SlideShare a Scribd company logo
1 of 107
Download to read offline
Section 3.5
Inverse Trigonometric
Functions
V63.0121.021, Calculus I
New York University
November 2, 2010
Announcements
Midterm grades have been submitted
Quiz 3 this week in recitation on Section 2.6, 2.8, 3.1, 3.2
Thank you for the evaluations
. . . . . .
. . . . . .
Announcements
Midterm grades have been
submitted
Quiz 3 this week in
recitation on Section 2.6,
2.8, 3.1, 3.2
Thank you for the
evaluations
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 2 / 40
. . . . . .
Evaluations: The good
“Exceptional competence and effectively articulate. (Do not fire
him)”
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 3 / 40
. . . . . .
Evaluations: The good
“Exceptional competence and effectively articulate. (Do not fire
him)”
“Good guy”
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 3 / 40
. . . . . .
Evaluations: The good
“Exceptional competence and effectively articulate. (Do not fire
him)”
“Good guy”
“He’s the clear man”
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 3 / 40
. . . . . .
Evaluations: The good
“Exceptional competence and effectively articulate. (Do not fire
him)”
“Good guy”
“He’s the clear man”
“Love the juices”
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 3 / 40
. . . . . .
Evaluations: The bad
Too fast, not enough examples
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 4 / 40
. . . . . .
Evaluations: The bad
Too fast, not enough examples
Not enough time to do everything
Lecture is not the only learning time (recitation and independent
study)
I try to balance concept and procedure
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 4 / 40
. . . . . .
Evaluations: The bad
Too fast, not enough examples
Not enough time to do everything
Lecture is not the only learning time (recitation and independent
study)
I try to balance concept and procedure
Too many proofs
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 4 / 40
. . . . . .
Evaluations: The bad
Too fast, not enough examples
Not enough time to do everything
Lecture is not the only learning time (recitation and independent
study)
I try to balance concept and procedure
Too many proofs
In this course we care about concepts
There will be conceptual problems on the exam
Concepts are the keys to overcoming templated problems
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 4 / 40
. . . . . .
Evaluations: technological comments
Smart board issues
laser pointer visibility
slides sometimes move fast
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 5 / 40
. . . . . .
Evaluations: The ugly
“If class was even remotely interesting this class would be
awesome.”
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 6 / 40
. . . . . .
Evaluations: The ugly
“If class was even remotely interesting this class would be
awesome.”
“Sometimes condescending/rude.”
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 6 / 40
. . . . . .
Evaluations: The ugly
“If class was even remotely interesting this class would be
awesome.”
“Sometimes condescending/rude.”
“Can’t pick his nose without checking his notes, and he still gets it
wrong the first time.”
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 6 / 40
. . . . . .
Evaluations: The ugly
“If class was even remotely interesting this class would be
awesome.”
“Sometimes condescending/rude.”
“Can’t pick his nose without checking his notes, and he still gets it
wrong the first time.”
“If I were chained to a desk and forced to see this guy teach, I
would chew my arm off in order to get free.”
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 6 / 40
. . . . . .
A slide on slides
Pro
“Powerpoints explain topics carefully step-by-step”
“Powerpoint and lesson flow smoothly”
“Can visualize material well”
“I like that you post slides beforehand”
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 7 / 40
. . . . . .
A slide on slides
Pro
“Powerpoints explain topics carefully step-by-step”
“Powerpoint and lesson flow smoothly”
“Can visualize material well”
“I like that you post slides beforehand”
Con
“I would like to have him use the chalkboard more.”
“It’s so unnatural to learn math via powerpoint.”
“I hate powerpoint.”
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 7 / 40
. . . . . .
A slide on slides
Pro
“Powerpoints explain topics carefully step-by-step”
“Powerpoint and lesson flow smoothly”
“Can visualize material well”
“I like that you post slides beforehand”
Con
“I would like to have him use the chalkboard more.”
“It’s so unnatural to learn math via powerpoint.”
“I hate powerpoint.”
Why I like them
Board handwriting not an issue
Easy to put online; notetaking is more than transcription
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 7 / 40
. . . . . .
My handwriting
