SlideShare a Scribd company logo
1 of 41
Download to read offline
AB INITIO-BASED MEAN FIELD THEORY OF SITE
OCCUPATION IN BINARY SIGMA PHASES
E. Kabliman
OUTLINE
2
1. Introduction:
1. Binary σ-phases
2. Fe-Cr phase diagram
3. Magnetic properties
4. σ-phase structure
5. Aim
2. Ab initio-based mean field theory:
1. Helmholtz‘s free energy
2. Total energy expansion
3. EMTO-CPA
4. Convergence of total energy expansion
5. Entropic contributions
6. Site occupancies
3. Results [FeCr]:
1. Effect of magnetic state
2. Structural variations
3. Final site distribution
4. Results [other σ-phases]:
1. ReW
2. CoCr
3. FeV
5. Summary
3
σ-phase (light plates). Nicrofer 3127.
after annealing at 700о С during 6000 hours
σ-phase formation = technological problem
J.L. Garin and R.L. Mannheim. J. Mat.
Prog. Tech. 209, 3143 (2009)
J. Vřestal et al. Comp.Mat.Sc. 38, 298 (2006)
σ-phase :
• has a lamellar morphology
• nucleates near grains boundaries
(concentration of elements, e.g. Cr
and Mo, is favorable) and on
carbide particles
PROBLEM of σ-phase precipitation :
• decreases ductility and corrosion resistance
• increases brittleness and cracks formation
1. Introduction:
1. Binary σ-phases
2. Fe-Cr phase-diagram
3. Magnetic properties
4. σ-phase structure
5. Aim
2. Ab initio MF theory:
1. Helmholt’z free energy
2. Total energy expansion
3. EMTO-CPA
4. Convergence of expansion
5. Entropic contributions
6. Site occupancies
3. Results [FeCr] :
1. Effect of magnetic state
2. Structural varitations
3. Final site distribution
4. Results [other σ-s] :
1. ReW
2. CoCr
3. FeV
5. Summary
4
σ-phase in binary alloys
• atomic radii of the alloy components must be similar
• Fe-Cr system has the smallest VF at room T.
V.N.BykovandV.A.Solov’ev:Zhurn.Strukt.KhimiiVol.5No.2,288(1964)
VF=∆r/rav
r – atomic radii
• room T:
8 of 41 systems
has VF > 8%
• elevated T:
2 of 41 systems
has VF > 8%
In binary
σ-phases
VF ≤ 8 %
1. Introduction:
1. Binary σ-phases
2. Fe-Cr phase-diagram
3. Magnetic properties
4. σ-phase structure
5. Aim
2. Ab initio MF theory:
1. Helmholt’z free energy
2. Total energy expansion
3. EMTO-CPA
4. Convergence of expansion
5. Entropic contributions
6. Site occupancies
3. Results [FeCr] :
1. Effect of magnetic state
2. Structural varitations
3. Final site distribution
4. Results [other σ-s] :
1. ReW
2. CoCr
3. FeV
5. Summary
5
Fe-Cr phase diagram
HISTORY :
• 1923 Bain: A hard and nonmagnetic phase in Fe-Cr [Chem. Met. Eng. 28 (1923)]
• 1943 Cook, Jones: Crystal structure of σ-phase [J. Iron Steel Inst. London 148
(1943)]
• At present: σ-phase is found in more than 40 systems (Cr-Fe, Cr-Co, V-Fe, etc.)
4
brittle σ-phase
Phase decomposition
1. Introduction:
1. Binary σ-phases
2. Fe-Cr phase-diagram
3. Magnetic properties
4. σ-phase structure
5. Aim
2. Ab initio MF theory:
1. Helmholt’z free energy
2. Total energy expansion
3. EMTO-CPA
4. Convergence of expansion
5. Entropic contributions
6. Site occupancies
3. Results [FeCr] :
1. Effect of magnetic state
2. Structural varitations
3. Final site distribution
4. Results [other σ-s] :
1. ReW
2. CoCr
3. FeV
5. Summary
6
Magnetic properties
J. Cieslak, M. Reissner et al. Phys. Stat. Sol. (a) 205, No. 8 (2008)
[ TC measured only in
Fe-Cr and Fe-V ]
Fe1-xCrx
Fe1-xCrx
AverageµperFeatomCurietemperature
1. Introduction:
1. Binary σ-phases
2. Fe-Cr phase-diagram
3. Magnetic properties
4. σ-phase structure
5. Aim
2. Ab initio MF theory:
1. Helmholt’z free energy
2. Total energy expansion
3. EMTO-CPA
4. Convergence of expansion
5. Entropic contributions
6. Site occupancies
3. Results [FeCr] :
1. Effect of magnetic state
2. Structural varitations
3. Final site distribution
4. Results [other σ-s] :
1. ReW
2. CoCr
3. FeV
5. Summary
7
Site ncoord nmult
(Wyck.pos.)
x
at 923 K
y
at 923 K
z
at 923 K
Emprical
scheme
A 12 2(a) 0 0 0 (Mn,Fe,Co,Ni)
B 15 4(f) 0,39864(4) 0,39864(4) 0 (Ti,V,Cr,Mn,Mo)
C 14 8(i) 0,46349(4) 0,13122(4) 0 mixed
D 12 8(i) 0,73933(4) 0,06609(4) 0 (Mn,Fe,Co,Ni)
E 14 8(j) 0,18267(3) 0,18267(3) 0,25202(9) mixed
1. H.L. Yakel. Acta Cryst. B 39, 20 (1983)
2. J. S. Kasper, R. M. Waterstrat. Acta Cryst. 9, 289 (1956)
σ-phase structure
Fe1-xCrx for x = 0.495, a = 0.87968 nm, c/a = 0.518.
ncoord – site coordination numbers; nmult – site multiplicities
1. Introduction:
1. Binary σ-phases
2. Fe-Cr phase-diagram
3. Magnetic properties
4. σ-phase structure
5. Aim
2. Ab initio MF theory:
1. Helmholt’z free energy
2. Total energy expansion
3. EMTO-CPA
4. Convergence of expansion
5. Entropic contributions
6. Site occupancies
3. Results [FeCr] :
1. Effect of magnetic state
2. Structural varitations
3. Final site distribution
4. Results [other σ-s] :
1. ReW
2. CoCr
3. FeV
5. Summary
8
Aim
J. Cieslak, M. Reissner et al. Phys. Stat. Sol. (a) 205, No. 8 (2008)
Determine atomic site distribution in disordered
σ-phase as a function of T and x
Experiment
• lack of data: site occupancies only at few T and x
• difficulties:
• long annealing times and purity of a sample
• Fe and Cr: similar X-ray scattering factors
1. Introduction:
1. Binary σ-phases
2. Fe-Cr phase-diagram
3. Magnetic properties
4. σ-phase structure
5. Aim
2. Ab initio MF theory:
1. Helmholt’z free energy
2. Total energy expansion
3. EMTO-CPA
4. Convergence of expansion
5. Entropic contributions
6. Site occupancies
3. Results [FeCr] :
1. Effect of magnetic state
2. Structural varitations
3. Final site distribution
4. Results [other σ-s] :
1. ReW
2. CoCr
3. FeV
5. Summary
 Sigma-phase is a substitutionally disordered solid
solution in paramagnetic state;
 It has a low symmetry structure with undefined
„exact“ atom-site correspondence;
 How to describe electronic structure and total energy
of such a system?
9
SUBSTITUTIONAL DISORDERED SYSTEMS
Methods for total energy calculations
 Supercells approach: straightforward method, use of big periodic supercells
 Cluster expansion formalism: expansion of total energies in terms of the
effective cluster interactions (strucutre inversion method)
 Special quasirandom structures: reproduce the most relevant radial correlation
functions of an infinite random structure
Methods for electronic structure calculations
 Virtual crystal approximation: real disordered system is replaced by an virtual
one-component one
 Coherent potential approximation: provide the same scattering properties of
the one-component effective medium as the average of alloy components,
embedded in this effective medium
 Locally self-consistent Green‘s function: introduction of local interaction zone
around every atom, inside which an atom ‚feels‘ ist real local environment, but
outside ‚sees‘ only the CPA effective medium
EMTO-CPA
 Some of slides on EMTO-CPA were kindly provided by
Prof. A. Ruban (KTH, Sweden)
ATOMIC SPHERES METHODS
• Augmented plane waves (APW)
• Muffin-tin orbitals (MTO)  ASA, exact MTO (EMTO)
• Linearized APW and MTO (LAPW and LMTO)
• (Linearized) augmented plane wave method ((L)APW) + local orbitals
• Full-potential LAPW and LMTO methods
• Various Green‘s function method (KKR, KKR-CPA, etc)
Fig. 2.1
13
Partial wave
Back-extrapolated partial wave
Screened spherical wave
Kinked partial wave or exact muffin-tin
orbital
SSW Partial wave
BPW
They are basis functions of the EMTO method
The solution of the Kohn-Sham equation is then given by
Their linear combination:
A. Ruban
Applications of the EMTO method: advantages
and disadvantages
The EMTO is the method to calculate electronic structure and
total energies of ordered and random alloys as in the bulk as
well as at surfaces and interfaces .
As soon as the total energy is obtained, it can be used for
calculations of different thermodynamic properties, like
enthalpies of formation, solution, segregation, ordering
energies and so on.
It can be also used for calculations of the elastic properties:
in most cases there is very little information about elastic
constants of alloys.
A. Ruban
Metals and alloys in the paramagnetic state
Paramagnetic state in magnets is usually due to randomly
oriented spin magnetic moment on atoms.
Theoretically it can be presented by the so-called disordered
local magnetic moment (DLM) model, in which such a system
considered as equiatomic random alloy of atoms with spin-up
and spin-down orientation.
It is extremely difficult (close to impossible at the present
time) to treat alloys in the DLM state using such methods as
VASP, where a supercell approach is required. However, this
is extremely easy in the case of EMTO, where such a random
alloy is treated using coherent potential approximation (CPA).
A. Ruban
Green’s function
Schrödinger (Kohn-Sham) equation
A. Ruban
Coherent potential approximation (CPA)
(isomorphous single-site approximation)
Since wave function is not self-averaging quantity, the Green’s
technique be used in order to have a consistent theory.
In the CPA random alloy is substituted
by perfectly ordered (CPA) effective
medium, whose scattering properties
satisfy the condition:
These non-linear equations are solved self-consistently
A. Ruban
AB INITIO BASED MEAN FIELD THEORY
19
20
Ab initio based mean field theory :
𝐹 = 𝐸𝑡𝑜𝑡 − 𝑇𝑆
𝐻𝑐𝑜𝑛𝑓 = 𝐸0 + 𝑉∝
(1)
𝛿𝑐 𝛼,𝑖
𝑖𝛼=1,5
+
1
2
𝑉∝𝛽,𝑝
(2)
𝛿𝑐 𝛼;𝑖 𝛿𝑐𝛽;𝑗
𝑖,𝑗∈𝑝𝑝𝛼,𝛽=1,5
+
1
3
𝑉∝𝛽𝛾 ,𝑡
(3)
𝛿𝑐 𝛼;𝑖 𝛿𝑐𝛽;𝑗 𝛿𝑐 𝛾;𝑘
𝑖,𝑗,𝑘∈𝑡𝑡𝛼,𝛽,𝛾=1,5
+ ⋯
𝛿𝑐 𝛼,𝑖 = 𝑐 𝛼,𝑖 − 𝑐 𝛼 , 𝑤ℎ𝑒𝑟𝑒 𝑐 𝛼 ≡ 𝑐 𝛼,𝑖 𝑎𝑛𝑑 𝑐 𝛼.𝑖 = 1 𝑖𝑓 𝐶𝑟 𝑎𝑡 𝑠𝑖𝑡𝑒 𝑖
𝐸𝑡𝑜𝑡 𝑐 𝛼 = 𝐸0 𝑥 + 𝑛 𝛼 𝐽 𝛼
1
𝑐 𝛼
4
𝛼=1
.
𝑛 𝛼 − 𝑠𝑖𝑡𝑒 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦, 𝑐 𝛼 − 𝐶𝑟 𝑠𝑢𝑏𝑙𝑎𝑡𝑡𝑖𝑐𝑒 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦
