SlideShare ist ein Scribd-Unternehmen logo
1 von 26
17-1
Physics I
Class 17
Newton’s Theory of
Gravitation
Rev. 03-Nov-04 GB
17-2
Forces Known to Physics
There are four fundamental forces known to physics:
•Gravitational Force (today)
•Electromagnetic Force (later in Physics 1 and 2)
•Weak Nuclear Force
•Strong Nuclear Force
(All forces we observe are comprised of these fundamental
forces. Most forces observable in everyday experience are
electromagnetic on a microscopic level.)
17-3
Forces in Physics 1
(so far)
We have encountered the following forces in Physics 1:
•Gravity
•Ideal Springs (Hooke’s Law)
•Pushes and Pulls
•Friction
What makes gravity different from the other three?
(Hint: The ideal spring force is also conservative,
so that isn’t the answer.)
17-4
Newton’s Theory of Gravitation
Isaac Newton, 1642-1727
In 1666, our old friend, Isaac Newton, was musing
on the motions of heavenly bodies while sitting in a
garden in Lincolnshire England, where he had gone
to escape the plague then ravaging London.
What if the force of gravity, the same force that causes an apple to
fall to the ground in this garden, extends much further than usually
thought? What if the force of gravity extends all the way to the
moon? Newton began to calculate the consequences of his
assumption…
17-5
Newton’s Law of
Universal Gravitation
rˆ
r
mm
GF 2
21
=

The meaning of each term:
F

: Gravitational force on object 1 from object 2.
G: Universal gravitational constant = 6.673 x 10
–11
N m
2
/kg
2
.
1m : Mass of object 1.
2m : Mass of object 2.
2
r : Center distance from object 1 to object 2, squared.
rˆ: Unit vector from object 1 to object 2.
17-6
Properties of Gravity
Object 1
Object 2
Gravitational Force on 1 from 2
•Every object with mass is attracted by every other object with mass.
•Gravity is a force at a distance (through occupied or empty space).
•Gravity is a “central” force (center-to-center for spherical bodies).
•Gravity varies as the inverse square of the center distance.
•Gravity varies as the product of the masses.
17-7
If Gravity Varies As 1/r2
,
Where Does g = 9.8 m/s2
Fit In?
Consider the force on an object near the surface of the earth.
(Assume the earth is a sphere and ignore rotation effects.)
R = radius of the earth.
M = mass of the earth.
m = mass of the object.
gmrˆ
R
MG
mrˆ
R
Mm
GF 22

=== (What is the direction?)
g = 9.8 m/s2
only seems constant because we don’t go very far
from the surface of the earth.
17-8
Gravity is a
Conservative Force
Both the mathematical form of Newton’s Law of Universal
Gravitation and experimental evidence show that gravity is a
conservative force. Therefore, we can find a gravitational
potential energy for an object with mass m being attracted by
another object with mass M.
The gravitational potential energy is defined (for convenience)
to be zero at infinity. We can calculate it by finding the
positive work from any point to infinity – you can find the
details in the book in section 13-6.
r
MmG
rd
)r(
MmG
rdF)r(U
r
2
r
g ∫∫
∞∞
−=′
′
−=′⋅=

17-9
We Have Two Formulas for
Gravitational Potential Energy!
Old: )yy(gm)y(U 0g −=
New:
r
MmG
)r(Ug −=
How could these be the same?
Consider a location near the surface of the earth, y0
= R, y = R+h.
The only thing that matters is ∆U, not U itself.
Old: hgm)RhR(gmUg =−+=∆
New: 





+
−=





−−
+
−=∆
hR
1
R
1
MmG
R
MmG
hR
MmG
Ug






+
=





+
−=
hRR
h
MGm
hR
1
R
1
MGm 2
(h << R)
hgmh
R
MG
m
R
h
MGm 22
==≈
17-10
Class #17
Take-Away Concepts
1. Four fundamental forces known to physics:
•Gravitational Force
•Electromagnetic Force
•Weak Nuclear Force
•Strong Nuclear Force
2. Newton’s Law of Universal Gravitation
rˆ
r
mm
GF 2
21
=