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 8 / 40
. . . . . .
A slide on slides
Pro
“Powerpoints explain topics carefully step-by-step”
“Powerpoint and lesson flow smoothly”
“Can visualize material well”
“I like that you post slides beforehand”
Con
“I would like to have him use the chalkboard more.”
“It’s so unnatural to learn math via powerpoint.”
“I hate powerpoint.”
Why I like them
Board handwriting not an issue
Easy to put online; notetaking is more than transcription
What we can do
if you have suggestions for details to put in, I’m listening
Feel free to ask me to fill in something on the board
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 9 / 40
. . . . . .
Objectives
Know the definitions,
domains, ranges, and
other properties of the
inverse trignometric
functions: arcsin, arccos,
arctan, arcsec, arccsc,
arccot.
Know the derivatives of the
inverse trignometric
functions.
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 10 / 40
. . . . . .
Outline
Inverse Trigonometric Functions
Derivatives of Inverse Trigonometric Functions
Arcsine
Arccosine
Arctangent
Arcsecant
Applications
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 11 / 40
. . . . . .
What is an inverse function?
Definition
Let f be a function with domain D and range E. The inverse of f is the
function f−1
defined by:
f−1
(b) = a,
where a is chosen so that f(a) = b.
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 12 / 40
. . . . . .
What is an inverse function?
Definition
Let f be a function with domain D and range E. The inverse of f is the
function f−1
defined by:
f−1
(b) = a,
where a is chosen so that f(a) = b.
So
f−1
(f(x)) = x, f(f−1
(x)) = x
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 12 / 40
. . . . . .
What functions are invertible?
In order for f−1
to be a function, there must be only one a in D
corresponding to each b in E.
Such a function is called one-to-one
The graph of such a function passes the horizontal line test: any
horizontal line intersects the graph in exactly one point if at all.
If f is continuous, then f−1
is continuous.
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 13 / 40
. . . . . .
Graphing the inverse function
If b = f(a), then f−1
(b) = a.
.
.x
.y
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 14 / 40
. . . . . .
Graphing the inverse function
If b = f(a), then f−1
(b) = a.
So if (a, b) is on the graph
of f, then (b, a) is on the
graph of f−1
.
.
.x
.y
. .(a, b)
.
.(b, a)
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 14 / 40
. . . . . .
Graphing the inverse function
If b = f(a), then f−1
(b) = a.
So if (a, b) is on the graph
of f, then (b, a) is on the
graph of f−1
.
On the xy-plane, the point
(b, a) is the reflection of
(a, b) in the line y = x.
.
.x
.y
. .(a, b)
.
.(b, a)
.y = x
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 14 / 40
. . . . . .
Graphing the inverse function
If b = f(a), then f−1
(b) = a.
So if (a, b) is on the graph
of f, then (b, a) is on the
graph of f−1
.
On the xy-plane, the point
(b, a) is the reflection of
(a, b) in the line y = x.
.
.x
.y
. .(a, b)
.
.(b, a)
.y = x
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 14 / 40
. . . . . .
Graphing the inverse function
If b = f(a), then f−1
(b) = a.
So if (a, b) is on the graph
of f, then (b, a) is on the
graph of f−1
.
On the xy-plane, the point
(b, a) is the reflection of
(a, b) in the line y = x.
.
.x
.y
. .(a, b)
.
.(b, a)
.y = x
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 14 / 40
. . . . . .
Graphing the inverse function
If b = f(a), then f−1
(b) = a.
So if (a, b) is on the graph
of f, then (b, a) is on the
graph of f−1
.
On the xy-plane, the point
(b, a) is the reflection of
(a, b) in the line y = x.
Therefore:
.
.x
.y
. .(a, b)
.
.(b, a)
.y = x
Fact
The graph of f−1
is the reflection of the graph of f in the line y = x.
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 14 / 40
. . . . . .
Graphing the inverse function
If b = f(a), then f−1
(b) = a.
So if (a, b) is on the graph
of f, then (b, a) is on the
graph of f−1
.
On the xy-plane, the point
(b, a) is the reflection of
(a, b) in the line y = x.
Therefore:
.
.x
.y
. .(a, b)
.
.(b, a)
.y = x
Fact
The graph of f−1
is the reflection of the graph of f in the line y = x.
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 14 / 40
. . . . . .
arcsin
Arcsin is the inverse of the sine function after restriction to [−π/2, π/2].
. .x
.y
.sin
.
.−
π
2
.
.
π
2
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 15 / 40
. . . . . .
arcsin
Arcsin is the inverse of the sine function after restriction to [−π/2, π/2].
. .x
.y
.sin
.
.
.
.−
π
2
.
.
π
2
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 15 / 40
. . . . . .
arcsin
Arcsin is the inverse of the sine function after restriction to [−π/2, π/2].
. .x
.y
.sin
.
.
.
.−
π
2
.
.
π
2
.y = x