𝐽 𝛼
1
=
𝜕𝐸𝑡𝑜𝑡
𝜕𝑐 𝛼
−
𝜕𝐸𝑡𝑜𝑡
𝜕𝑐 𝐸
| 𝑐 𝛼 =𝑥=𝑐𝑜𝑛𝑠𝑡
Helmholtz’s free energy
• Jα
(1) are relative effective chemical potentials at given x, which describe
preference of Cr atoms to occupy site α with respect to site E.
• Jα
(1) are indeed enough to calculate Cr site occupancies.
Fe1-xCrx
Effective on-site interactions
with respect to the E site
IDEA :
sitesublattice
pairs
1. Introduction:
1. Binary σ-phases
2. Fe-Cr phase-diagram
3. Magnetic properties
4. σ-phase structure
5. Aim
2. Ab initio MF theory:
1. Helmholt’z free energy
2. Total energy expansion
3. EMTO-CPA
4. Convergence of expansion
5. Entropic contributions
6. Site occupancies
3. Results [FeCr] :
1. Effect of magnetic state
2. Structural varitations
3. Final site distribution
4. Results [other σ-s] :
1. ReW
2. CoCr
3. FeV
5. Summary
21
Total energy expansion
Problem of CW method:
Number of different pair ECI just within a polyhedron of closest sites
is 20, while number of non-equivalent multi-site interactions is much
larger even within such short distances.
𝐻𝑐𝑜𝑛𝑓 = 𝐸0 + 𝑉∝
1
𝛿𝑐 𝛼,𝑖
𝑖𝛼=1,5
+
1
2
𝑉∝𝛽,𝑝
2
𝛿𝑐 𝛼;𝑖 𝛿𝑐 𝛽;𝑗
𝑖,𝑗∈𝑝𝑝𝛼,𝛽=1,5
+
1
3
𝑉∝𝛽𝛾,𝑡
3
𝛿𝑐 𝛼;𝑖 𝛿𝑐 𝛽;𝑗 𝛿𝑐 𝛾;𝑘
𝑖,𝑗,𝑘∈𝑡𝑡𝛼,𝛽,𝛾=1,5
+ ⋯
Fe1-xCrx
~ 130 atoms
bcc : i = 2-3
fcc : i = 1-2
σ-A : i = 3
σ-B : i = 6
σ-C : i = 8
σ-D : i = 8
σ-E : i = 9
1. Introduction:
1. Binary σ-phases
2. Fe-Cr phase-diagram
3. Magnetic properties
4. σ-phase structure
5. Aim
2. Ab initio MF theory:
1. Helmholt’z free energy
2. Total energy expansion
3. EMTO-CPA
4. Convergence of expansion
5. Entropic contributions
6. Site occupancies
3. Results [FeCr] :
1. Effect of magnetic state
2. Structural varitations
3. Final site distribution
4. Results [other σ-s] :
1. ReW
2. CoCr
3. FeV
5. Summary
22
Effective pair cluster interactions
 Free energy of σ-phase
can be quite accurately
presented in terms of
concentration-
independent cluster
interactions
 Dominating terms in
this expansion can be
on-site interactions
 Single-site mean-field
approximation will be
sufficient to provide a
reasonably accurate
description of
configurational effects
at high temperatures
xCr=0.5 xCr=0.6
SGPM
1. Introduction:
1. Binary σ-phases
2. Fe-Cr phase-diagram
3. Magnetic properties
4. σ-phase structure
5. Aim
2. Ab initio MF theory:
1. Helmholt’z free energy
2. Total energy expansion
3. EMTO-CPA
4. Convergence of expansion
5. Entropic contributions
6. Site occupancies
3. Results [FeCr] :
1. Effect of magnetic state
2. Structural varitations
3. Final site distribution
4. Results [other σ-s] :
1. ReW
2. CoCr
3. FeV
5. Summary
23
Effective on-site interactions
𝐸𝑡𝑜𝑡 𝑐 𝛼 = 𝐸0 𝑥 + 𝑛 𝛼 𝐽 𝛼
1
𝑐 𝛼
4
𝛼=1
𝑛 𝛼 − 𝑠𝑖𝑡𝑒 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦, 𝑐 𝛼 − 𝐶𝑟 𝑠𝑖𝑡𝑒 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦
𝑐5 =
30
𝑛5
−
1
𝑛5
𝑛 𝛼 𝑐 𝛼
4
𝛼=1
𝐽 𝛼
1
=
𝜕𝐸𝑡𝑜𝑡
𝜕𝑐 𝛼
−
𝜕𝐸𝑡𝑜𝑡
𝜕𝑐 𝐸
| 𝑐 𝛼 =𝑥=𝑐𝑜𝑛𝑠𝑡
• Jα
(1) are relative effective chemical potentials at given x,
which describe preference of Cr atoms to occupy site α with
respect to site E.
• Etot are found in coherent potential approximation (CPA)
implemented on exact muffin-tin orbitals (EMTO) method
in order to simulate disordered atomic distribution in σ-phase.
Fe1-xCrx
1. Introduction:
1. Binary σ-phases
2. Fe-Cr phase-diagram
3. Magnetic properties
4. σ-phase structure
5. Aim
2. Ab initio MF theory:
1. Helmholt’z free energy
2. Total energy expansion
3. EMTO-CPA
4. Convergence of expansion
5. Entropic contributions
6. Site occupancies
3. Results [FeCr] :
1. Effect of magnetic state
2. Structural varitations
3. Final site distribution
4. Results [other σ-s] :
1. ReW
2. CoCr
3. FeV
5. Summary
 No local environment effects  LSGF
 No local atomic relaxations  Wien2k
24
Check of Coherent Potential Approximation
Locally self-consistent Green‘s function technique
 2 supercells (SC1 and SC2) = (4x4x4) of 1920 atoms
 Local interaction zone = polyhedron of the nearest
neighbors for every site (A,B,C,D,E)
 CPA results are in a very good agreement with those of
LSGF calculations for supercells
1. Introduction:
1. Binary σ-phases
2. Fe-Cr phase-diagram
3. Magnetic properties
4. σ-phase structure
5. Aim
2. Ab initio MF theory:
1. Helmholt’z free energy
2. Total energy expansion
3. EMTO-CPA
4. Convergence of expansion
5. Entropic contributions
6. Site occupancies
3. Results [FeCr] :
1. Effect of magnetic state
2. Structural varitations
3. Final site distribution
4. Results [other σ-s] :
1. ReW
2. CoCr
3. FeV
5. Summary
25
Check of EMTO and local atomic relaxations
Etot is calculated by:
• full-potential linearized augmented
plane wave + local orbitals method
(WIEN2k code)
• exact muffin-tin orbitals method
(EMTO code)
Site Exp. [1]
923 K
Final
0 K
A 0.125 Cr 0.0 Cr
B 0.750 Cr 1.0 Cr
C 0.625 Cr 0.375 Cr
D 0.163 Cr 0.0 Cr
E 0.663 Cr 1.0 Cr
1. H.L. Yakel, Acta Cryst. B 39, 20 (1983)
2. A. Zubkov and B.Mogutnov, Dokl. Ak. Nauk SSSR 311, 388 (1990)
3. D. Read and E. Thomas, J. Phys. Chem. Sol. 29, 1569 (1968)
Calculated
(WIEN2k)
Measured
a 0.86433 nm 0.87968 nm [1]
c/a 0.518 0.518 [1]
Ef 5 kJ/mol 6.5 kJ/mol [2]
μ 0.53 μB 0.20 μB [3]
Site relaxations < 0.1 kJ/mol
[Good agreement ]
Fe0.5Cr0.5
limit of CPA
• EMTO and Wien2k obtain the same equilibrium
(final) atomic distribution
• Site relaxations in σ-FeCr are negligible
1. Introduction:
1. Binary σ-phases
2. Fe-Cr phase-diagram
3. Magnetic properties
4. σ-phase structure
5. Aim
2. Ab initio MF theory:
1. Helmholt’z free energy
2. Total energy expansion
3. EMTO-CPA
4. Convergence of expansion
5. Entropic contributions
6. Site occupancies
3. Results [FeCr] :
1. Effect of magnetic state
2. Structural varitations
3. Final site distribution
4. Results [other σ-s] :
1. ReW
2. CoCr
3. FeV
5. Summary
26
Convergence of total energy expansion
𝐸𝑡𝑜𝑡 𝑐 𝛼 = 𝐸0 𝑥 + 𝑛 𝛼 𝐽 𝛼
1
𝑐 𝛼
4
𝛼=1
+ 𝑛 𝛼 𝑛 𝛽 𝐽 𝛼𝛽
2
𝑐 𝛼 𝑐𝛽
4
𝛼,𝛽=1
𝐽 𝛼
1
=
𝜕𝐸𝑡𝑜𝑡
𝜕𝑐 𝛼
−
𝜕𝐸𝑡𝑜𝑡
𝜕𝑐 𝐸
| 𝑐 𝛼 =𝑥=0.5
Mean least-squares fit 𝑱 𝜶
𝟏
:
89 various σ-phase configurations
for x = 0.50 in DLM state
ECI A B C D E
𝐽 𝛼
1 16.0951 0.8670 1.4796 15.4150 0
Jα
(1) 16.4062 0.4688 1.7812 14.3438 0
𝐽 𝛼𝛽
2 A B C D E
A -1.1983 -0.3714 -0.6475 -0.4568 0
B -0.4896 -0.3899 -0.4631 0
C -0.5680 -0.4065 0
D -0.6397 0
E 0
• 𝐽 𝛼
1
: root-mean-square error ~ 0.2 mRy/atom
• 𝐽 𝛼
1
+ 𝐽 𝛼𝛽
2
: root-mean-square error ~ 0.2 mRy/atom
• Total energies calculated without/with effective pair interactions 𝐽 𝛼𝛽
2
are similar
• Chemical potentials Jα
(1) reproduce well the on-site interactions from
mean least squares fit 𝐽 𝛼
1
1. Introduction:
1. Binary σ-phases
2. Fe-Cr phase-diagram
3. Magnetic properties
4. σ-phase structure
5. Aim
2. Ab initio MF theory:
1. Helmholt’z free energy
2. Total energy expansion
3. EMTO-CPA
4. Convergence of expansion
5. Entropic contributions
6. Site occupancies
3. Results [FeCr] :
1. Effect of magnetic state
2. Structural varitations
3. Final site distribution
4. Results [other σ-s] :
1. ReW
2. CoCr
3. FeV
5. Summary
𝐹 = 𝐸𝑡𝑜𝑡 − 𝑇(𝑆𝑐𝑜𝑛𝑓 + 𝑆 𝑚𝑎𝑔𝑛 + 𝑆 𝑣𝑖𝑏𝑟 )
𝑆𝑐𝑜𝑛𝑓 = −𝑘 𝐵 𝑛∝ 𝑐∝ ln 𝑐∝ + 1 − 𝑐∝ ln 1 − 𝑐∝
5
𝛼=1
𝑆 𝑚𝑎𝑔𝑛 = 𝑘 𝐵 𝑛∝[
5
𝛼=1
𝑐∝ ln 𝜇 𝛼
𝐶𝑟
+ 1 + 1 − 𝑐∝ ln 𝜇 𝛼
𝐹𝑒
+ 1 ]
𝑆 𝑣𝑖𝑏𝑟 = 𝑛𝑒𝑔𝑙𝑒𝑐𝑡𝑒𝑑
27
Entropy contributions to free energy
Magnetism:
• In order to simulate paramagnetic state
at finite T disordered local moment
(DLM) state is used.
• Longitudinal spin fluctuations (LSF)
are high temperature magnetic excitations
and induce modified spin magnetic
moments on the alloy components.
{ DLM + LSF }
Site DLM
µ(Fe)
DLM
µ(Cr)
+LSF
µ(Fe)
+LSF
µ(Cr)
A 0.0 0 0.89 0.28
B 1.45 0 1.63 0.43
C 1.26 0 1.48 0.34
D 0.04 0 1.06 0.32
E 0.82 0 1.09 0.32
1. Introduction:
1. Binary σ-phases
2. Fe-Cr phase-diagram
3. Magnetic properties
4. σ-phase structure
5. Aim
2. Ab initio MF theory:
1. Helmholt’z free energy
2. Total energy expansion
3. EMTO-CPA
4. Convergence of expansion
5. Entropic contributions
6. Site occupancies
3. Results [FeCr] :
1. Effect of magnetic state
2. Structural varitations
3. Final site distribution
4. Results [other σ-s] :
1. ReW
2. CoCr
3. FeV
5. Summary
σ
28
P. Korzhavyi et al. Mat. Res. Soc. Symp. Proc. V 842, S4.10.1 (2005)
H at 0 K
H
H – TSconf
H – T(Sconf+Smagn)
at 1000 K
Approach : 32 ordered (end-member)
configurations and DLM model
Importance of magnetism
1. Introduction:
1. Binary σ-phases
2. Fe-Cr phase-diagram
3. Magnetic properties
4. σ-phase structure
5. Aim
2. Ab initio MF theory:
1. Helmholt’z free energy
2. Total energy expansion
3. EMTO-CPA
4. Convergence of expansion
5. Entropic contributions
6. Site occupancies
3. Results [FeCr] :
1. Effect of magnetic state
2. Structural varitations
3. Final site distribution
4. Results [other σ-s] :
1. ReW
2. CoCr
3. FeV
5. Summary
𝜕𝐹
𝜕𝑐 𝛼
=
𝜕𝐸𝑡𝑜𝑡
𝜕𝑐 𝛼
− 𝑇
𝜕𝑆𝑐𝑜𝑛𝑓
𝜕𝑐 𝛼
+
𝜕𝑆 𝑚𝑎𝑔𝑛
𝜕𝑐 𝛼
= 0
𝑐5 =
30
𝑛5
−
1
𝑛5
𝑛 𝛼 𝑐 𝛼
4
𝛼=1
𝜕𝐹
𝜕𝑐 𝛼
= 𝐽 𝛼
1
𝑛 𝛼 + 𝑘 𝐵 𝑇𝑛 𝛼 𝑙𝑛𝑐 𝛼 − 𝑙𝑛 1 − 𝑐 𝛼
− 𝑘 𝐵 𝑇𝑛 𝛼 𝑙𝑛𝑐5 − 𝑙𝑛 1 − 𝑐5 + 𝑘 𝐵 𝑇𝑛 𝛼 𝑙𝑛 𝜇 𝛼
𝐹𝑒
+ 1
− 𝑘 𝐵 𝑇𝑛 𝛼 𝑙𝑛 𝜇5
𝐹𝑒
+ 1 − 𝑘 𝐵 𝑇𝑛 𝛼 𝑙𝑛 𝜇 𝛼
𝐶𝑟
+ 1
+𝑘 𝐵 𝑇𝑛 𝛼 𝑙𝑛 𝜇5
𝐶𝑟
+ 1
29
Equilibrium site occupancies cα
𝒄∝ =
𝝌 𝜶
𝟏 + 𝝌∝
where
𝝌∝ = 𝑒
−
1
𝑘 𝐵
𝐽∝
1 𝑐5
1 − 𝑐5
(𝜇5
𝐹𝑒
+ 1)
(𝜇 𝛼
𝐹𝑒
+ 1)
(𝜇 𝛼
𝐶𝑟
+ 1)
(𝜇5
𝐶𝑟
+ 1)
(by Cr atoms)
1. Introduction:
1. Binary σ-phases
2. Fe-Cr phase-diagram
3. Magnetic properties
4. σ-phase structure
5. Aim
2. Ab initio MF theory:
1. Helmholt’z free energy
2. Total energy expansion
3. EMTO-CPA
4. Convergence of expansion
5. Entropic contributions
6. Site occupancies
3. Results [FeCr] :
1. Effect of magnetic state
2. Structural varitations
3. Final site distribution
4. Results [other σ-s] :
1. ReW