3. Gravitational Potential Energy (long-range form)
r
MmG
)r(Ug −=
17-11
Class #17
Problems of the Day
___1. To measure the mass of a planet, with the same radius as
Earth, an astronaut drops an object from rest (relative to the
surface of the planet) from a height h above the surface of the
planet. (h is small compared to the radius.) The object
arrives at the surface with a speed that is four (4) times what
it would be if dropped from the same distance above Earth’s
surface. If M is the mass of Earth, the mass of the planet is:
A. 2 M D. 16 M
B. 4 M E. 32 M
C. 8 M
17-12
Class #17
Problems of the Day
2. Calculate the acceleration due to gravity at the surface of the
planet Mars. Assume Mars is a perfect sphere and neglect effects
due to rotation. Use M =
23
104.6 +
× kg and R =
6
104.3 +
× m.
17-13
Activity #17
Gravitation
(Pencil and Paper Activity)
Objective of the Activity:
1. Think about Newton’s Law of Universal Gravitation.
2. Consider the implications of Newton’s formula.
3. Practice calculating gravitational force vectors.
17-14
Class #17 Optional Material
Part A - Kepler’s Laws of Orbits
Material on Kepler’s Laws
thanks to
Professor Dan Sperber
17-15
Kepler’s Three Laws
of Planetary Motion
1. The Law of Orbits: All planets move in elliptical
orbits having the Sun at one focus.
2. The Law of Areas: A line joining any planet to the
Sun sweeps out equal areas in equal times.
3. The Law of Periods: The square of the period of
any planet about the Sun is proportional to the cube
of the semi-major axis of its orbit.
Newton showed through geometrical reasoning (without calculus)
that his Law of Universal Gravitation explained Kepler’s Laws.
17-16
Kepler’s Three Laws
of Planetary Motion
Try this link to see an animation:
http://home.cvc.org/science/kepler.htm
The Law of Areas
∆ ∆A r r
dA
dt
r
d
dt
r
L
L rmv rm r
L mr
=
= =
=
= =
=
⊥
1
2
1
2
2 1
2
2
2
( )θ
θ
ω
ω
ω
constant
The Law of Periods
F ma
GMm
r
m r
GM
r T
T
GM
r
=
=
= = 



=
2
2
3
2
2
2
2
3
2
2
ω
ω
π
π( )
ENERGY IN CIRCULAR
ORBITS
K mv m
GM
r
K
GMm
r
U
GMm
r
E U K
GMm
r
= =
=
= −
= + = −
1
2
2 1
2
2
2
17-20
Class #17 Optional Material
Part B - General Relativity
Material on General Relativity
thanks to
Albert Einstein
17-21
Where Did Newton Go Wrong?
(Again!)
Albert Einstein (1879–1955)
(Check back to the optional material for classes 3 and 6 first…)
Einstein realized that something must be wrong with Newton’s
theory of gravity, because it implied that the force of gravity is
transmitted instantaneously to all points in the universe. This
contradicts the fundamental limitation in the Theory of Special
Relativity that the fastest speed information or energy of any type
can travel is the speed of light.
To overcome this problem Einstein postulated a third principle, the
Principle of Equivalence, to go with his two principles of Special
Relativity. (1907)
17-22
The Principle of Equivalence
In broad terms, the Principle of Equivalence states that there is no
experiment that one can perform to distinguish a frame of reference
in a gravitational force field from one that is accelerating with a
corresponding magnitude and direction.
This is sometimes called the “Elevator Postulate” because we can
imagine a physicist in a closed elevator cab trying to determine
whether he is at rest on earth, or accelerating at 9.8 m/s2
far from
any planet, or perhaps on a planet where gravity is half that of earth
and the elevator is accelerating upward at 4.9 m/s2
. According to
Einstein, there is no experiment that could detect a difference.
17-23
The Principle of Equivalence
17-24
General Theory of Relativity
By 1915, Einstein had worked through all the math (with some help)
to show that his postulates led to a new theory of gravity based on
the effect of mass and energy to curve the structure of space and
time. His theory has some startling implications, one being the
existence of “black holes” – regions of space where the gravity field
is so high that even light cannot escape. The predictions of General
Relativity, including the existence of black holes, have been
confirmed by all experiments to date.
17-25
Black Holes
Black holes are detected by the characteristic
x-rays given off by matter falling into them.
17-26
If Newton’s Gravity isn’t true,
why do we still use it?
It’s a good approximation for most engineering purposes.
Massive Black Holes
In Galaxies
NGC 3377, NGC 3379
And NGC 4486B