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 15 / 40
. . . . . .
arcsin
Arcsin is the inverse of the sine function after restriction to [−π/2, π/2].
. .x
.y
.sin
.
.
.
.−
π
2
.
.
π
2
.
..arcsin
The domain of arcsin is [−1, 1]
The range of arcsin is
[
−
π
2
,
π
2
]
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 15 / 40
. . . . . .
arccos
Arccos is the inverse of the cosine function after restriction to [0, π]
. .x
.y
.cos
.
.0
.
.π
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 16 / 40
. . . . . .
arccos
Arccos is the inverse of the cosine function after restriction to [0, π]
. .x
.y
.cos
.
.
.
.0
.
.π
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 16 / 40
. . . . . .
arccos
Arccos is the inverse of the cosine function after restriction to [0, π]
. .x
.y
.cos
.
.
.
.0
.
.π
.y = x
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 16 / 40
. . . . . .
arccos
Arccos is the inverse of the cosine function after restriction to [0, π]
. .x
.y
.cos
.
.
.
.0
.
.π
.
..arccos
The domain of arccos is [−1, 1]
The range of arccos is [0, π]
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 16 / 40
. . . . . .
arctan
Arctan is the inverse of the tangent function after restriction to
[−π/2, π/2].
. .x
.y
.tan
.−
3π
2
.−
π
2
.
π
2 .
3π
2
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 17 / 40
. . . . . .
arctan
Arctan is the inverse of the tangent function after restriction to
[−π/2, π/2].
. .x
.y
.tan
.−
3π
2
.−
π
2
.
π
2 .
3π
2
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 17 / 40
. . . . . .
arctan
Arctan is the inverse of the tangent function after restriction to
[−π/2, π/2].
. .x
.y
.tan
.−
3π
2
.−
π
2
.
π
2 .
3π
2
.y = x
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 17 / 40
. . . . . .
arctan
Arctan is the inverse of the tangent function after restriction to
[−π/2, π/2].
. .x
.y
.arctan
.−
π
2
.
π
2
The domain of arctan is (−∞, ∞)
The range of arctan is
(
−
π
2
,
π
2
)
lim
x→∞
arctan x =
π
2
, lim
x→−∞
arctan x = −
π
2
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 17 / 40
. . . . . .
arcsec
Arcsecant is the inverse of secant after restriction to
[0, π/2) ∪ (π, 3π/2].
. .x
.y
.sec
.−
3π
2
.−
π
2
.
π
2 .
3π
2
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 18 / 40
. . . . . .
arcsec
Arcsecant is the inverse of secant after restriction to
[0, π/2) ∪ (π, 3π/2].
. .x
.y
.sec
.−
3π
2
.−
π
2
.
π
2 .
3π
2
.
.
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 18 / 40
. . . . . .
arcsec
Arcsecant is the inverse of secant after restriction to
[0, π/2) ∪ (π, 3π/2].
. .x
.y
.sec
.−
3π
2
.−
π
2
.
π
2 .
3π
2
.
.
.y = x
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 18 / 40
. . . . . .
arcsec
Arcsecant is the inverse of secant after restriction to
[0, π/2) ∪ (π, 3π/2].
. .x
.y
.
.
.
.
.
π
2
.
3π
2
The domain of arcsec is (−∞, −1] ∪ [1, ∞)
The range of arcsec is
[
0,
π
2
)
∪
(π
2
, π
]
lim
x→∞
arcsec x =
π
2
, lim
x→−∞
arcsec x =
3π
2
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 18 / 40
. . . . . .
Values of Trigonometric Functions
x 0
π
6
π
4
π
3
π
2
sin x 0
1
2
√
2
2
√
3
2
1
cos x 1
√
3
2
√
2
2
1
2
0
tan x 0
1
√
3
1
√
3 undef
cot x undef
√
3 1
1
√
3
0
sec x 1
2
√
3
2
√
2
2 undef
csc x undef 2
2
√
2
2
√
3
1
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 19 / 40
. . . . . .
Check: Values of inverse trigonometric functions
Example
Find
arcsin(1/2)
arctan(−1)
arccos
(
−
√
2
2
)
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 20 / 40
. . . . . .
Check: Values of inverse trigonometric functions
Example
Find
arcsin(1/2)
arctan(−1)
arccos
(
−
√
2
2
)
Solution
π
6
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 20 / 40
. . . . . .
What is arctan(−1)?
. .
.
.
.3π/4
.
.−π/4
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 21 / 40
. . . . . .
What is arctan(−1)?
. .
.
.
.3π/4
.
.−π/4
.sin(3π/4) =
√
2
2
.cos(3π/4) = −
√
2
2
Yes, tan
(
3π
4
)
= −1
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 21 / 40
. . . . . .
What is arctan(−1)?
. .
.
.
.3π/4
.
.−π/4
.sin(3π/4) =
√
2
2
.cos(3π/4) = −
√
2
2
Yes, tan
(
3π
4
)
= −1
But, the range of arctan is(
−
π
2
,
π
2
)
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 21 / 40
. . . . . .
What is arctan(−1)?
. .
.
.
.3π/4
.
.−π/4
.sin(π/4) = −
√
2
2
.cos(π/4) =
√
2
2
Yes, tan
(
3π
4
)
= −1
But, the range of arctan is(
−
π
2
,
π
2
)
Another angle whose
tangent is −1 is −
π
4
, and
this is in the right range.
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 21 / 40
. . . . . .
What is arctan(−1)?
. .
.
.
.3π/4
.
.−π/4
.sin(π/4) = −
√
2
2
.cos(π/4) =
√
2
2
Yes, tan
(
3π
4
)
= −1
But, the range of arctan is(
−
π
2
,
π
2
)
Another angle whose
tangent is −1 is −
π
4
, and
this is in the right range.
So arctan(−1) = −
π
4
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 21 / 40
. . . . . .