2. CoCr
3. FeV
5. Summary
30
Effect of magnetic state on site occupations
Fe0.5Cr0.5
B
B
(A,D)
Effective on-site interactions Jα
1. Introduction:
1. Binary σ-phases
2. Fe-Cr phase-diagram
3. Magnetic properties
4. σ-phase structure
5. Aim
2. Ab initio MF theory:
1. Helmholt’z free energy
2. Total energy expansion
3. EMTO-CPA
4. Convergence of expansion
5. Entropic contributions
6. Site occupancies
3. Results [FeCr] :
1. Effect of magnetic state
2. Structural varitations
3. Final site distribution
4. Results [other σ-s] :
1. ReW
2. CoCr
3. FeV
5. Summary
T ≈ 0 K :
integer site occupation is
defined by Etot and
described by the effective
on-site interactions Jα.
high T :
partial site occupation is
driven by Sconf, while
Smagn corrects cα in (A,D)
and B due to proper
account of magnetism
31
Structural variations and µα (T)
V expansion :
increases available
space around (A,D)
and occupation by
large Cr – not favored
– distortion within
kagome layers.
c/a expansion :
decreases available
space around E and
increases around C.
T dependence of µα
(Fe,Cr)  Jα
Structural parameters
1. Introduction:
1. Binary σ-phases
2. Fe-Cr phase-diagram
3. Magnetic properties
4. σ-phase structure
5. Aim
2. Ab initio MF theory:
1. Helmholt’z free energy
2. Total energy expansion
3. EMTO-CPA
4. Convergence of expansion
5. Entropic contributions
6. Site occupancies
3. Results [FeCr] :
1. Effect of magnetic state
2. Structural varitations
3. Final site distribution
4. Results [other σ-s] :
1. ReW
2. CoCr
3. FeV
5. Summary
32
Final site distribution vs T
• Preferences in atomic site distribution according to the
empirical scheme of ordering
• Good agreement with experimental data at finite T and results
obtained by Wienk at T = 0 K
Fe0.5Cr0.5
Including all effetcs
(magnetism, structural changes and T effects)
Site Emprical
scheme
A (Mn,Fe,Co,Ni)
B (Ti,V,Cr,Mn,Mo)
C mixed
D (Mn,Fe,Co,Ni)
E mixed
Wien2k 1. Introduction:
1. Binary σ-phases
2. Fe-Cr phase-diagram
3. Magnetic properties
4. σ-phase structure
5. Aim
2. Ab initio MF theory:
1. Helmholt’z free energy
2. Total energy expansion
3. EMTO-CPA
4. Convergence of expansion
5. Entropic contributions
6. Site occupancies
3. Results [FeCr] :
1. Effect of magnetic state
2. Structural varitations
3. Final site distribution
4. Results [other σ-s] :
1. ReW
2. CoCr
3. FeV
5. Summary
33
Previous work
 32 = 25 end-member compounds (total energy by LMTO-ASA)
 24 effective cluster interactions were calculated by Connoly-
Williams method
 Magnetism was neglected
 Results at high T disagree with experiment
 Results at T = 0 K disagree with Wien2k
 Site occupancy
M.H.F. Sluiter et al. PRL75 , 3142(1995)
1. Introduction:
1. Binary σ-phases
2. Fe-Cr phase-diagram
3. Magnetic properties
4. σ-phase structure
5. Aim
2. Ab initio MF theory:
1. Helmholt’z free energy
2. Total energy expansion
3. EMTO-CPA
4. Convergence of expansion
5. Entropic contributions
6. Site occupancies
3. Results [FeCr] :
1. Effect of magnetic state
2. Structural varitations
3. Final site distribution
4. Results [other σ-s] :
1. ReW
2. CoCr
3. FeV
5. Summary
34
Final site distribution vs x
• Linear dependence of the site occupancies on composition x
• Good agreement with experimental data
EK, P.Blaha, K. Schwarz, A.V. Ruban, B. Johansson, PRB 83, 092201 (2011)
Fe1-xCrx
1. Introduction:
1. Binary σ-phases
2. Fe-Cr phase-diagram
3. Magnetic properties
4. σ-phase structure
5. Aim
2. Ab initio MF theory:
1. Helmholt’z free energy
2. Total energy expansion
3. EMTO-CPA
4. Convergence of expansion
5. Entropic contributions
6. Site occupancies
3. Results [FeCr] :
1. Effect of magnetic state
2. Structural varitations
3. Final site distribution
4. Results [other σ-s] :
1. ReW
2. CoCr
3. FeV
5. Summary
35
Test : Re0.5W0.5 system ∆(AR) = 2 pm
• Preferences in atomic site distribution according to the
empirical scheme of ordering
• Reverse occupation of C and E site in contrast to Fe-Cr
• Agreement with the earlier published work
1. Introduction:
1. Binary σ-phases
2. Fe-Cr phase-diagram
3. Magnetic properties
4. σ-phase structure
5. Aim
2. Ab initio MF theory:
1. Helmholt’z free energy
2. Total energy expansion
3. EMTO-CPA
4. Convergence of expansion
5. Entropic contributions
6. Site occupancies
3. Results [FeCr] :
1. Effect of magnetic state
2. Structural varitations
3. Final site distribution
4. Results [other σ-s] :
1. ReW
2. CoCr
3. FeV
5. Summary
Site Emprical
scheme
A (Mn,Fe,Co,Ni)
B (Ti,V,Cr,Mn,Mo)
C mixed
D (Mn,Fe,Co,Ni)
E mixed
C. Berne et al. PRB64 ,144103 (2001)
36
Test : Co0.5Cr0.5 system ∆(AR) = 3 pm
• Preferences in atomic site distribution according to the
empirical scheme of ordering
• Site occupation similiar to the Fe-Cr system
1. Introduction:
1. Binary σ-phases
2. Fe-Cr phase-diagram
3. Magnetic properties
4. σ-phase structure
5. Aim
2. Ab initio MF theory:
1. Helmholt’z free energy
2. Total energy expansion
3. EMTO-CPA
4. Convergence of expansion
5. Entropic contributions
6. Site occupancies
3. Results [FeCr] :
1. Effect of magnetic state
2. Structural varitations
3. Final site distribution
4. Results [other σ-s] :
1. ReW
2. CoCr
3. FeV
5. Summary
Site Emprical
scheme
A (Mn,Fe,Co,Ni)
B (Ti,V,Cr,Mn,Mo)
C mixed
D (Mn,Fe,Co,Ni)
E mixed
37
𝐹 = 𝐸𝑡𝑜𝑡 − 𝑇(𝑆𝑐𝑜𝑛𝑓 + 𝑆 𝑚𝑎𝑔𝑛 + 𝑆𝑣𝑖𝑏𝑟 )
𝐸𝑡𝑜𝑡 𝑐 𝛼 = 𝐸0 𝑥 + 𝑛 𝛼 [ 𝐽 𝛼
1
+ 𝐽 𝛼
𝑟𝑒𝑙𝑎𝑥
]𝑐 𝛼
4
𝛼=1
𝑛 𝛼 − 𝑠𝑖𝑡𝑒 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦, 𝑐 𝛼 − 𝑉 𝑠𝑖𝑡𝑒 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦
𝐽 𝛼
1
=
𝜕𝐸𝑡𝑜𝑡
𝜕𝑐 𝛼
−
𝜕𝐸𝑡𝑜𝑡
𝜕𝑐 𝐸
| 𝑐 𝛼 =𝑥=𝑐𝑜𝑛𝑠𝑡
𝐽 𝛼
𝑟𝑒𝑙𝑎𝑥
= 𝐸𝑟𝑒𝑙𝑎𝑥 /𝑎𝑡𝑜𝑚
Effective on-site interactions Vα
(1)
with respect to the E site
Fe0.5V0.5: local atomic relaxations ∆(AR) = 8 pm
ECI A B C D E
Jα
(1) 24.0938 -7.7813 0.3750 19.8750 0
Jα
(1) +Jα
(relax) 21.9375 -7.4062 0.3750 18.1875 0
EMTO-CPA
• Contributions from local atomic relaxations to effective on-site
interactions in Fe-V are small
• Contributions in other systems with ∆(AR) ≤ 8 pm are expected
to be also negligible
1. Introduction:
1. Binary σ-phases
2. Fe-Cr phase-diagram
3. Magnetic properties
4. σ-phase structure
5. Aim
2. Ab initio MF theory:
1. Helmholt’z free energy
2. Total energy expansion
3. EMTO-CPA
4. Convergence of expansion
5. Entropic contributions
6. Site occupancies
3. Results [FeCr] :
1. Effect of magnetic state
2. Structural varitations
3. Final site distribution
4. Results [other σ-s] :
1. ReW
2. CoCr
3. FeV
5. Summary
38
Test : Fe-V system ∆(AR) = 8 pm
• Preferences in atomic site distribution according to the empirical
scheme of ordering
• Nearly full occupation of (A,D,) and B in contrast to Fe-Cr system
[due to bigger ∆(AR)]
Site Emprical
scheme
A (Mn,Fe,Co,Ni)
B (Ti,V,Cr,Mn,Mo)
C mixed
D (Mn,Fe,Co,Ni)
E mixed
1. Introduction:
1. Binary σ-phases
2. Fe-Cr phase-diagram
3. Magnetic properties
4. σ-phase structure
5. Aim
2. Ab initio MF theory:
1. Helmholt’z free energy
2. Total energy expansion
3. EMTO-CPA
4. Convergence of expansion
5. Entropic contributions
6. Site occupancies
3. Results [FeCr] :
1. Effect of magnetic state
2. Structural varitations
3. Final site distribution
4. Results [other σ-s] :
1. ReW
2. CoCr
3. FeV
5. Summary
39
Test : Fe-V system ∆(AR) = 8 pm
• Linear dependence of the site occupancies on composition x
• Reasonable agreement with experimental data
• With increase of ∆(AR) full occupation of sublattices is more
pronounced
1. Introduction:
1. Binary σ-phases
2. Fe-Cr phase-diagram
3. Magnetic properties
4. σ-phase structure
5. Aim
2. Ab initio MF theory:
1. Helmholt’z free energy
2. Total energy expansion
3. EMTO-CPA
4. Convergence of expansion
5. Entropic contributions
6. Site occupancies
3. Results [FeCr] :
1. Effect of magnetic state
2. Structural varitations
3. Final site distribution
4. Results [other σ-s] :
1. ReW
2. CoCr
3. FeV
5. Summary
40
Summary :
 Ab initio based mean field theory was suggested to
calculate the Cr site occupancies in the Fe-Cr σ-phase.
 4 effective on-site interaction parameters are enough to
simulate the atomic site distribution in σ-phase
 The calculated Cr site occupancies are in a good agreement
with the results obtained by the FP-LAPW method
(WIEN2k) at T = 0K and available experimental data at
finite T.
 It was shown that the Fe-Cr σ-phase exhibits a non-trivial
magnetic behaviour at high T, which affects the site
occupation by Fe and Cr atoms. The structural variation
(volume and c/a) can lead to an additional atomic
redistribution.
 The proposed method works also for the other binary σ-
phases. In particularly, Re-W, Co-Cr, Fe-V systems have
been tested and results agree with empirical scheme of
ordering.
 The proposed method can be further applied for the
ternary σ-phases.
1. Introduction:
1. Binary σ-phases
2. Fe-Cr phase-diagram
3. Magnetic properties
4. σ-phase structure
5. Aim
2. Ab initio MF theory:
1. Helmholt’z free energy
2. Total energy expansion
3. EMTO-CPA
4. Convergence of expansion
5. Entropic contributions
6. Site occupancies
3. Results [FeCr] :
1. Effect of magnetic state
2. Structural varitations
3. Final site distribution
4. Results [other σ-s] :
1. ReW
2. CoCr
3. FeV
5. Summary
ACKNOWLEDGEMENTS
41
Prof. A. V. Ruban
Applied materials Physics Department of
Materials Science and Engineering
The Royal Institute of Technology (KTH)
Brinellvägen 23, SE-100 44 Stockholm, Sweden
Prof. P. Blaha
Prof. K. Schwarz
Institute of Materials Chemistry,
Vienna University of Technology
Getreidemarkt 9/165-TC,
A-1060 Vienna, Austria
and WIEN2k group

