Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

Osteogenesis Imperfecta

31.823 Aufrufe

Veröffentlicht am

Veröffentlicht in: Gesundheit & Medizin
  • Posso recomendar um site. Ele realmente me ajudou. Chama-se ⇒ www.boaaluna.club ⇐ Eles me ajudaram a escrever minha dissertação.
       Antworten 
    Sind Sie sicher, dass Sie …  Ja  Nein
    Ihre Nachricht erscheint hier
  • Hi there! I just wanted to share a list of sites that helped me a lot during my studies: .................................................................................................................................... www.EssayWrite.best - Write an essay .................................................................................................................................... www.LitReview.xyz - Summary of books .................................................................................................................................... www.Coursework.best - Online coursework .................................................................................................................................... www.Dissertations.me - proquest dissertations .................................................................................................................................... www.ReMovie.club - Movies reviews .................................................................................................................................... www.WebSlides.vip - Best powerpoint presentations .................................................................................................................................... www.WritePaper.info - Write a research paper .................................................................................................................................... www.EddyHelp.com - Homework help online .................................................................................................................................... www.MyResumeHelp.net - Professional resume writing service .................................................................................................................................. www.HelpWriting.net - Help with writing any papers ......................................................................................................................................... Save so as not to lose
       Antworten 
    Sind Sie sicher, dass Sie …  Ja  Nein
    Ihre Nachricht erscheint hier
  • Have you ever used the help of HelpWriting.net? They can help you with any type of writing - from personal statement to research paper. Due to this service you'll save your time and get an essay without plagiarism.
       Antworten 
    Sind Sie sicher, dass Sie …  Ja  Nein
    Ihre Nachricht erscheint hier
  • What gout treatment options are available to me? ◆◆◆ https://t.cn/A6AZCtO2
       Antworten 
    Sind Sie sicher, dass Sie …  Ja  Nein
    Ihre Nachricht erscheint hier
  • The Gout Eraser is a short, to the point guide on how to reverse gout symptoms without ever leaving your home. The guide goes into extensive detail on exactly what you need to do to safely, effectively and permanently get rid of gout, and you are GUARANTEED to see dramatic improvements in days if not hours. ★★★ https://t.cn/A6AZCtO2
       Antworten 
    Sind Sie sicher, dass Sie …  Ja  Nein
    Ihre Nachricht erscheint hier