Check: Values of inverse trigonometric functions
Example
Find
arcsin(1/2)
arctan(−1)
arccos
(
−
√
2
2
)
Solution
π
6
−
π
4
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 22 / 40
. . . . . .
Check: Values of inverse trigonometric functions
Example
Find
arcsin(1/2)
arctan(−1)
arccos
(
−
√
2
2
)
Solution
π
6
−
π
4
3π
4
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 22 / 40
. . . . . .
Caution: Notational ambiguity
..sin2
x = (sin x)2
.sin−1
x = (sin x)−1
sinn
x means the nth power of sin x, except when n = −1!
The book uses sin−1
x for the inverse of sin x, and never for
(sin x)−1
.
I use csc x for
1
sin x
and arcsin x for the inverse of sin x.
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 23 / 40
. . . . . .
Outline
Inverse Trigonometric Functions
Derivatives of Inverse Trigonometric Functions
Arcsine
Arccosine
Arctangent
Arcsecant
Applications
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 24 / 40
. . . . . .
The Inverse Function Theorem
Theorem (The Inverse Function Theorem)
Let f be differentiable at a, and f′
(a) ̸= 0. Then f−1
is defined in an
open interval containing b = f(a), and
(f−1
)′
(b) =
1
f′
(f−1
(b))
In Leibniz notation we have
dx
dy
=
1
dy/dx
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 25 / 40
. . . . . .
The Inverse Function Theorem
Theorem (The Inverse Function Theorem)
Let f be differentiable at a, and f′
(a) ̸= 0. Then f−1
is defined in an
open interval containing b = f(a), and
(f−1
)′
(b) =
1
f′
(f−1
(b))
In Leibniz notation we have
dx
dy
=
1
dy/dx
Upshot: Many times the derivative of f−1
(x) can be found by implicit
differentiation and the derivative of f:
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 25 / 40
. . . . . .
Illustrating the Inverse Function Theorem
.
.
Example
Use the inverse function theorem to find the derivative of the square root
function.
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 26 / 40
. . . . . .
Illustrating the Inverse Function Theorem
.
.
Example
Use the inverse function theorem to find the derivative of the square root
function.
Solution (Newtonian notation)
Let f(x) = x2
so that f−1
(y) =
√
y. Then f′
(u) = 2u so for any b > 0 we have
(f−1
)′
(b) =
1
2
√
b
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 26 / 40
. . . . . .
Illustrating the Inverse Function Theorem
.
.
Example
Use the inverse function theorem to find the derivative of the square root
function.
Solution (Newtonian notation)
Let f(x) = x2
so that f−1
(y) =
√
y. Then f′
(u) = 2u so for any b > 0 we have
(f−1
)′
(b) =
1
2
√
b
Solution (Leibniz notation)
If the original function is y = x2
, then the inverse function is defined by x = y2
.
Differentiate implicitly:
1 = 2y
dy
dx
=⇒
dy
dx
=
1
2
√
x
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 26 / 40
. . . . . .
Derivation: The derivative of arcsin
Let y = arcsin x, so x = sin y. Then
cos y
dy
dx
= 1 =⇒
dy
dx
=
1
cos y
=
1
cos(arcsin x)
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 27 / 40
. . . . . .
Derivation: The derivative of arcsin
Let y = arcsin x, so x = sin y. Then
cos y
dy
dx
= 1 =⇒
dy
dx
=
1
cos y
=
1
cos(arcsin x)
To simplify, look at a right
triangle:
.
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 27 / 40
. . . . . .
Derivation: The derivative of arcsin
Let y = arcsin x, so x = sin y. Then
cos y
dy
dx
= 1 =⇒
dy
dx
=
1
cos y
=
1
cos(arcsin x)
To simplify, look at a right
triangle:
.
. .
.
.y = arcsin x
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 27 / 40
. . . . . .
Derivation: The derivative of arcsin
Let y = arcsin x, so x = sin y. Then
cos y
dy
dx
= 1 =⇒
dy
dx
=
1
cos y
=
1
cos(arcsin x)
To simplify, look at a right
triangle:
.
. .
.
.y = arcsin x
.1
.x
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 27 / 40
. . . . . .
Derivation: The derivative of arcsin
Let y = arcsin x, so x = sin y. Then
cos y
dy
dx
= 1 =⇒
dy
dx
=
1
cos y
=
1
cos(arcsin x)
To simplify, look at a right
triangle:
.
. .
.
.y = arcsin x
.1
.x
.
√
1 − x2
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 27 / 40
. . . . . .
Derivation: The derivative of arcsin
Let y = arcsin x, so x = sin y. Then
cos y
dy
dx
= 1 =⇒
dy
dx
=
1
cos y
=
1
cos(arcsin x)
To simplify, look at a right
triangle:
cos(arcsin x) =
√
1 − x2
.
. .
.
.y = arcsin x
.1
.x
.
√
1 − x2
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 27 / 40
. . . . . .
Derivation: The derivative of arcsin
Let y = arcsin x, so x = sin y. Then
cos y
dy
dx
= 1 =⇒
dy
dx
=
1
cos y
=
1
cos(arcsin x)
To simplify, look at a right
triangle:
cos(arcsin x) =
√
1 − x2
So
Fact
d
dx
arcsin(x) =
1
√
1 − x2
.
. .
.
.y = arcsin x
.1
.x
.
√
1 − x2
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 27 / 40
. . . . . .
Graphing arcsin and its derivative
The domain of f is [−1, 1],
but the domain of f′
is
(−1, 1)
lim
x→1−
f′
(x) = +∞
lim
x→−1+
f′
(x) = +∞ ..|