More Related Content

What's hot

Coordination chemistry - MOT
Coordination chemistry - MOTCoordination chemistry - MOT
Coordination chemistry - MOT
SANTHANAM V
 
Final3 Of Lecture 13
Final3 Of Lecture 13Final3 Of Lecture 13
Final3 Of Lecture 13
Faysal Khan
 
Deuteration presentation
Deuteration presentationDeuteration presentation
Deuteration presentation
Nicholas Gammon
 
Burin braneworld cosmological effect with induced gravity
Burin braneworld cosmological effect with induced gravityBurin braneworld cosmological effect with induced gravity
Burin braneworld cosmological effect with induced gravity
luciolucena
 
Equation of state for technetium from x‐ray diffraction and first principle c...
Equation of state for technetium from x‐ray diffraction and first principle c...Equation of state for technetium from x‐ray diffraction and first principle c...
Equation of state for technetium from x‐ray diffraction and first principle c...
Konstantin German
 
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012:Luminosity f...
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012:Luminosity f...Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012:Luminosity f...
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012:Luminosity f...
SOCIEDAD JULIO GARAVITO
 
Oxygen Vacancy Conduction in Double Perovskites
Oxygen Vacancy Conduction in Double PerovskitesOxygen Vacancy Conduction in Double Perovskites
Oxygen Vacancy Conduction in Double Perovskites
Megha Patel
 

What's hot (20)

Properties of coordination complexes Complete
Properties of coordination complexes CompleteProperties of coordination complexes Complete
Properties of coordination complexes Complete
 
Coordination chemistry - MOT
Coordination chemistry - MOTCoordination chemistry - MOT
Coordination chemistry - MOT
 
Electronic structure of strongly correlated materials Part III V.Anisimov
 Electronic structure of strongly correlated materials Part III V.Anisimov Electronic structure of strongly correlated materials Part III V.Anisimov
Electronic structure of strongly correlated materials Part III V.Anisimov
 
Mo theory
Mo theoryMo theory
Mo theory
 
High pressure structural properties of rare earth antimonide
High pressure structural properties of rare earth antimonideHigh pressure structural properties of rare earth antimonide
High pressure structural properties of rare earth antimonide
 
Ligand substitution reactions
Ligand substitution reactionsLigand substitution reactions
Ligand substitution reactions
 
spectral properties of metal complexes
spectral properties of metal complexesspectral properties of metal complexes
spectral properties of metal complexes
 
Crystal structure
Crystal structureCrystal structure
Crystal structure
 
Angdist
AngdistAngdist
Angdist
 
Final3 Of Lecture 13
Final3 Of Lecture 13Final3 Of Lecture 13
Final3 Of Lecture 13
 
Deuteration presentation
Deuteration presentationDeuteration presentation
Deuteration presentation
 
Burin braneworld cosmological effect with induced gravity
Burin braneworld cosmological effect with induced gravityBurin braneworld cosmological effect with induced gravity
Burin braneworld cosmological effect with induced gravity
 
Molecular orbital theory
Molecular orbital theoryMolecular orbital theory
Molecular orbital theory
 
Equation of state for technetium from x‐ray diffraction and first principle c...
Equation of state for technetium from x‐ray diffraction and first principle c...Equation of state for technetium from x‐ray diffraction and first principle c...
Equation of state for technetium from x‐ray diffraction and first principle c...
 