Osteogenesis Imperfecta

  1. 1. • OSTEOGENESIS IMPERFECTA
  2. 2. Earliest known case of osteogenesis imperfecta in a partially mummified infant’s skeleton from ancient Egypt now housed in the British Museum in London. In 1835, Lobstein coined the term osteogenesis imperfectaOther names for OI: Lobstein disease, brittle- bone disease, blue-sclera syndrome, and fragile-bone disease
  3. 3.  Manifest itself with 1 or more of the following findings: Blue sclerae Triangular facies Macrocephaly Hearing loss Defective dentition Barrel chest Scoliosis Limb deformities Fractures Joint laxity Growth retardation Constipation and sweating
  4. 4.  Pathologic changes seen in all tissues in which type 1 collagen is an important constituent (eg, bone, ligament, dentin, and sclera) Basic defect : qualitative or quantitative reduction in type 1 collagen Mutations in genes encoding type 1 collagen affect the coding of 1 of the 2 genes Mutations are either genetically inherited or new Inherited mutations : recurrence risk in subsequent pregnancies of 50% if a parent is affected New mutations unpredictable recurrence risk
  5. 5.  Quantitative defects of type 1 collagen : mutations on COL1A gene, production of premature stop codon or a microsense frame shift, which leads to mutant messenger RNA (mRNA) in the nucleus Cytoplasm contains normal alpha1 mRNA; reduced amounts of structurally normal collagen produced Mild form of disease
  6. 6.  Qualitative defects of type 1 collagen: autosomal dominant mutations on either the COL1A or the COL1B gene, production of mixture of normal and mutant collagen chainstype 1 collagen thus formed is functionally impaired because of mutant chain
  7. 7.  In bone :both endochondral and intramembranous ossification affected Epiphysis and physis :broad and irregular, with disorganization of proliferative and hypertrophic zones ,loss of typical columnar arrangement, thinning of zone of calcified cartilage, deficiency of primary spongiosa of the metaphysis and delay of the secondary centers of ossification in the epiphysis.
  8. 8.  Scoliosis and kyphosis Vertebral bodies :wedged, translucent, and shallow
  9. 9.  Thinning of the skull and multiple ossification centers (wormian bones) are present, particularly in the occiput
  10. 10. Epidemiology Incidence : 1 case for every 20,000 live births Equally common in males and females Described in every human population in which skeletal dysplasias have been studied No predilection for a particular race
  11. 11. History Family history , but most cases due to new mutations Commonly present with fractures after minor trauma In severe cases, prenatal screening ultrasonography performed during the second trimester may show bowing of long bones, fractures, limb shortening, and decreased skull echogenicity. Lethal OI cannot be diagnosed with certainty in utero
  12. 12. Physical Examination Clinical presentation depends on phenotype Sillence classificatiom : 4 types on basis of clinical and radiologic features Dentinogenesis imperfecta denoted as subtype B, whereas OI without dentinogenesis imperfecta is denoted as subtype A
  13. 13. Many cases of OI do not fit into the aforementioned categories; osteoporosis- pseudoglioma, Bruck syndrome, and Cole- Carpenter syndrome.Osteoporosis-pseudoglioma syndrome : caused by mutations in gene encoding for low-density-lipoprotein receptor-related protein 5 (LRP5), with clinical features including blindness and bone fragility
  14. 14. Bruck syndrome: autosomal recessive condition caused by mutations in bone- specific collagen type 1 telopeptide lysyl hydroxylase enzyme, with clinical features that include congenital joint contractures and bone fragilityCole-Carpenter syndrome : severe progressive form of OI, with associated multisutural craniosynostosis and growth failure
  15. 15. Complications Repeated respiratory infections Basilar impression caused by a large head, which causes brainstem compression Cerebral hemorrhage caused by birth trauma High risk for complications of anesthesia
  16. 16. Diagnostic ConsiderationsDifferential diagnoses categorized into 3 stages of life:Prenatal/neonatalPreschool/childhoodAdolescence/adultho od
  17. 17. Conditions that should be considered in prenatal/neonatal stage include: Jeune dystrophy Camptomelic dysplasia Chondrodysplasia punctata Chondroectodermal dysplasia (Ellis–van Creveld syndrome) Nonaccidental injury Hypophosphatasia
  18. 18. Preschool/childhood stage include: Pyknodysostosis Hajdu-Cheney syndrome Osteochondromatosis Nonaccidental injury
  19. 19. Differentiate between OI and child abuse Keys to distinguishing OI from child : Metaphyseal corner fractures, which are common in child abuse, rare in OI In children with OI, fractures may continue to occur while they are in protective custody Child abuse has nonskeletal manifestations (eg, retinal hemorrhage, visceral intramural hematomas, intracranial bleeds of various ages, pancreatitis, and splenic trauma)
  20. 20. Differential Diagnoses Achondroplasia Menkes Kinky Hair Disease Glucocorticoid Therapy Cushing Syndrome Homocysteinemia McCune-Albright Syndrome Osteopetrosis Osteoporosis Pediatric Acute Lymphoblastic Leukemia Rickets Scurvy Thanatophoric Dysplasia Wilson Disease
  21. 21. Laboratory Studies Within reference ranges, and useful in ruling out other metabolic bone diseases An analysis of type I, III, and V collagens synthesized by fibroblasts helpful Collagen synthesis analysis : culturing dermal fibroblasts obtained during skin biopsy Results are negative in syndromes resembling OI.
  22. 22. Tests Sodium dodecyl sulfate– polyacrylamide gel electrophoresis (SDS- PAGE) 2-Dimensional SDS-PAGE Cyanogen bromide (CNBr) mapping Thermal stability studies An analysis of amino acid composition of collagens
  23. 23.  DNA blood testing for gene defects has an accuracy of 60- 94%. Prenatal DNA mutation analysis can be performed in pregnancies with risk of OI to analyze uncultured chorionic villus cells. Samples are obtained during chorionic villus sampling performed under ultrasonographic guidance when a mutation in another member of the family is already known