.−1
.|
.1
.
..arcsin
.
1
√
1 − x2
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 28 / 40
. . . . . .
Composing with arcsin
Example
Let f(x) = arcsin(x3
+ 1). Find f′
(x).
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 29 / 40
. . . . . .
Composing with arcsin
Example
Let f(x) = arcsin(x3
+ 1). Find f′
(x).
Solution
We have
d
dx
arcsin(x3
+ 1) =
1
√
1 − (x3 + 1)2
d
dx
(x3
+ 1)
=
3x2
√
−x6 − 2x3
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 29 / 40
. . . . . .
Derivation: The derivative of arccos
Let y = arccos x, so x = cos y. Then
− sin y
dy
dx
= 1 =⇒
dy
dx
=
1
− sin y
=
1
− sin(arccos x)
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 30 / 40
. . . . . .
Derivation: The derivative of arccos
Let y = arccos x, so x = cos y. Then
− sin y
dy
dx
= 1 =⇒
dy
dx
=
1
− sin y
=
1
− sin(arccos x)
To simplify, look at a right
triangle:
sin(arccos x) =
√
1 − x2
So
Fact
d
dx
arccos(x) = −
1
√
1 − x2
.
.1
.
√
1 − x2
.x
.
.y = arccos x
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 30 / 40
. . . . . .
Graphing arcsin and arccos
..|
.−1
.|
.1
.
..arcsin
.
..arccos
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 31 / 40
. . . . . .
Graphing arcsin and arccos
..|
.−1
.|
.1
.
..arcsin
.
..arccos
Note
cos θ = sin
(π
2
− θ
)
=⇒ arccos x =
π
2
− arcsin x
So it’s not a surprise that their
derivatives are opposites.
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 31 / 40
. . . . . .
Derivation: The derivative of arctan
Let y = arctan x, so x = tan y. Then
sec2
y
dy
dx
= 1 =⇒
dy
dx
=
1
sec2 y
= cos2
(arctan x)
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 32 / 40
. . . . . .
Derivation: The derivative of arctan
Let y = arctan x, so x = tan y. Then
sec2
y
dy
dx
= 1 =⇒
dy
dx
=
1
sec2 y
= cos2
(arctan x)
To simplify, look at a right
triangle:
.
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 32 / 40
. . . . . .
Derivation: The derivative of arctan
Let y = arctan x, so x = tan y. Then
sec2
y
dy
dx
= 1 =⇒
dy
dx
=
1
sec2 y
= cos2
(arctan x)
To simplify, look at a right
triangle:
.
.
..
.y = arctan x
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 32 / 40
. . . . . .
Derivation: The derivative of arctan
Let y = arctan x, so x = tan y. Then
sec2
y
dy
dx
= 1 =⇒
dy
dx
=
1
sec2 y
= cos2
(arctan x)
To simplify, look at a right
triangle:
.
.
..
.y = arctan x
.x
.1
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 32 / 40
. . . . . .
Derivation: The derivative of arctan
Let y = arctan x, so x = tan y. Then
sec2
y
dy
dx
= 1 =⇒
dy
dx
=
1
sec2 y
= cos2
(arctan x)
To simplify, look at a right
triangle:
.
.
..
.y = arctan x
.x
.1
.
√
1 + x2
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 32 / 40
. . . . . .
Derivation: The derivative of arctan
Let y = arctan x, so x = tan y. Then
sec2
y
dy
dx
= 1 =⇒
dy
dx
=
1
sec2 y
= cos2
(arctan x)
To simplify, look at a right
triangle:
cos(arctan x) =
1
√
1 + x2
.
.
..
.y = arctan x
.x
.1
.
√
1 + x2
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 32 / 40
. . . . . .
Derivation: The derivative of arctan
Let y = arctan x, so x = tan y. Then
sec2
y
dy
dx
= 1 =⇒
dy
dx
=
1
sec2 y
= cos2
(arctan x)
To simplify, look at a right
triangle:
cos(arctan x) =
1
√
1 + x2
So
Fact
d
dx
arctan(x) =
1
1 + x2
.
.
..
.y = arctan x
.x
.1
.
√
1 + x2
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 32 / 40
. . . . . .
Graphing arctan and its derivative
. .x
.y
.arctan
.
1
1 + x2
.π/2
.−π/2
The domain of f and f′
are both (−∞, ∞)
Because of the horizontal asymptotes, lim
x→±∞
f′
(x) = 0
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 33 / 40
. . . . . .
Composing with arctan
Example
Let f(x) = arctan
√
x. Find f′
(x).
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 34 / 40
. . . . . .
Composing with arctan
Example
Let f(x) = arctan
√
x. Find f′
(x).
Solution
d
dx
arctan
√
x =
1
1 +
(√
x
)2
d
dx
√
x =
1
1 + x
·
1
2
√
x
=
1
2
√
x + 2x
√
x
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 34 / 40
. . . . . .
Derivation: The derivative of arcsec
Try this first.
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 35 / 40
. . . . . .
Derivation: The derivative of arcsec
Try this first. Let y = arcsec x, so x = sec y. Then
sec y tan y
dy
dx
= 1 =⇒
dy
dx
=
1
sec y tan y
=
1
x tan(arcsec(x))
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 35 / 40
. . . . . .
Derivation: The derivative of arcsec
Try this first. Let y = arcsec x, so x = sec y. Then
sec y tan y
dy
dx
= 1 =⇒
dy
dx
=
1
sec y tan y
=
1
x tan(arcsec(x))
To simplify, look at a right
triangle:
.
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 35 / 40
. . . . . .
Derivation: The derivative of arcsec
Try this first. Let y = arcsec x, so x = sec y. Then
sec y tan y
dy
dx
= 1 =⇒
dy
dx
=
1
sec y tan y
=
1
x tan(arcsec(x))
To simplify, look at a right
triangle:
.