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012:Luminosity f...
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012:Luminosity f...Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012:Luminosity f...
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012:Luminosity f...
 
2016 rsc-advance-tc-c-qinggao wang - 6 pp 16197-16202
2016 rsc-advance-tc-c-qinggao wang - 6 pp 16197-162022016 rsc-advance-tc-c-qinggao wang - 6 pp 16197-16202
2016 rsc-advance-tc-c-qinggao wang - 6 pp 16197-16202
 
Stability of metal complexes
Stability of metal complexesStability of metal complexes
Stability of metal complexes
 
Four dimensional pyramids
Four dimensional pyramids Four dimensional pyramids
Four dimensional pyramids
 
4d mendel english september 2007
4d mendel english september 20074d mendel english september 2007
4d mendel english september 2007
 
Oxygen Vacancy Conduction in Double Perovskites
Oxygen Vacancy Conduction in Double PerovskitesOxygen Vacancy Conduction in Double Perovskites
Oxygen Vacancy Conduction in Double Perovskites
 

Viewers also liked

Ab initio temperature phonons group theory
Ab initio temperature phonons group theoryAb initio temperature phonons group theory
Ab initio temperature phonons group theory
Sergey Sozykin
 
Electrochemistry perovskites defects
Electrochemistry perovskites defectsElectrochemistry perovskites defects
Electrochemistry perovskites defects
Sergey Sozykin
 
第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 2. AkaiKKRの実習
第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 2. AkaiKKRの実習第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 2. AkaiKKRの実習
第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 2. AkaiKKRの実習
Computational Materials Science Initiative
 
Application of Al alloys
Application of Al alloysApplication of Al alloys
Application of Al alloys
Sergey Sozykin
 

Viewers also liked (20)

Ab initio temperature phonons group theory
Ab initio temperature phonons group theoryAb initio temperature phonons group theory
Ab initio temperature phonons group theory
 
Electrochemistry perovskites defects
Electrochemistry perovskites defectsElectrochemistry perovskites defects
Electrochemistry perovskites defects
 
第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 2. AkaiKKRの実習
第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 2. AkaiKKRの実習第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 2. AkaiKKRの実習
第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 2. AkaiKKRの実習
 
Germany2003 gamg
Germany2003 gamgGermany2003 gamg
Germany2003 gamg
 
High Speed Parameter Estimation for a Homogenized Energy Model- Doctoral Defe...
High Speed Parameter Estimation for a Homogenized Energy Model- Doctoral Defe...High Speed Parameter Estimation for a Homogenized Energy Model- Doctoral Defe...
High Speed Parameter Estimation for a Homogenized Energy Model- Doctoral Defe...
 
Materials informatics
Materials informaticsMaterials informatics
Materials informatics
 
Accommodation
Accommodation Accommodation
Accommodation
 
Vaulin pohang 2010
Vaulin pohang 2010Vaulin pohang 2010
Vaulin pohang 2010
 
Accomodation
AccomodationAccomodation
Accomodation
 
Heat Treatment: Lecture Q&P, M3 concept
Heat Treatment: Lecture Q&P, M3 conceptHeat Treatment: Lecture Q&P, M3 concept
Heat Treatment: Lecture Q&P, M3 concept
 
Accommodation
Accommodation Accommodation
Accommodation
 
Application of Al alloys
Application of Al alloysApplication of Al alloys
Application of Al alloys
 
Accommodation
AccommodationAccommodation
Accommodation
 
Accommodation/ Accommodation of Eye, Measurement of Accommodation of Eye (hea...
Accommodation/ Accommodation of Eye, Measurement of Accommodation of Eye (hea...Accommodation/ Accommodation of Eye, Measurement of Accommodation of Eye (hea...
Accommodation/ Accommodation of Eye, Measurement of Accommodation of Eye (hea...
 
Accomodation
AccomodationAccomodation
Accomodation
 
Accommodation and its anomalies
Accommodation and its anomaliesAccommodation and its anomalies
Accommodation and its anomalies
 
Anomalies of accomodation ‫‬
Anomalies of accomodation ‫‬Anomalies of accomodation ‫‬
Anomalies of accomodation ‫‬
 
Phase Transformation Lecture 3
Phase Transformation Lecture 3   Phase Transformation Lecture 3
Phase Transformation Lecture 3
 
Developments in organic solar cells
Developments in organic solar cellsDevelopments in organic solar cells
Developments in organic solar cells
 
Accommodation
AccommodationAccommodation
Accommodation
 

Similar to Binary sigma phases

Material Science Chapter 4
Material Science Chapter 4Material Science Chapter 4
Material Science Chapter 4
amzar17
 
Chem 823 presentation
Chem 823 presentationChem 823 presentation
Chem 823 presentation
guest8e9027c
 
Laser Pulsing in Linear Compton Scattering
Laser Pulsing in Linear Compton ScatteringLaser Pulsing in Linear Compton Scattering
Laser Pulsing in Linear Compton Scattering
Todd Hodges
 

Similar to Binary sigma phases (20)

SOFC perovskite- DFT work
SOFC perovskite- DFT workSOFC perovskite- DFT work
SOFC perovskite- DFT work
 
Atomic data and spectral models for lowly ionized iron-peak species
Atomic data and spectral models for lowly ionized iron-peak speciesAtomic data and spectral models for lowly ionized iron-peak species
Atomic data and spectral models for lowly ionized iron-peak species
 
Advanced Molecular Dynamics 2016
Advanced Molecular Dynamics 2016Advanced Molecular Dynamics 2016
Advanced Molecular Dynamics 2016
 
SCF methods, basis sets, and integrals part III
SCF methods, basis sets, and integrals part IIISCF methods, basis sets, and integrals part III
SCF methods, basis sets, and integrals part III
 
Material Science Chapter 4
Material Science Chapter 4Material Science Chapter 4
Material Science Chapter 4
 
Recent developments for the quantum chemical investigation of molecular syste...
Recent developments for the quantum chemical investigation of molecular syste...Recent developments for the quantum chemical investigation of molecular syste...
Recent developments for the quantum chemical investigation of molecular syste...
 
salerno-2-asus-170124105324_OCR.pdf
salerno-2-asus-170124105324_OCR.pdfsalerno-2-asus-170124105324_OCR.pdf
salerno-2-asus-170124105324_OCR.pdf
 
Chem 823 presentation
Chem 823 presentationChem 823 presentation
Chem 823 presentation
 
Binping xiao superconducting surface impedance under radiofrequency field
Binping xiao   superconducting surface impedance under radiofrequency fieldBinping xiao   superconducting surface impedance under radiofrequency field
Binping xiao superconducting surface impedance under radiofrequency field
 
physics derivation.pdf
physics derivation.pdfphysics derivation.pdf
physics derivation.pdf
 
PP_12_7_5_7_7_Quantium_theory_.ppt
PP_12_7_5_7_7_Quantium_theory_.pptPP_12_7_5_7_7_Quantium_theory_.ppt
PP_12_7_5_7_7_Quantium_theory_.ppt
 
Quantum chemical molecular dynamics simulations of graphene hydrogenation
Quantum chemical molecular dynamics simulations of graphene hydrogenationQuantum chemical molecular dynamics simulations of graphene hydrogenation
Quantum chemical molecular dynamics simulations of graphene hydrogenation
 
Presentation@HITMS
Presentation@HITMSPresentation@HITMS
Presentation@HITMS
 
Materials Science Exam Help
Materials Science Exam HelpMaterials Science Exam Help
Materials Science Exam Help
 
An R-matrix approach for plasma modelling and the interpretation of astrophys...
An R-matrix approach for plasma modelling and the interpretation of astrophys...An R-matrix approach for plasma modelling and the interpretation of astrophys...
An R-matrix approach for plasma modelling and the interpretation of astrophys...
 
Density functional theory (DFT) and the concepts of the augmented-plane-wave ...
Density functional theory (DFT) and the concepts of the augmented-plane-wave ...Density functional theory (DFT) and the concepts of the augmented-plane-wave ...
Density functional theory (DFT) and the concepts of the augmented-plane-wave ...
 
Development of highly accurate pseudopotential method and its application to ...
Development of highly accurate pseudopotential method and its application to ...Development of highly accurate pseudopotential method and its application to ...
Development of highly accurate pseudopotential method and its application to ...
 
Is3416041606
Is3416041606Is3416041606
Is3416041606
 
Interaction of small molecules with grapheen supported on metal substrates: A...
Interaction of small molecules with grapheen supported on metal substrates: A...Interaction of small molecules with grapheen supported on metal substrates: A...
Interaction of small molecules with grapheen supported on metal substrates: A...
 
Laser Pulsing in Linear Compton Scattering
Laser Pulsing in Linear Compton ScatteringLaser Pulsing in Linear Compton Scattering
Laser Pulsing in Linear Compton Scattering
 

More from Sergey Sozykin

Susu seminar summer_2012
Susu seminar summer_2012Susu seminar summer_2012
Susu seminar summer_2012
Sergey Sozykin
 
лекция 5 graphen
лекция 5 graphenлекция 5 graphen
лекция 5 graphen
Sergey Sozykin
 
лекция 3 дефекты в полупроводниках ga n alsb
лекция 3 дефекты в полупроводниках ga n alsbлекция 3 дефекты в полупроводниках ga n alsb
лекция 3 дефекты в полупроводниках ga n alsb
Sergey Sozykin
 
лекция 2 атомные смещения в бинарных сплавах
лекция 2 атомные смещения в бинарных сплавах лекция 2 атомные смещения в бинарных сплавах
лекция 2 атомные смещения в бинарных сплавах
Sergey Sozykin
 
лекция 5 memristor
лекция 5 memristorлекция 5 memristor
лекция 5 memristor
Sergey Sozykin
 
лекция 1 обзор методов вычислительной физики
лекция 1 обзор методов вычислительной физикилекция 1 обзор методов вычислительной физики
лекция 1 обзор методов вычислительной физики
Sergey Sozykin
 

More from Sergey Sozykin (6)

Susu seminar summer_2012
Susu seminar summer_2012Susu seminar summer_2012
Susu seminar summer_2012
 
лекция 5 graphen
лекция 5 graphenлекция 5 graphen
лекция 5 graphen
 
лекция 3 дефекты в полупроводниках ga n alsb
лекция 3 дефекты в полупроводниках ga n alsbлекция 3 дефекты в полупроводниках ga n alsb
лекция 3 дефекты в полупроводниках ga n alsb
 