  24. 24. Prenatal ultrasonography : Useful in evaluating OI types II and III Detects limb-length abnormalities at 15-18 weeks Features include supervisualization of intracranial contents caused by decreased mineralization of calvaria (also calvarial compressibility), bowing of the long bones, decreased bone length (especially of the femur), and multiple rib fractures
  25. 25. Radiographic skeletal survey after birth Plain radiographs :3 radiologic categories of OIA. Category I – Thin and gracile bonesB. Category II – Short and thick limbsC. Category III – Cystic changes
  26. 26. Radiologic features Fractures – Commonly, transverse fractures and those affecting the lower limbs Excessive callus formation and popcorn bones - Multiple scalloped, radiolucent areas with radiodense rims Skull changes - Wormian bones enlargement of frontal and mastoid sinuses, and platybasia with or without basilar impression Deformities of the thoracic cage - Fractured and beaded ribs and pectus carinatum Pelvic and proximal femoral changes - Narrow pelvis, compression fractures, protrusio acetabuli, and shepherd’s- crook deformities of the femurs
  27. 27.  Mild OI (type I) : thinning of the long bones with thin cortices,wormian bones,no deformity of long bones Extremely severe OI (type II) : beaded ribs, broad bones, and numerous fractures with deformities of long bones Moderate and severe OI (types III and IV) :cystic metaphyses, or a popcorn appearance of growth cartilage, deformities of long bones, old rib fractures, vertebral fractures
  28. 28. Dual x-ray absorptiometry (DEXA) To assess bone mineral density in children with milder forms Bone mineral density low in children and adults regardless of severity. Bone mineral densities can be normal in infants with OI, even in severe cases In pediatric patients, DEXA results not useful for predicting risk of fracture No reliable published reference data regarding DEXA in infants available
  29. 29.  Polarized light microscopy or microradiography used in combination with scanning electron microscopy to assess dentinogenesis imperfecta With skin biopsy, collagen can be isolated from cultured fibroblasts and assessed for defects, with an accuracy of 85-87% Bone biopsy : show changes in concentrations of noncollagenous bone proteins, such as osteonectin, sialoprotein, and decorin
  30. 30. Histologic Findings• Width of biopsy cores, width of cortex, and volume of cancellous bone decreased in all types of OI• Number and thickness of trabeculae reduced• Evidence of defects in modeling of external bone in terms of size and shape production of secondary trabeculae by endochondral ossification, thickening of secondary trabeculae by remodeling
  31. 31. TreatmentNo cureOrthotics: limited role, to stabilize lax joints (eg, ankle and subtalar joints with ankle-foot orthoses) and to prevent progressive deformities and fractures.Provide walking aids, specialized wheelchairs, and home adaptation devices to help improve patient’s mobility and function
  32. 32. Surgery Pillar of treatmentOnly if it is likely to improve function and treatment goals are clearIntramedullary rod placement, surgery to manage basilar impression, and correction of scoliosisSoft tissue surgery : lower-limb contractures, particularly those of the Achilles tendon
  33. 33.  Painful bony deformities and recurrent fractures are typically treated with intramedullary stabilization with or without corrective osteotomies. In children with severe forms of OI (eg, type III), rodding of lower extremities is performed to correct deformities and provide preventive protection around the time of first attempts at standing Because bone is soft in OI, rods (eg, extendable Sheffield rods or Bailey-Dubow rods), pins (eg, Rush pins), and wires (eg, Kirschner wires) are used rather than solid nails, plates, and screws; the latter are associated with increased fracture risk above and below the device and with poor fixation
  34. 34.  Rod placement use in femur and less commonly used in tibia, humerus, and forearm In the prebisphosphonate era, extendable rods preferred to nonextendable ones in order to prevent bone bowing and bone growth beyond end of rod Bailey-Dubow rods : high incidence of mechanical failures (eg, migration and disconnection of T-parts) Sheffield rods and the Fassier-Duval modification commonly used
  35. 35.  With decreased fragility of bone exposed to bisphosphonate, future role of extendable rods unclear In long bones (eg, tibiae and radii), nonextendable rods such as Rush pins and Kirschner wires most often used Complications of rod placement include breakage, rotational deformities, and migration Extendable and nonextendable rods associated with similar complications Rate of repeat surgical intervention is lower with extendable rods than with nonextendable rods
  36. 36. Surgery for basilar impressionBasilar invagination: result in long tract signs and respiratory depression from direct compression of brainstem and upper cervical and cranial nerves Treated with decompression and stabilization of the craniocervical junction; reserved for cases with neurologic deficiencies
  37. 37. Surgery for spinal deformities Bracing not effective in treating spinal deformities such as scoliosis and kyphosis, because the rib cage is fragile to transfer brace pressure to vertebral column. External pressure may worsen the chest deformities. Surgery is indicated when the following 2 conditions are present: Acceptable bone quality Progressive scoliosis with curvature of more than 45° if OI is mild or more than 30-35° if OI is severe
  38. 38.  Posterior spinal arthrodesis is the treatment of choice and is best performed with segmental instrumentation. Often, significant correction and stable fixation are not achieved. Pretreatment with pamidronate appears to improve the surgical outcome
  39. 39.  Skilled administration of anesthetics and awareness of the limitations of surgery are essential prerequisites. Anesthetic-related problems : Patients with relatively large heads and tongues and in those with short necks Chest deformities may cause respiratory complications On the operating table, fractures may arise as a result of the application of a blood pressure cuff or tourniquet, or they may occur during transfers Watch for hyperthermia and increased sweating