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 35 / 40
. . . . . .
Derivation: The derivative of arcsec
Try this first. Let y = arcsec x, so x = sec y. Then
sec y tan y
dy
dx
= 1 =⇒
dy
dx
=
1
sec y tan y
=
1
x tan(arcsec(x))
To simplify, look at a right
triangle:
..
.y = arcsec x
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 35 / 40
. . . . . .
Derivation: The derivative of arcsec
Try this first. Let y = arcsec x, so x = sec y. Then
sec y tan y
dy
dx
= 1 =⇒
dy
dx
=
1
sec y tan y
=
1
x tan(arcsec(x))
To simplify, look at a right
triangle:
.
.x
.1
.
.y = arcsec x
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 35 / 40
. . . . . .
Derivation: The derivative of arcsec
Try this first. Let y = arcsec x, so x = sec y. Then
sec y tan y
dy
dx
= 1 =⇒
dy
dx
=
1
sec y tan y
=
1
x tan(arcsec(x))
To simplify, look at a right
triangle:
tan(arcsec x) =
√
x2 − 1
1
.
.x
.1
.
.y = arcsec x
.
√
x2 − 1
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 35 / 40
. . . . . .
Derivation: The derivative of arcsec
Try this first. Let y = arcsec x, so x = sec y. Then
sec y tan y
dy
dx
= 1 =⇒
dy
dx
=
1
sec y tan y
=
1
x tan(arcsec(x))
To simplify, look at a right
triangle:
tan(arcsec x) =
√
x2 − 1
1
So
Fact
d
dx
arcsec(x) =
1
x
√
x2 − 1
.
.x
.1
.
.y = arcsec x
.
√
x2 − 1
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 35 / 40
. . . . . .
Another Example
Example
Let f(x) = earcsec 3x
. Find f′
(x).
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 36 / 40
. . . . . .
Another Example
Example
Let f(x) = earcsec 3x
. Find f′
(x).
Solution
f′
(x) = earcsec 3x
·
1
3x
√
(3x)2 − 1
· 3
=
3earcsec 3x
3x
√
9x2 − 1
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 36 / 40
. . . . . .
Outline
Inverse Trigonometric Functions
Derivatives of Inverse Trigonometric Functions
Arcsine
Arccosine
Arctangent
Arcsecant
Applications
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 37 / 40
. . . . . .
Application
Example
One of the guiding principles of
most sports is to “keep your
eye on the ball.” In baseball, a
batter stands 2 ft away from
home plate as a pitch is thrown
with a velocity of 130 ft/sec
(about 90 mph). At what rate
does the batter’s angle of gaze
need to change to follow the
ball as it crosses home plate?
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 38 / 40
. . . . . .
Application
Example
One of the guiding principles of
most sports is to “keep your
eye on the ball.” In baseball, a
batter stands 2 ft away from
home plate as a pitch is thrown
with a velocity of 130 ft/sec
(about 90 mph). At what rate
does the batter’s angle of gaze
need to change to follow the
ball as it crosses home plate?
Solution
Let y(t) be the distance from the ball to home plate, and θ the angle the
batter’s eyes make with home plate while following the ball. We know
y′
= −130 and we want θ′
at the moment that y = 0.
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 38 / 40
. . . . . .
Solution
Let y(t) be the distance from the ball to home plate, and θ the angle the
batter’s eyes make with home plate while following the ball. We know
y′
= −130 and we want θ′
at the moment that y = 0.
.
.2 ft
.y
.130 ft/sec
.
.θ
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 39 / 40
. . . . . .
Solution
Let y(t) be the distance from the ball to home plate, and θ the angle the
batter’s eyes make with home plate while following the ball. We know
y′
= −130 and we want θ′
at the moment that y = 0.
We have θ = arctan(y/2). Thus
dθ
dt
=
1
1 + (y/2)2
·
1
2
dy
dt
.
.2 ft
.y
.130 ft/sec
.
.θ
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 39 / 40
. . . . . .
Solution
Let y(t) be the distance from the ball to home plate, and θ the angle the
batter’s eyes make with home plate while following the ball. We know
y′
= −130 and we want θ′
at the moment that y = 0.
We have θ = arctan(y/2). Thus
dθ
dt
=
1
1 + (y/2)2
·
1
2
dy
dt
When y = 0 and y′
= −130,
then
dθ
dt y=0
=
1
1 + 0
·
1
2
(−130) = −65 rad/sec
.
.2 ft
.y
.130 ft/sec
.
.θ
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 39 / 40
. . . . . .
Solution
Let y(t) be the distance from the ball to home plate, and θ the angle the
batter’s eyes make with home plate while following the ball. We know
y′
= −130 and we want θ′
at the moment that y = 0.
We have θ = arctan(y/2). Thus
dθ
dt
=
1
1 + (y/2)2
·
1
2
dy
dt
When y = 0 and y′
= −130,
then
dθ
dt y=0
=
1
1 + 0
·
1
2
(−130) = −65 rad/sec
The human eye can only track
at 3 rad/sec!
.
.2 ft
.y
.130 ft/sec
.
.θ
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 39 / 40
. . . . . .
Summary
y y′
arcsin x
1
√
1 − x2
arccos x −
1
√
1 − x2
arctan x
1
1 + x2
arccot x −
1
1 + x2
arcsec x
1
x
√
x2 − 1
arccsc x −
1
x
√
x2 − 1
Remarkable that the
derivatives of these
transcendental functions
are algebraic (or even
rational!)
V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 40 / 40