лекция 2 атомные смещения в бинарных сплавах
лекция 2 атомные смещения в бинарных сплавах лекция 2 атомные смещения в бинарных сплавах
лекция 2 атомные смещения в бинарных сплавах
 
лекция 5 memristor
лекция 5 memristorлекция 5 memristor
лекция 5 memristor
 
лекция 1 обзор методов вычислительной физики
лекция 1 обзор методов вычислительной физикилекция 1 обзор методов вычислительной физики
лекция 1 обзор методов вычислительной физики
 

Recently uploaded

Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 

Recently uploaded (20)

AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024
 
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu SubbuApidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 

Binary sigma phases

  • 1. AB INITIO-BASED MEAN FIELD THEORY OF SITE OCCUPATION IN BINARY SIGMA PHASES E. Kabliman
  • 2. OUTLINE 2 1. Introduction: 1. Binary σ-phases 2. Fe-Cr phase diagram 3. Magnetic properties 4. σ-phase structure 5. Aim 2. Ab initio-based mean field theory: 1. Helmholtz‘s free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of total energy expansion 5. Entropic contributions 6. Site occupancies 3. Results [FeCr]: 1. Effect of magnetic state 2. Structural variations 3. Final site distribution 4. Results [other σ-phases]: 1. ReW 2. CoCr 3. FeV 5. Summary
  • 3. 3 σ-phase (light plates). Nicrofer 3127. after annealing at 700о С during 6000 hours σ-phase formation = technological problem J.L. Garin and R.L. Mannheim. J. Mat. Prog. Tech. 209, 3143 (2009) J. Vřestal et al. Comp.Mat.Sc. 38, 298 (2006) σ-phase : • has a lamellar morphology • nucleates near grains boundaries (concentration of elements, e.g. Cr and Mo, is favorable) and on carbide particles PROBLEM of σ-phase precipitation : • decreases ductility and corrosion resistance • increases brittleness and cracks formation 1. Introduction: 1. Binary σ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. σ-phase structure 5. Aim 2. Ab initio MF theory: 1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies 3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution 4. Results [other σ-s] : 1. ReW 2. CoCr 3. FeV 5. Summary
  • 4. 4 σ-phase in binary alloys • atomic radii of the alloy components must be similar • Fe-Cr system has the smallest VF at room T. V.N.BykovandV.A.Solov’ev:Zhurn.Strukt.KhimiiVol.5No.2,288(1964) VF=∆r/rav r – atomic radii • room T: 8 of 41 systems has VF > 8% • elevated T: 2 of 41 systems has VF > 8% In binary σ-phases VF ≤ 8 % 1. Introduction: 1. Binary σ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. σ-phase structure 5. Aim 2. Ab initio MF theory: 1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies 3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution 4. Results [other σ-s] : 1. ReW 2. CoCr 3. FeV 5. Summary
  • 5. 5 Fe-Cr phase diagram HISTORY : • 1923 Bain: A hard and nonmagnetic phase in Fe-Cr [Chem. Met. Eng. 28 (1923)] • 1943 Cook, Jones: Crystal structure of σ-phase [J. Iron Steel Inst. London 148 (1943)] • At present: σ-phase is found in more than 40 systems (Cr-Fe, Cr-Co, V-Fe, etc.) 4 brittle σ-phase Phase decomposition 1. Introduction: 1. Binary σ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. σ-phase structure 5. Aim 2. Ab initio MF theory: 1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies 3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution 4. Results [other σ-s] : 1. ReW 2. CoCr 3. FeV 5. Summary
  • 6. 6 Magnetic properties J. Cieslak, M. Reissner et al. Phys. Stat. Sol. (a) 205, No. 8 (2008) [ TC measured only in Fe-Cr and Fe-V ] Fe1-xCrx Fe1-xCrx AverageµperFeatomCurietemperature 1. Introduction: 1. Binary σ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. σ-phase structure 5. Aim 2. Ab initio MF theory: 1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies 3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution 4. Results [other σ-s] : 1. ReW 2. CoCr 3. FeV 5. Summary
  • 7. 7 Site ncoord nmult (Wyck.pos.) x at 923 K y at 923 K z at 923 K Emprical scheme A 12 2(a) 0 0 0 (Mn,Fe,Co,Ni) B 15 4(f) 0,39864(4) 0,39864(4) 0 (Ti,V,Cr,Mn,Mo) C 14 8(i) 0,46349(4) 0,13122(4) 0 mixed D 12 8(i) 0,73933(4) 0,06609(4) 0 (Mn,Fe,Co,Ni) E 14 8(j) 0,18267(3) 0,18267(3) 0,25202(9) mixed 1. H.L. Yakel. Acta Cryst. B 39, 20 (1983) 2. J. S. Kasper, R. M. Waterstrat. Acta Cryst. 9, 289 (1956) σ-phase structure Fe1-xCrx for x = 0.495, a = 0.87968 nm, c/a = 0.518. ncoord – site coordination numbers; nmult – site multiplicities 1. Introduction: 1. Binary σ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. σ-phase structure 5. Aim 2. Ab initio MF theory: 1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies 3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution 4. Results [other σ-s] : 1. ReW 2. CoCr 3. FeV 5. Summary
  • 8. 8 Aim J. Cieslak, M. Reissner et al. Phys. Stat. Sol. (a) 205, No. 8 (2008) Determine atomic site distribution in disordered σ-phase as a function of T and x Experiment • lack of data: site occupancies only at few T and x • difficulties: • long annealing times and purity of a sample • Fe and Cr: similar X-ray scattering factors 1. Introduction: 1. Binary σ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. σ-phase structure 5. Aim 2. Ab initio MF theory: 1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies 3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution 4. Results [other σ-s] : 1. ReW 2. CoCr 3. FeV 5. Summary
  • 9.  Sigma-phase is a substitutionally disordered solid solution in paramagnetic state;  It has a low symmetry structure with undefined „exact“ atom-site correspondence;  How to describe electronic structure and total energy of such a system? 9
  • 10. SUBSTITUTIONAL DISORDERED SYSTEMS Methods for total energy calculations  Supercells approach: straightforward method, use of big periodic supercells  Cluster expansion formalism: expansion of total energies in terms of the effective cluster interactions (strucutre inversion method)  Special quasirandom structures: reproduce the most relevant radial correlation functions of an infinite random structure Methods for electronic structure calculations  Virtual crystal approximation: real disordered system is replaced by an virtual one-component one  Coherent potential approximation: provide the same scattering properties of the one-component effective medium as the average of alloy components, embedded in this effective medium  Locally self-consistent Green‘s function: introduction of local interaction zone around every atom, inside which an atom ‚feels‘ ist real local environment, but outside ‚sees‘ only the CPA effective medium
  • 11. EMTO-CPA  Some of slides on EMTO-CPA were kindly provided by Prof. A. Ruban (KTH, Sweden)
  • 12. ATOMIC SPHERES METHODS • Augmented plane waves (APW) • Muffin-tin orbitals (MTO)  ASA, exact MTO (EMTO) • Linearized APW and MTO (LAPW and LMTO) • (Linearized) augmented plane wave method ((L)APW) + local orbitals • Full-potential LAPW and LMTO methods • Various Green‘s function method (KKR, KKR-CPA, etc) Fig. 2.1
  • 13. 13 Partial wave Back-extrapolated partial wave Screened spherical wave
  • 14. Kinked partial wave or exact muffin-tin orbital SSW Partial wave BPW They are basis functions of the EMTO method The solution of the Kohn-Sham equation is then given by Their linear combination: A. Ruban
  • 15. Applications of the EMTO method: advantages and disadvantages The EMTO is the method to calculate electronic structure and total energies of ordered and random alloys as in the bulk as well as at surfaces and interfaces . As soon as the total energy is obtained, it can be used for calculations of different thermodynamic properties, like enthalpies of formation, solution, segregation, ordering energies and so on. It can be also used for calculations of the elastic properties: in most cases there is very little information about elastic constants of alloys. A. Ruban
  • 16. Metals and alloys in the paramagnetic state Paramagnetic state in magnets is usually due to randomly oriented spin magnetic moment on atoms. Theoretically it can be presented by the so-called disordered local magnetic moment (DLM) model, in which such a system considered as equiatomic random alloy of atoms with spin-up and spin-down orientation. It is extremely difficult (close to impossible at the present time) to treat alloys in the DLM state using such methods as VASP, where a supercell approach is required. However, this is extremely easy in the case of EMTO, where such a random alloy is treated using coherent potential approximation (CPA). A. Ruban