  40. 40. Bisphosphonates Synthetic analogues of pyrophosphate that inhibit osteoclast- mediated bone resorption on the endosteal surface of bone by binding to hydroxyapatite. Unopposed osteoblastic new bone formation on the periosteal surface results in an increase in cortical thickness.
  41. 41. Cyclic intravenous (IV) pamidronate : Dosage of 7.5 mg/kg/y at 4- to 6-month intervals Dosages have ranged from 4.5 to 9 mg/kg/y, depending on the protocol used Cyclic administration of IV pamidronate reduces the incidence of fracture and increases bone mineral density Current evidence does not support the use of oral bisphosphonates in patients with OI. IV pamidronate effective in babies and can be used to relieve pain in severe cases Adverse effects of pamidronate : acute febrile reaction, mild hypocalcemia, leukopenia, a transient increase in bone pain, and scleritis with or without anterior uveitis
  42. 42.  Risedronate, alendronate, and zoledronic acid being assessed Growth hormone: act on growth plate,stimulate osteoblast function, possibly via IGF-1 ,IGFBP-3 Teriparatide :Recombinant human form of parathyroid hormone that increases number and activity of osteoblastsPotential use of teriparatide for the treatment of OI remains to be defined
  43. 43. Cellular and Genetic Therapy Bone marrow transplantation: potential future therapeutic modality for OI Because there are very few MSCs in the average human bone marrow graft, approaches involving expansion of the number of MSCs in ex vivo cultures with subsequent infusion into the recipient needed Such cell therapies usually result in somatic mosaicism, where normal and abnormal osteoblasts exist in the same body Unfortunately, higher proportion of engrafted normal cells required to achieve the level of normal osteoblasts necessary to functionally correct the OI phenotype. Use of immunosuppressive agents to prevent graft rejection and graft versus host reaction can itself damage bone
  44. 44. • Future approaches: autografting of genetically modified mutant osteoblasts, whereby mutant collagen gene is inactivated• Gene therapy: being explored in animal models, but major obstacles remain, both because of intrinsic difficulties and because of dominant negative mechanism of disease
  45. 45. Diet and Activity Nutritional evaluation and intervention paramount to ensure appropriate intake of calcium, phosphorus, and vitamin D Caloric management important, particularly in adolescents and adults with severe forms of OI Physical therapy, in form of comprehensive rehabilitation programs, directed toward improving joint mobility and developing muscle strength
  46. 46.  In early infancy, gentle handling of babies by parents to prevent fractures, with frequent positional changes advised to prevent occipital flattening, torticollis, and frog-leg positioning of hips When infant is crawling: upper-limb mobility, propelling a wheelchair or ambulating with walking aids When child starts to stand: walking encouraged, both as exercise and as primary or secondary means of mobility
  47. 47.  Weightbearing promoted in pool, on tricycles, and with walkers Prone positioning to prevent hip flexion contractures; aided by strengthening of hip extensors and quadriceps. Bisphosphonates have significantly improved the walking ability of children with severe forms of OI
  48. 48.  Care of patients with OI multidisciplinary: occupational therapist, physical therapist, nutritionist, audiologist, orthopedic surgeon, neurosurgeon, pneumologist, and nephrologist, among others Genetic counseling to parents of child with OI who plan to have more children
  49. 49. Prognosis Morbidity and mortality vary widely, depending on genotype Variability occurs between individuals with different mutations Life expectancy of subjects with nonlethal OI appears same as that for the healthy population, except for those with severe respiratory or neurologic complications. Although patients with lethal OI may die in perinatal period, individuals with extremely severe OI can survive until adulthood
  50. 50. Patient EducationPatients with OI: well motivated and keen to achieve as much as possible despite their physical limitationsEducation extremely importantEducation of parents and families :to know how to position child in crib and how to hold child so as to minimize risk of fractures while maintaining bonding and physical stimulation
  51. 51. Living with ostogenesis imperfecta The tips reproduced below have been developed by the Osteogenesis Imperfecta Foundation for taking care of children with osteogenesis imperfecta. Do not be afraid to touch or hold an infant with osteogenesis imperfecta, but be careful. To lift an infant with osteogenesis imperfecta, spread your fingers apart and put one hand between the legs and under the buttocks, and place the other hand behind the shoulders, neck, and head. Never lift a child with osteogenesis imperfecta by holding him or her under the armpits.
  52. 52.  Do not pull on arms or legs or, in those with severe osteogenesis imperfecta, lift the legs by the ankles to change a diaper. Select an infant car seat that reclines. It should be easy to place or remove your child in the seat. Consider padding the seat with foam and using a layer of foam between your child and the harness. Be sure your stroller is large enough to accommodate casts. Do not use a sling- or umbrella-type stroller
  53. 53.  Follow your doctors instructions carefully, especially with regard to cast care and mobility exercises. Swimming and walking are often recommended as safe exercises. Adults with osteogenesis imperfecta should avoid activities such as smoking, drinking, and taking steroids because they have a negative impact on bone density. Increasing awareness of child abuse and a lack of awareness about osteogenesis imperfecta may lead to inaccurate conclusions about a family situation. Always have a letter from your family doctor and a copy of your childs medical records handy.

×