More Related Content

Viewers also liked

موقع ملزمتي - المراجعة النهائية في الجبر وحساب المثلثات للصف الاول الثانوى ال...
موقع ملزمتي - المراجعة النهائية في الجبر وحساب المثلثات للصف الاول الثانوى ال...موقع ملزمتي - المراجعة النهائية في الجبر وحساب المثلثات للصف الاول الثانوى ال...
موقع ملزمتي - المراجعة النهائية في الجبر وحساب المثلثات للصف الاول الثانوى ال...ملزمتي
 
Guideline on Daffodil International University (DIU) forum (User guideline)
Guideline on Daffodil International University (DIU) forum (User guideline)Guideline on Daffodil International University (DIU) forum (User guideline)
Guideline on Daffodil International University (DIU) forum (User guideline)Badshah Mamun
 
هندسة للصف الاول الثانوى الترم الاول 2017 - موقع ملزمتي
هندسة للصف الاول الثانوى الترم الاول 2017 - موقع ملزمتيهندسة للصف الاول الثانوى الترم الاول 2017 - موقع ملزمتي
هندسة للصف الاول الثانوى الترم الاول 2017 - موقع ملزمتيملزمتي
 
Lesson 15: Inverse Functions And Logarithms
Lesson 15: Inverse Functions And LogarithmsLesson 15: Inverse Functions And Logarithms
Lesson 15: Inverse Functions And LogarithmsMatthew Leingang
 
Inverse trig functions
Inverse trig functionsInverse trig functions
Inverse trig functionsJessica Garcia
 
Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Matthew Leingang
 
Trigonometric identities simplify
Trigonometric identities simplifyTrigonometric identities simplify
Trigonometric identities simplifyJessica Garcia
 
Link list presentation slide(Daffodil international university)
Link list presentation slide(Daffodil international university)Link list presentation slide(Daffodil international university)
Link list presentation slide(Daffodil international university)shah alom
 
Identitas trigonometri
Identitas trigonometriIdentitas trigonometri
Identitas trigonometrisaiful ghozi
 
Daffodil international university (DIU)
Daffodil international university (DIU)Daffodil international university (DIU)
Daffodil international university (DIU)Md. Joynul Abedin
 
A project report on a study on derivatives in volatile market condition
A project report on a study on derivatives in volatile market conditionA project report on a study on derivatives in volatile market condition
A project report on a study on derivatives in volatile market conditionBabasab Patil
 
Inverse Trigonometric Functions
Inverse Trigonometric FunctionsInverse Trigonometric Functions
Inverse Trigonometric FunctionsSadiq Hussain
 
Trigonometric Identities Lecture
Trigonometric Identities LectureTrigonometric Identities Lecture
Trigonometric Identities LectureFroyd Wess
 
Benginning Calculus Lecture notes 11 - related rates
Benginning Calculus Lecture notes 11 - related ratesBenginning Calculus Lecture notes 11 - related rates
Benginning Calculus Lecture notes 11 - related ratesbasyirstar
 

Viewers also liked (20)

موقع ملزمتي - المراجعة النهائية في الجبر وحساب المثلثات للصف الاول الثانوى ال...
موقع ملزمتي - المراجعة النهائية في الجبر وحساب المثلثات للصف الاول الثانوى ال...موقع ملزمتي - المراجعة النهائية في الجبر وحساب المثلثات للصف الاول الثانوى ال...
موقع ملزمتي - المراجعة النهائية في الجبر وحساب المثلثات للصف الاول الثانوى ال...
 