  • 18. Coherent potential approximation (CPA) (isomorphous single-site approximation) Since wave function is not self-averaging quantity, the Green’s technique be used in order to have a consistent theory. In the CPA random alloy is substituted by perfectly ordered (CPA) effective medium, whose scattering properties satisfy the condition: These non-linear equations are solved self-consistently A. Ruban
  • 19. AB INITIO BASED MEAN FIELD THEORY 19
  • 20. 20 Ab initio based mean field theory : 𝐹 = 𝐸𝑡𝑜𝑡 − 𝑇𝑆 𝐻𝑐𝑜𝑛𝑓 = 𝐸0 + 𝑉∝ (1) 𝛿𝑐 𝛼,𝑖 𝑖𝛼=1,5 + 1 2 𝑉∝𝛽,𝑝 (2) 𝛿𝑐 𝛼;𝑖 𝛿𝑐𝛽;𝑗 𝑖,𝑗∈𝑝𝑝𝛼,𝛽=1,5 + 1 3 𝑉∝𝛽𝛾 ,𝑡 (3) 𝛿𝑐 𝛼;𝑖 𝛿𝑐𝛽;𝑗 𝛿𝑐 𝛾;𝑘 𝑖,𝑗,𝑘∈𝑡𝑡𝛼,𝛽,𝛾=1,5 + ⋯ 𝛿𝑐 𝛼,𝑖 = 𝑐 𝛼,𝑖 − 𝑐 𝛼 , 𝑤ℎ𝑒𝑟𝑒 𝑐 𝛼 ≡ 𝑐 𝛼,𝑖 𝑎𝑛𝑑 𝑐 𝛼.𝑖 = 1 𝑖𝑓 𝐶𝑟 𝑎𝑡 𝑠𝑖𝑡𝑒 𝑖 𝐸𝑡𝑜𝑡 𝑐 𝛼 = 𝐸0 𝑥 + 𝑛 𝛼 𝐽 𝛼 1 𝑐 𝛼 4 𝛼=1 . 𝑛 𝛼 − 𝑠𝑖𝑡𝑒 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦, 𝑐 𝛼 − 𝐶𝑟 𝑠𝑢𝑏𝑙𝑎𝑡𝑡𝑖𝑐𝑒 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 𝐽 𝛼 1 = 𝜕𝐸𝑡𝑜𝑡 𝜕𝑐 𝛼 − 𝜕𝐸𝑡𝑜𝑡 𝜕𝑐 𝐸 | 𝑐 𝛼 =𝑥=𝑐𝑜𝑛𝑠𝑡 Helmholtz’s free energy • Jα (1) are relative effective chemical potentials at given x, which describe preference of Cr atoms to occupy site α with respect to site E. • Jα (1) are indeed enough to calculate Cr site occupancies. Fe1-xCrx Effective on-site interactions with respect to the E site IDEA : sitesublattice pairs 1. Introduction: 1. Binary σ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. σ-phase structure 5. Aim 2. Ab initio MF theory: 1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies 3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution 4. Results [other σ-s] : 1. ReW 2. CoCr 3. FeV 5. Summary
  • 21. 21 Total energy expansion Problem of CW method: Number of different pair ECI just within a polyhedron of closest sites is 20, while number of non-equivalent multi-site interactions is much larger even within such short distances. 𝐻𝑐𝑜𝑛𝑓 = 𝐸0 + 𝑉∝ 1 𝛿𝑐 𝛼,𝑖 𝑖𝛼=1,5 + 1 2 𝑉∝𝛽,𝑝 2 𝛿𝑐 𝛼;𝑖 𝛿𝑐 𝛽;𝑗 𝑖,𝑗∈𝑝𝑝𝛼,𝛽=1,5 + 1 3 𝑉∝𝛽𝛾,𝑡 3 𝛿𝑐 𝛼;𝑖 𝛿𝑐 𝛽;𝑗 𝛿𝑐 𝛾;𝑘 𝑖,𝑗,𝑘∈𝑡𝑡𝛼,𝛽,𝛾=1,5 + ⋯ Fe1-xCrx ~ 130 atoms bcc : i = 2-3 fcc : i = 1-2 σ-A : i = 3 σ-B : i = 6 σ-C : i = 8 σ-D : i = 8 σ-E : i = 9 1. Introduction: 1. Binary σ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. σ-phase structure 5. Aim 2. Ab initio MF theory: 1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies 3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution 4. Results [other σ-s] : 1. ReW 2. CoCr 3. FeV 5. Summary
  • 22. 22 Effective pair cluster interactions  Free energy of σ-phase can be quite accurately presented in terms of concentration- independent cluster interactions  Dominating terms in this expansion can be on-site interactions  Single-site mean-field approximation will be sufficient to provide a reasonably accurate description of configurational effects at high temperatures xCr=0.5 xCr=0.6 SGPM 1. Introduction: 1. Binary σ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. σ-phase structure 5. Aim 2. Ab initio MF theory: 1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies 3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution 4. Results [other σ-s] : 1. ReW 2. CoCr 3. FeV 5. Summary
  • 23. 23 Effective on-site interactions 𝐸𝑡𝑜𝑡 𝑐 𝛼 = 𝐸0 𝑥 + 𝑛 𝛼 𝐽 𝛼 1 𝑐 𝛼 4 𝛼=1 𝑛 𝛼 − 𝑠𝑖𝑡𝑒 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦, 𝑐 𝛼 − 𝐶𝑟 𝑠𝑖𝑡𝑒 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 𝑐5 = 30 𝑛5 − 1 𝑛5 𝑛 𝛼 𝑐 𝛼 4 𝛼=1 𝐽 𝛼 1 = 𝜕𝐸𝑡𝑜𝑡 𝜕𝑐 𝛼 − 𝜕𝐸𝑡𝑜𝑡 𝜕𝑐 𝐸 | 𝑐 𝛼 =𝑥=𝑐𝑜𝑛𝑠𝑡 • Jα (1) are relative effective chemical potentials at given x, which describe preference of Cr atoms to occupy site α with respect to site E. • Etot are found in coherent potential approximation (CPA) implemented on exact muffin-tin orbitals (EMTO) method in order to simulate disordered atomic distribution in σ-phase. Fe1-xCrx 1. Introduction: 1. Binary σ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. σ-phase structure 5. Aim 2. Ab initio MF theory: 1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies 3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution 4. Results [other σ-s] : 1. ReW 2. CoCr 3. FeV 5. Summary
  • 24.  No local environment effects  LSGF  No local atomic relaxations  Wien2k 24 Check of Coherent Potential Approximation Locally self-consistent Green‘s function technique  2 supercells (SC1 and SC2) = (4x4x4) of 1920 atoms  Local interaction zone = polyhedron of the nearest neighbors for every site (A,B,C,D,E)  CPA results are in a very good agreement with those of LSGF calculations for supercells 1. Introduction: 1. Binary σ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. σ-phase structure 5. Aim 2. Ab initio MF theory: 1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies 3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution 4. Results [other σ-s] : 1. ReW 2. CoCr 3. FeV 5. Summary
  • 25. 25 Check of EMTO and local atomic relaxations Etot is calculated by: • full-potential linearized augmented plane wave + local orbitals method (WIEN2k code) • exact muffin-tin orbitals method (EMTO code) Site Exp. [1] 923 K Final 0 K A 0.125 Cr 0.0 Cr B 0.750 Cr 1.0 Cr C 0.625 Cr 0.375 Cr D 0.163 Cr 0.0 Cr E 0.663 Cr 1.0 Cr 1. H.L. Yakel, Acta Cryst. B 39, 20 (1983) 2. A. Zubkov and B.Mogutnov, Dokl. Ak. Nauk SSSR 311, 388 (1990) 3. D. Read and E. Thomas, J. Phys. Chem. Sol. 29, 1569 (1968) Calculated (WIEN2k) Measured a 0.86433 nm 0.87968 nm [1] c/a 0.518 0.518 [1] Ef 5 kJ/mol 6.5 kJ/mol [2] μ 0.53 μB 0.20 μB [3] Site relaxations < 0.1 kJ/mol [Good agreement ] Fe0.5Cr0.5 limit of CPA • EMTO and Wien2k obtain the same equilibrium (final) atomic distribution • Site relaxations in σ-FeCr are negligible 1. Introduction: 1. Binary σ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. σ-phase structure 5. Aim 2. Ab initio MF theory: 1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies 3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution 4. Results [other σ-s] : 1. ReW 2. CoCr 3. FeV 5. Summary
  • 26. 26 Convergence of total energy expansion 𝐸𝑡𝑜𝑡 𝑐 𝛼 = 𝐸0 𝑥 + 𝑛 𝛼 𝐽 𝛼 1 𝑐 𝛼 4 𝛼=1 + 𝑛 𝛼 𝑛 𝛽 𝐽 𝛼𝛽 2 𝑐 𝛼 𝑐𝛽 4 𝛼,𝛽=1 𝐽 𝛼 1 = 𝜕𝐸𝑡𝑜𝑡 𝜕𝑐 𝛼 − 𝜕𝐸𝑡𝑜𝑡 𝜕𝑐 𝐸 | 𝑐 𝛼 =𝑥=0.5 Mean least-squares fit 𝑱 𝜶 𝟏 : 89 various σ-phase configurations for x = 0.50 in DLM state ECI A B C D E 𝐽 𝛼 1 16.0951 0.8670 1.4796 15.4150 0 Jα (1) 16.4062 0.4688 1.7812 14.3438 0 𝐽 𝛼𝛽 2 A B C D E A -1.1983 -0.3714 -0.6475 -0.4568 0 B -0.4896 -0.3899 -0.4631 0 C -0.5680 -0.4065 0 D -0.6397 0 E 0 • 𝐽 𝛼 1 : root-mean-square error ~ 0.2 mRy/atom • 𝐽 𝛼 1 + 𝐽 𝛼𝛽 2 : root-mean-square error ~ 0.2 mRy/atom • Total energies calculated without/with effective pair interactions 𝐽 𝛼𝛽 2 are similar • Chemical potentials Jα (1) reproduce well the on-site interactions from mean least squares fit 𝐽 𝛼 1 1. Introduction: 1. Binary σ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. σ-phase structure 5. Aim 2. Ab initio MF theory: 1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies 3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution 4. Results [other σ-s] : 1. ReW 2. CoCr 3. FeV 5. Summary
  • 27. 𝐹 = 𝐸𝑡𝑜𝑡 − 𝑇(𝑆𝑐𝑜𝑛𝑓 + 𝑆 𝑚𝑎𝑔𝑛 + 𝑆 𝑣𝑖𝑏𝑟 ) 𝑆𝑐𝑜𝑛𝑓 = −𝑘 𝐵 𝑛∝ 𝑐∝ ln 𝑐∝ + 1 − 𝑐∝ ln 1 − 𝑐∝ 5 𝛼=1 𝑆 𝑚𝑎𝑔𝑛 = 𝑘 𝐵 𝑛∝[ 5 𝛼=1 𝑐∝ ln 𝜇 𝛼 𝐶𝑟 + 1 + 1 − 𝑐∝ ln 𝜇 𝛼 𝐹𝑒 + 1 ] 𝑆 𝑣𝑖𝑏𝑟 = 𝑛𝑒𝑔𝑙𝑒𝑐𝑡𝑒𝑑 27 Entropy contributions to free energy Magnetism: • In order to simulate paramagnetic state at finite T disordered local moment (DLM) state is used. • Longitudinal spin fluctuations (LSF) are high temperature magnetic excitations and induce modified spin magnetic moments on the alloy components. { DLM + LSF } Site DLM µ(Fe) DLM µ(Cr) +LSF µ(Fe) +LSF µ(Cr) A 0.0 0 0.89 0.28 B 1.45 0 1.63 0.43 C 1.26 0 1.48 0.34 D 0.04 0 1.06 0.32 E 0.82 0 1.09 0.32 1. Introduction: 1. Binary σ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. σ-phase structure 5. Aim 2. Ab initio MF theory: 1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies 3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution 4. Results [other σ-s] : 1. ReW 2. CoCr 3. FeV 5. Summary
  • 28. σ 28 P. Korzhavyi et al. Mat. Res. Soc. Symp. Proc. V 842, S4.10.1 (2005) H at 0 K H H – TSconf H – T(Sconf+Smagn) at 1000 K Approach : 32 ordered (end-member) configurations and DLM model Importance of magnetism 1. Introduction: 1. Binary σ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. σ-phase structure 5. Aim 2. Ab initio MF theory: 1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies 3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution 4. Results [other σ-s] : 1. ReW 2. CoCr 3. FeV 5. Summary
