM(N(Ques&on(is(key( Deep#Thought:#“it# would#have#been# simpler#of#course# to#have#known# what#the#actual# quesMon#was.”# “Data#without#sound#approach#is#just#NOISE.”#I#Xavier# Amatriain,#Netlix Source:#hdp://www.youtube.com/watch?v=aboZctrHfK8# Source:#www.google.com# Source:#Lutz#Finger# 10# Source:#Strata#2012#–#Xavier#Amatriain# #
  11. 11. Great(Examples( ●  Tinyclues#opMmizes#EIshot#markeMng# based#on#machine#learning# Measurable# Direct#QuesMon# ●  Orange#connect#Survey#Data#to# Network#InformaMon# ●  Wonga#uses#the#way#people#fill#out#an# applicaMon#to#predict#Risk# ConMnuous#Machine# ●  Semasio#uses#content#of#pages#you# Learning# have#been#on#to#improve#markeMng# efficiency# ●  Target#can#predict#who#of#their# Structured# customers#is#pregnant# &#unstructured#Data# ●  Walt#Disney#use#Social#Media# Discussion#to#predict#privacy# ●  Google#and#GFK#set#up#One#Source# Panel#to#create#a#holisMc#View#on#a# consumer# Source:#Lutz#Finger# 11# All#displayed#Logos#are#trademark#protected#by#the#respecMve#companies.#
  12. 12. Summary( ●  TradiMonal#SegmentaMon#is#too#limited#for#todays#needs# ●  Social#Media#Can#find#new#Clients# ●  To#get#social#data#is#easy# ●  To#organize#them#is#the#hard#part# ●  Start#with#the#QuesMon# ●  Use#Machine#Learning#to#find#a#structure# 12#

×