Weitere ähnliche Inhalte

Was ist angesagt?

Dark matter and dark energy
Dark matter and dark energyDark matter and dark energy
Dark matter and dark energyblkninja
 
Gravity and motion
Gravity and motionGravity and motion
Gravity and motionTekZeno
 
Physics 2 (Modern Physics)
Physics 2 (Modern Physics)Physics 2 (Modern Physics)
Physics 2 (Modern Physics)Czarina Nedamo
 
Gravity Gravitation Gravitasi 1
Gravity  Gravitation Gravitasi 1Gravity  Gravitation Gravitasi 1
Gravity Gravitation Gravitasi 1Rifda Latifa
 
Dark matter and dark energy
Dark matter and dark energyDark matter and dark energy
Dark matter and dark energyAdnan Anwer
 
Magnetism
MagnetismMagnetism
MagnetismKumar
 
Gravitational force
Gravitational forceGravitational force
Gravitational forceHasi98
 
Newton’s law of gravitation
Newton’s law of gravitationNewton’s law of gravitation
Newton’s law of gravitationChelsea Shi
 
Dark Matter And Dark Energy
Dark Matter And Dark EnergyDark Matter And Dark Energy
Dark Matter And Dark EnergyGoogle
 
Waves ppt.
Waves ppt.Waves ppt.
Waves ppt.hlayala
 
Astrophysics lecture
Astrophysics lectureAstrophysics lecture
Astrophysics lectureAhmed Haider
 
Astrophysics Presentation
Astrophysics PresentationAstrophysics Presentation
Astrophysics PresentationAkshay Sharma
 
Universal Gravitation PPP
Universal Gravitation PPPUniversal Gravitation PPP
Universal Gravitation PPPeliseb
 
Dark matter ~ Introduction
Dark matter ~ Introduction Dark matter ~ Introduction
Dark matter ~ Introduction Taliya Hemanth
 

Was ist angesagt? (20)

Dark matter and dark energy
Dark matter and dark energyDark matter and dark energy
Dark matter and dark energy
 
Gravitation ppt
Gravitation pptGravitation ppt
Gravitation ppt
 
Gravity and motion
Gravity and motionGravity and motion
Gravity and motion
 
Physics 2 (Modern Physics)
Physics 2 (Modern Physics)Physics 2 (Modern Physics)
Physics 2 (Modern Physics)
 
Gravity Gravitation Gravitasi 1
Gravity  Gravitation Gravitasi 1Gravity  Gravitation Gravitasi 1
Gravity Gravitation Gravitasi 1
 
GRAVITY
GRAVITYGRAVITY
GRAVITY
 
Dark matter and dark energy
Dark matter and dark energyDark matter and dark energy
Dark matter and dark energy
 
Magnetism
MagnetismMagnetism
Magnetism
 
Gravitational force
Gravitational forceGravitational force
Gravitational force
 
Newton’s law of gravitation
Newton’s law of gravitationNewton’s law of gravitation
Newton’s law of gravitation
 
Dark Matter And Dark Energy
Dark Matter And Dark EnergyDark Matter And Dark Energy
Dark Matter And Dark Energy
 
Chapter 2: Describing motion
Chapter 2: Describing motionChapter 2: Describing motion
Chapter 2: Describing motion
 
Waves ppt.
Waves ppt.Waves ppt.
Waves ppt.
 