  • 29. 𝜕𝐹 𝜕𝑐 𝛼 = 𝜕𝐸𝑡𝑜𝑡 𝜕𝑐 𝛼 − 𝑇 𝜕𝑆𝑐𝑜𝑛𝑓 𝜕𝑐 𝛼 + 𝜕𝑆 𝑚𝑎𝑔𝑛 𝜕𝑐 𝛼 = 0 𝑐5 = 30 𝑛5 − 1 𝑛5 𝑛 𝛼 𝑐 𝛼 4 𝛼=1 𝜕𝐹 𝜕𝑐 𝛼 = 𝐽 𝛼 1 𝑛 𝛼 + 𝑘 𝐵 𝑇𝑛 𝛼 𝑙𝑛𝑐 𝛼 − 𝑙𝑛 1 − 𝑐 𝛼 − 𝑘 𝐵 𝑇𝑛 𝛼 𝑙𝑛𝑐5 − 𝑙𝑛 1 − 𝑐5 + 𝑘 𝐵 𝑇𝑛 𝛼 𝑙𝑛 𝜇 𝛼 𝐹𝑒 + 1 − 𝑘 𝐵 𝑇𝑛 𝛼 𝑙𝑛 𝜇5 𝐹𝑒 + 1 − 𝑘 𝐵 𝑇𝑛 𝛼 𝑙𝑛 𝜇 𝛼 𝐶𝑟 + 1 +𝑘 𝐵 𝑇𝑛 𝛼 𝑙𝑛 𝜇5 𝐶𝑟 + 1 29 Equilibrium site occupancies cα 𝒄∝ = 𝝌 𝜶 𝟏 + 𝝌∝ where 𝝌∝ = 𝑒 − 1 𝑘 𝐵 𝐽∝ 1 𝑐5 1 − 𝑐5 (𝜇5 𝐹𝑒 + 1) (𝜇 𝛼 𝐹𝑒 + 1) (𝜇 𝛼 𝐶𝑟 + 1) (𝜇5 𝐶𝑟 + 1) (by Cr atoms) 1. Introduction: 1. Binary σ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. σ-phase structure 5. Aim 2. Ab initio MF theory: 1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies 3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution 4. Results [other σ-s] : 1. ReW 2. CoCr 3. FeV 5. Summary
  • 30. 30 Effect of magnetic state on site occupations Fe0.5Cr0.5 B B (A,D) Effective on-site interactions Jα 1. Introduction: 1. Binary σ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. σ-phase structure 5. Aim 2. Ab initio MF theory: 1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies 3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution 4. Results [other σ-s] : 1. ReW 2. CoCr 3. FeV 5. Summary T ≈ 0 K : integer site occupation is defined by Etot and described by the effective on-site interactions Jα. high T : partial site occupation is driven by Sconf, while Smagn corrects cα in (A,D) and B due to proper account of magnetism
  • 31. 31 Structural variations and µα (T) V expansion : increases available space around (A,D) and occupation by large Cr – not favored – distortion within kagome layers. c/a expansion : decreases available space around E and increases around C. T dependence of µα (Fe,Cr)  Jα Structural parameters 1. Introduction: 1. Binary σ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. σ-phase structure 5. Aim 2. Ab initio MF theory: 1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies 3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution 4. Results [other σ-s] : 1. ReW 2. CoCr 3. FeV 5. Summary
  • 32. 32 Final site distribution vs T • Preferences in atomic site distribution according to the empirical scheme of ordering • Good agreement with experimental data at finite T and results obtained by Wienk at T = 0 K Fe0.5Cr0.5 Including all effetcs (magnetism, structural changes and T effects) Site Emprical scheme A (Mn,Fe,Co,Ni) B (Ti,V,Cr,Mn,Mo) C mixed D (Mn,Fe,Co,Ni) E mixed Wien2k 1. Introduction: 1. Binary σ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. σ-phase structure 5. Aim 2. Ab initio MF theory: 1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies 3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution 4. Results [other σ-s] : 1. ReW 2. CoCr 3. FeV 5. Summary
  • 33. 33 Previous work  32 = 25 end-member compounds (total energy by LMTO-ASA)  24 effective cluster interactions were calculated by Connoly- Williams method  Magnetism was neglected  Results at high T disagree with experiment  Results at T = 0 K disagree with Wien2k  Site occupancy M.H.F. Sluiter et al. PRL75 , 3142(1995) 1. Introduction: 1. Binary σ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. σ-phase structure 5. Aim 2. Ab initio MF theory: 1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies 3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution 4. Results [other σ-s] : 1. ReW 2. CoCr 3. FeV 5. Summary
  • 34. 34 Final site distribution vs x • Linear dependence of the site occupancies on composition x • Good agreement with experimental data EK, P.Blaha, K. Schwarz, A.V. Ruban, B. Johansson, PRB 83, 092201 (2011) Fe1-xCrx 1. Introduction: 1. Binary σ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. σ-phase structure 5. Aim 2. Ab initio MF theory: 1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies 3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution 4. Results [other σ-s] : 1. ReW 2. CoCr 3. FeV 5. Summary
  • 35. 35 Test : Re0.5W0.5 system ∆(AR) = 2 pm • Preferences in atomic site distribution according to the empirical scheme of ordering • Reverse occupation of C and E site in contrast to Fe-Cr • Agreement with the earlier published work 1. Introduction: 1. Binary σ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. σ-phase structure 5. Aim 2. Ab initio MF theory: 1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies 3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution 4. Results [other σ-s] : 1. ReW 2. CoCr 3. FeV 5. Summary Site Emprical scheme A (Mn,Fe,Co,Ni) B (Ti,V,Cr,Mn,Mo) C mixed D (Mn,Fe,Co,Ni) E mixed C. Berne et al. PRB64 ,144103 (2001)
  • 36. 36 Test : Co0.5Cr0.5 system ∆(AR) = 3 pm • Preferences in atomic site distribution according to the empirical scheme of ordering • Site occupation similiar to the Fe-Cr system 1. Introduction: 1. Binary σ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. σ-phase structure 5. Aim 2. Ab initio MF theory: 1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies 3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution 4. Results [other σ-s] : 1. ReW 2. CoCr 3. FeV 5. Summary Site Emprical scheme A (Mn,Fe,Co,Ni) B (Ti,V,Cr,Mn,Mo) C mixed D (Mn,Fe,Co,Ni) E mixed
  • 37. 37 𝐹 = 𝐸𝑡𝑜𝑡 − 𝑇(𝑆𝑐𝑜𝑛𝑓 + 𝑆 𝑚𝑎𝑔𝑛 + 𝑆𝑣𝑖𝑏𝑟 ) 𝐸𝑡𝑜𝑡 𝑐 𝛼 = 𝐸0 𝑥 + 𝑛 𝛼 [ 𝐽 𝛼 1 + 𝐽 𝛼 𝑟𝑒𝑙𝑎𝑥 ]𝑐 𝛼 4 𝛼=1 𝑛 𝛼 − 𝑠𝑖𝑡𝑒 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦, 𝑐 𝛼 − 𝑉 𝑠𝑖𝑡𝑒 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 𝐽 𝛼 1 = 𝜕𝐸𝑡𝑜𝑡 𝜕𝑐 𝛼 − 𝜕𝐸𝑡𝑜𝑡 𝜕𝑐 𝐸 | 𝑐 𝛼 =𝑥=𝑐𝑜𝑛𝑠𝑡 𝐽 𝛼 𝑟𝑒𝑙𝑎𝑥 = 𝐸𝑟𝑒𝑙𝑎𝑥 /𝑎𝑡𝑜𝑚 Effective on-site interactions Vα (1) with respect to the E site Fe0.5V0.5: local atomic relaxations ∆(AR) = 8 pm ECI A B C D E Jα (1) 24.0938 -7.7813 0.3750 19.8750 0 Jα (1) +Jα (relax) 21.9375 -7.4062 0.3750 18.1875 0 EMTO-CPA • Contributions from local atomic relaxations to effective on-site interactions in Fe-V are small • Contributions in other systems with ∆(AR) ≤ 8 pm are expected to be also negligible 1. Introduction: 1. Binary σ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. σ-phase structure 5. Aim 2. Ab initio MF theory: 1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies 3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution 4. Results [other σ-s] : 1. ReW 2. CoCr 3. FeV 5. Summary
  • 38. 38 Test : Fe-V system ∆(AR) = 8 pm • Preferences in atomic site distribution according to the empirical scheme of ordering • Nearly full occupation of (A,D,) and B in contrast to Fe-Cr system [due to bigger ∆(AR)] Site Emprical scheme A (Mn,Fe,Co,Ni) B (Ti,V,Cr,Mn,Mo) C mixed D (Mn,Fe,Co,Ni) E mixed 1. Introduction: 1. Binary σ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. σ-phase structure 5. Aim 2. Ab initio MF theory: 1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies 3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution 4. Results [other σ-s] : 1. ReW 2. CoCr 3. FeV 5. Summary
  • 39. 39 Test : Fe-V system ∆(AR) = 8 pm • Linear dependence of the site occupancies on composition x • Reasonable agreement with experimental data • With increase of ∆(AR) full occupation of sublattices is more pronounced 1. Introduction: 1. Binary σ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. σ-phase structure 5. Aim 2. Ab initio MF theory: 1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies 3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution 4. Results [other σ-s] : 1. ReW 2. CoCr 3. FeV 5. Summary
  • 40. 40 Summary :  Ab initio based mean field theory was suggested to calculate the Cr site occupancies in the Fe-Cr σ-phase.  4 effective on-site interaction parameters are enough to simulate the atomic site distribution in σ-phase  The calculated Cr site occupancies are in a good agreement with the results obtained by the FP-LAPW method (WIEN2k) at T = 0K and available experimental data at finite T.  It was shown that the Fe-Cr σ-phase exhibits a non-trivial magnetic behaviour at high T, which affects the site occupation by Fe and Cr atoms. The structural variation (volume and c/a) can lead to an additional atomic redistribution.  The proposed method works also for the other binary σ- phases. In particularly, Re-W, Co-Cr, Fe-V systems have been tested and results agree with empirical scheme of ordering.  The proposed method can be further applied for the ternary σ-phases. 1. Introduction: 1. Binary σ-phases 2. Fe-Cr phase-diagram 3. Magnetic properties 4. σ-phase structure 5. Aim 2. Ab initio MF theory: 1. Helmholt’z free energy 2. Total energy expansion 3. EMTO-CPA 4. Convergence of expansion 5. Entropic contributions 6. Site occupancies 3. Results [FeCr] : 1. Effect of magnetic state 2. Structural varitations 3. Final site distribution 4. Results [other σ-s] : 1. ReW 2. CoCr 3. FeV 5. Summary
  • 41. ACKNOWLEDGEMENTS 41 Prof. A. V. Ruban Applied materials Physics Department of Materials Science and Engineering The Royal Institute of Technology (KTH) Brinellvägen 23, SE-100 44 Stockholm, Sweden Prof. P. Blaha Prof. K. Schwarz Institute of Materials Chemistry, Vienna University of Technology Getreidemarkt 9/165-TC, A-1060 Vienna, Austria and WIEN2k group