Astrophysics lecture
Astrophysics lectureAstrophysics lecture
Astrophysics lecture
 
Astrophysics Presentation
Astrophysics PresentationAstrophysics Presentation
Astrophysics Presentation
 
Dark matter
Dark matterDark matter
Dark matter
 
Complete Astronomy Unit PPT
Complete Astronomy Unit PPTComplete Astronomy Unit PPT
Complete Astronomy Unit PPT
 
Universal Gravitation PPP
Universal Gravitation PPPUniversal Gravitation PPP
Universal Gravitation PPP
 
Gravity
GravityGravity
Gravity
 
Dark matter ~ Introduction
Dark matter ~ Introduction Dark matter ~ Introduction
Dark matter ~ Introduction
 

Andere mochten auch

Newton, einstein, and gravity
Newton, einstein, and gravityNewton, einstein, and gravity
Newton, einstein, and gravitySaeed Jafari
 
Mera anubhav meri siksha 7th
Mera anubhav meri siksha 7thMera anubhav meri siksha 7th
Mera anubhav meri siksha 7thPoonam Singh
 
Presentation on senior citizen
Presentation on senior  citizenPresentation on senior  citizen
Presentation on senior citizenDr. Shalini Pandey
 
6 writing and presenting literature review-khalid
6 writing and presenting literature review-khalid6 writing and presenting literature review-khalid
6 writing and presenting literature review-khalidKhalid Mahmood
 
Lit review powerpoint
Lit review powerpointLit review powerpoint
Lit review powerpointKellyh84
 
Literature review in research
Literature review in researchLiterature review in research
Literature review in researchNursing Path
 
Related Literature and Related Studies
Related Literature and Related StudiesRelated Literature and Related Studies
Related Literature and Related StudiesJenny Reyes
 
10 Tips for Making Beautiful Slideshow Presentations by www.visuali.se
10 Tips for Making Beautiful Slideshow Presentations by www.visuali.se10 Tips for Making Beautiful Slideshow Presentations by www.visuali.se
10 Tips for Making Beautiful Slideshow Presentations by www.visuali.seEdahn Small
 
The Literature Review Process
The Literature Review ProcessThe Literature Review Process
The Literature Review Processannielibrarian
 

Andere mochten auch (12)

Newton, einstein, and gravity
Newton, einstein, and gravityNewton, einstein, and gravity
Newton, einstein, and gravity
 
Mera anubhav meri siksha 7th
Mera anubhav meri siksha 7thMera anubhav meri siksha 7th
Mera anubhav meri siksha 7th
 
old age
old ageold age
old age
 
Presentation on senior citizen
Presentation on senior  citizenPresentation on senior  citizen
Presentation on senior citizen
 
6 writing and presenting literature review-khalid
6 writing and presenting literature review-khalid6 writing and presenting literature review-khalid
6 writing and presenting literature review-khalid
 
Presentation on literature review
Presentation on literature reviewPresentation on literature review
Presentation on literature review
 
Lit review powerpoint
Lit review powerpointLit review powerpoint
Lit review powerpoint
 
Literature review in research
Literature review in researchLiterature review in research
Literature review in research
 
Related Literature and Related Studies
Related Literature and Related StudiesRelated Literature and Related Studies
Related Literature and Related Studies
 
10 Tips for Making Beautiful Slideshow Presentations by www.visuali.se
10 Tips for Making Beautiful Slideshow Presentations by www.visuali.se10 Tips for Making Beautiful Slideshow Presentations by www.visuali.se
10 Tips for Making Beautiful Slideshow Presentations by www.visuali.se
 
Literature Review
Literature ReviewLiterature Review
Literature Review
 
The Literature Review Process
The Literature Review ProcessThe Literature Review Process
The Literature Review Process
 

Ähnlich wie Gravitation

Ähnlich wie Gravitation (20)

lec17.ppt
lec17.pptlec17.ppt
lec17.ppt
 
New model.ppt
New model.pptNew model.ppt
New model.ppt
 
Chapter 11 GRAVITATION
Chapter  11 GRAVITATIONChapter  11 GRAVITATION
Chapter 11 GRAVITATION
 
Gravity origin & evolution
Gravity origin & evolutionGravity origin & evolution
Gravity origin & evolution
 
pysicsII word.pdf
pysicsII word.pdfpysicsII word.pdf
pysicsII word.pdf
 
Class 9 gravitation
Class 9 gravitationClass 9 gravitation
Class 9 gravitation
 
Lecture14.ppt
Lecture14.pptLecture14.ppt
Lecture14.ppt
 
Lecture14.ppt
Lecture14.pptLecture14.ppt
Lecture14.ppt
 
SHAILESH RAJ
SHAILESH RAJSHAILESH RAJ
SHAILESH RAJ
 
gravity.ppt
gravity.pptgravity.ppt
gravity.ppt
 
08 gravitation
08   gravitation08   gravitation
08 gravitation
 
Gravity.ppt
Gravity.pptGravity.ppt
Gravity.ppt
 
10 gravitation.pdf
10 gravitation.pdf10 gravitation.pdf
10 gravitation.pdf
 
Planetary Motion- The simple Physics Behind the heavenly bodies
Planetary Motion- The simple Physics Behind the heavenly bodiesPlanetary Motion- The simple Physics Behind the heavenly bodies
Planetary Motion- The simple Physics Behind the heavenly bodies
 
Overview of GTR and Introduction to Cosmology
Overview of GTR and Introduction to CosmologyOverview of GTR and Introduction to Cosmology
Overview of GTR and Introduction to Cosmology
 
universal gravitation
universal gravitationuniversal gravitation
universal gravitation
 
Keplers law
Keplers lawKeplers law
Keplers law
 
gravitation class 9
gravitation class 9gravitation class 9
gravitation class 9
 
3gravitation-181206145827 (1).pdf
3gravitation-181206145827 (1).pdf3gravitation-181206145827 (1).pdf
3gravitation-181206145827 (1).pdf
 
Hukum Newton Gravitasi
Hukum Newton GravitasiHukum Newton Gravitasi
Hukum Newton Gravitasi
 

Mehr von Poonam Singh (20)

Diabetes
DiabetesDiabetes
Diabetes
 
Polynomials
PolynomialsPolynomials
Polynomials
 
Advertising
Advertising Advertising
Advertising
 
Chemistry
ChemistryChemistry
Chemistry
 
Diabetes mellitus
Diabetes mellitusDiabetes mellitus
Diabetes mellitus
 
WATER CRISIS “Prediction of 3rd world war”
WATER CRISIS “Prediction of 3rd world war”WATER CRISIS “Prediction of 3rd world war”
WATER CRISIS “Prediction of 3rd world war”
 
Issue of Shares
Issue of SharesIssue of Shares
Issue of Shares
 
My experience my values 7th
My experience my values 7thMy experience my values 7th
My experience my values 7th
 
Solid
SolidSolid
Solid
 
Smart class
Smart classSmart class
Smart class
 
S107
S107S107
S107
 
S104
S104S104
S104
 
S103
S103S103
S103
 
S102
S102S102
S102
 
S101
S101S101
S101
 
Projectile motion
Projectile motionProjectile motion
Projectile motion
 
Mansi
MansiMansi
Mansi
 
From the begning
From the begningFrom the begning
From the begning
 
English aphotograph
English aphotographEnglish aphotograph
English aphotograph
 
Volume of sphere[1]
Volume of sphere[1]Volume of sphere[1]
Volume of sphere[1]
 

Kürzlich hochgeladen

ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomnelietumpap1
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management SystemChristalin Nelson
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptxiammrhaywood
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 

Kürzlich hochgeladen (20)

ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choom
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management System
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptxYOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 

Gravitation

  • 1. 17-1 Physics I Class 17 Newton’s Theory of Gravitation Rev. 03-Nov-04 GB
  • 2. 17-2 Forces Known to Physics There are four fundamental forces known to physics: •Gravitational Force (today) •Electromagnetic Force (later in Physics 1 and 2) •Weak Nuclear Force •Strong Nuclear Force (All forces we observe are comprised of these fundamental forces. Most forces observable in everyday experience are electromagnetic on a microscopic level.)
  • 3. 17-3 Forces in Physics 1 (so far) We have encountered the following forces in Physics 1: •Gravity •Ideal Springs (Hooke’s Law) •Pushes and Pulls •Friction What makes gravity different from the other three? (Hint: The ideal spring force is also conservative, so that isn’t the answer.)
  • 4. 17-4 Newton’s Theory of Gravitation Isaac Newton, 1642-1727 In 1666, our old friend, Isaac Newton, was musing on the motions of heavenly bodies while sitting in a garden in Lincolnshire England, where he had gone to escape the plague then ravaging London. What if the force of gravity, the same force that causes an apple to fall to the ground in this garden, extends much further than usually thought? What if the force of gravity extends all the way to the moon? Newton began to calculate the consequences of his assumption…
  • 5. 17-5 Newton’s Law of Universal Gravitation rˆ r mm GF 2 21 =  The meaning of each term: F  : Gravitational force on object 1 from object 2. G: Universal gravitational constant = 6.673 x 10 –11 N m 2 /kg 2 . 1m : Mass of object 1. 2m : Mass of object 2. 2 r : Center distance from object 1 to object 2, squared. rˆ: Unit vector from object 1 to object 2.
  • 6. 17-6 Properties of Gravity Object 1 Object 2 Gravitational Force on 1 from 2 •Every object with mass is attracted by every other object with mass. •Gravity is a force at a distance (through occupied or empty space). •Gravity is a “central” force (center-to-center for spherical bodies). •Gravity varies as the inverse square of the center distance. •Gravity varies as the product of the masses.
  • 7. 17-7 If Gravity Varies As 1/r2 , Where Does g = 9.8 m/s2 Fit In? Consider the force on an object near the surface of the earth. (Assume the earth is a sphere and ignore rotation effects.) R = radius of the earth. M = mass of the earth. m = mass of the object. gmrˆ R MG mrˆ R Mm GF 22  === (What is the direction?) g = 9.8 m/s2 only seems constant because we don’t go very far from the surface of the earth.
  • 8. 17-8 Gravity is a Conservative Force Both the mathematical form of Newton’s Law of Universal Gravitation and experimental evidence show that gravity is a conservative force. Therefore, we can find a gravitational potential energy for an object with mass m being attracted by another object with mass M. The gravitational potential energy is defined (for convenience) to be zero at infinity. We can calculate it by finding the positive work from any point to infinity – you can find the details in the book in section 13-6. r MmG rd )r( MmG rdF)r(U r 2 r g ∫∫ ∞∞ −=′ ′ −=′⋅= 
  • 9. 17-9 We Have Two Formulas for Gravitational Potential Energy! Old: )yy(gm)y(U 0g −= New: r MmG )r(Ug −= How could these be the same? Consider a location near the surface of the earth, y0 = R, y = R+h. The only thing that matters is ∆U, not U itself. Old: hgm)RhR(gmUg =−+=∆ New:       + −=      −− + −=∆ hR 1 R 1 MmG R MmG hR MmG Ug       + =      + −= hRR h MGm hR 1 R 1 MGm 2 (h << R) hgmh R MG m R h MGm 22 ==≈
  • 10. 17-10 Class #17 Take-Away Concepts 1. Four fundamental forces known to physics: •Gravitational Force •Electromagnetic Force •Weak Nuclear Force •Strong Nuclear Force 2. Newton’s Law of Universal Gravitation rˆ r mm GF 2 21 =  3. Gravitational Potential Energy (long-range form) r MmG )r(Ug −=
  • 11. 17-11 Class #17 Problems of the Day ___1. To measure the mass of a planet, with the same radius as Earth, an astronaut drops an object from rest (relative to the surface of the planet) from a height h above the surface of the planet. (h is small compared to the radius.) The object arrives at the surface with a speed that is four (4) times what it would be if dropped from the same distance above Earth’s surface. If M is the mass of Earth, the mass of the planet is: A. 2 M D. 16 M B. 4 M E. 32 M C. 8 M
  • 12. 17-12 Class #17 Problems of the Day 2. Calculate the acceleration due to gravity at the surface of the planet Mars. Assume Mars is a perfect sphere and neglect effects due to rotation. Use M = 23 104.6 + × kg and R = 6 104.3 + × m.
  • 13. 17-13 Activity #17 Gravitation (Pencil and Paper Activity) Objective of the Activity: 1. Think about Newton’s Law of Universal Gravitation. 2. Consider the implications of Newton’s formula. 3. Practice calculating gravitational force vectors.
  • 14. 17-14 Class #17 Optional Material Part A - Kepler’s Laws of Orbits Material on Kepler’s Laws thanks to Professor Dan Sperber
  • 15. 17-15 Kepler’s Three Laws of Planetary Motion 1. The Law of Orbits: All planets move in elliptical orbits having the Sun at one focus. 2. The Law of Areas: A line joining any planet to the Sun sweeps out equal areas in equal times. 3. The Law of Periods: The square of the period of any planet about the Sun is proportional to the cube of the semi-major axis of its orbit. Newton showed through geometrical reasoning (without calculus) that his Law of Universal Gravitation explained Kepler’s Laws.
  • 16. 17-16 Kepler’s Three Laws of Planetary Motion Try this link to see an animation: http://home.cvc.org/science/kepler.htm
  • 17. The Law of Areas ∆ ∆A r r dA dt r d dt r L L rmv rm r L mr = = = = = = = ⊥ 1 2 1 2 2 1 2 2 2 ( )θ θ ω ω ω constant
  • 18. The Law of Periods F ma GMm r m r GM r T T GM r = = = =     = 2 2 3 2 2 2 2 3 2 2 ω ω π π( )
  • 19. ENERGY IN CIRCULAR ORBITS K mv m GM r K GMm r U GMm r E U K GMm r = = = = − = + = − 1 2 2 1 2 2 2
  • 20. 17-20 Class #17 Optional Material Part B - General Relativity Material on General Relativity thanks to Albert Einstein
  • 21. 17-21 Where Did Newton Go Wrong? (Again!) Albert Einstein (1879–1955) (Check back to the optional material for classes 3 and 6 first…) Einstein realized that something must be wrong with Newton’s theory of gravity, because it implied that the force of gravity is transmitted instantaneously to all points in the universe. This contradicts the fundamental limitation in the Theory of Special Relativity that the fastest speed information or energy of any type can travel is the speed of light. To overcome this problem Einstein postulated a third principle, the Principle of Equivalence, to go with his two principles of Special Relativity. (1907)
  • 22. 17-22 The Principle of Equivalence In broad terms, the Principle of Equivalence states that there is no experiment that one can perform to distinguish a frame of reference in a gravitational force field from one that is accelerating with a corresponding magnitude and direction. This is sometimes called the “Elevator Postulate” because we can imagine a physicist in a closed elevator cab trying to determine whether he is at rest on earth, or accelerating at 9.8 m/s2 far from any planet, or perhaps on a planet where gravity is half that of earth and the elevator is accelerating upward at 4.9 m/s2 . According to Einstein, there is no experiment that could detect a difference.
  • 23. 17-23 The Principle of Equivalence
  • 24. 17-24 General Theory of Relativity By 1915, Einstein had worked through all the math (with some help) to show that his postulates led to a new theory of gravity based on the effect of mass and energy to curve the structure of space and time. His theory has some startling implications, one being the existence of “black holes” – regions of space where the gravity field is so high that even light cannot escape. The predictions of General Relativity, including the existence of black holes, have been confirmed by all experiments to date.
  • 25. 17-25 Black Holes Black holes are detected by the characteristic x-rays given off by matter falling into them.
  • 26. 17-26 If Newton’s Gravity isn’t true, why do we still use it? It’s a good approximation for most engineering purposes. Massive Black Holes In Galaxies NGC 3377, NGC 3379 And NGC 4486B

Hinweis der Redaktion

  1. &amp;lt;number&amp;gt;
  2. &amp;lt;number&amp;gt;
  3. &amp;lt;number&amp;gt;