DEV
DEVDEV
DEV
 
Guideline on Daffodil International University (DIU) forum (User guideline)
Guideline on Daffodil International University (DIU) forum (User guideline)Guideline on Daffodil International University (DIU) forum (User guideline)
Guideline on Daffodil International University (DIU) forum (User guideline)
 
هندسة للصف الاول الثانوى الترم الاول 2017 - موقع ملزمتي
هندسة للصف الاول الثانوى الترم الاول 2017 - موقع ملزمتيهندسة للصف الاول الثانوى الترم الاول 2017 - موقع ملزمتي
هندسة للصف الاول الثانوى الترم الاول 2017 - موقع ملزمتي
 
Lesson 15: Inverse Functions And Logarithms
Lesson 15: Inverse Functions And LogarithmsLesson 15: Inverse Functions And Logarithms
Lesson 15: Inverse Functions And Logarithms
 
Inverse trig functions
Inverse trig functionsInverse trig functions
Inverse trig functions
 
Math12 lesson6
Math12 lesson6Math12 lesson6
Math12 lesson6
 
Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)
 
Trigonometric identities simplify
Trigonometric identities simplifyTrigonometric identities simplify
Trigonometric identities simplify
 
Link list presentation slide(Daffodil international university)
Link list presentation slide(Daffodil international university)Link list presentation slide(Daffodil international university)
Link list presentation slide(Daffodil international university)
 
Unit 5.1
Unit 5.1Unit 5.1
Unit 5.1
 
Identitas trigonometri
Identitas trigonometriIdentitas trigonometri
Identitas trigonometri
 
Daffodil international university (DIU)
Daffodil international university (DIU)Daffodil international university (DIU)
Daffodil international university (DIU)
 
A project report on a study on derivatives in volatile market condition
A project report on a study on derivatives in volatile market conditionA project report on a study on derivatives in volatile market condition
A project report on a study on derivatives in volatile market condition
 
Inverse Trigonometric Functions
Inverse Trigonometric FunctionsInverse Trigonometric Functions
Inverse Trigonometric Functions
 
Trigonometric Identities Lecture
Trigonometric Identities LectureTrigonometric Identities Lecture
Trigonometric Identities Lecture
 
Trigonometric identities
Trigonometric identitiesTrigonometric identities
Trigonometric identities
 
Math12 lesson7
Math12 lesson7Math12 lesson7
Math12 lesson7
 
Benginning Calculus Lecture notes 11 - related rates
Benginning Calculus Lecture notes 11 - related ratesBenginning Calculus Lecture notes 11 - related rates
Benginning Calculus Lecture notes 11 - related rates
 
Social Networking
Social NetworkingSocial Networking
Social Networking
 

Similar to Lesson 16: Inverse Trigonometric Functions (Section 021 slides)

Lesson 16: Inverse Trigonometric Functions (Section 021 slides)
Lesson 16: Inverse Trigonometric Functions (Section 021 slides)Lesson 16: Inverse Trigonometric Functions (Section 021 slides)
Lesson 16: Inverse Trigonometric Functions (Section 021 slides)Mel Anthony Pepito
 
Lesson 16: Inverse Trigonometric Functions (Section 041 slides)
Lesson 16: Inverse Trigonometric Functions (Section 041 slides)Lesson 16: Inverse Trigonometric Functions (Section 041 slides)
Lesson 16: Inverse Trigonometric Functions (Section 041 slides)Matthew Leingang
 
Lesson16 -inverse_trigonometric_functions_041_slides
Lesson16  -inverse_trigonometric_functions_041_slidesLesson16  -inverse_trigonometric_functions_041_slides
Lesson16 -inverse_trigonometric_functions_041_slidesMatthew Leingang
 
Lesson16 -inverse_trigonometric_functions_021_handout
Lesson16  -inverse_trigonometric_functions_021_handoutLesson16  -inverse_trigonometric_functions_021_handout
Lesson16 -inverse_trigonometric_functions_021_handoutMatthew Leingang
 
Lesson16 -inverse_trigonometric_functions_021_handout
Lesson16  -inverse_trigonometric_functions_021_handoutLesson16  -inverse_trigonometric_functions_021_handout
Lesson16 -inverse_trigonometric_functions_021_handoutMatthew Leingang
 
Lesson 12: Linear Approximation and Differentials (Section 21 slides)
Lesson 12: Linear Approximation and Differentials (Section 21 slides)Lesson 12: Linear Approximation and Differentials (Section 21 slides)
Lesson 12: Linear Approximation and Differentials (Section 21 slides)Mel Anthony Pepito
 
Lesson 12: Linear Approximation and Differentials (Section 21 slides)
Lesson 12: Linear Approximation and Differentials (Section 21 slides)Lesson 12: Linear Approximation and Differentials (Section 21 slides)
Lesson 12: Linear Approximation and Differentials (Section 21 slides)Matthew Leingang
 
Lesson 22: Optimization (Section 021 slides)
Lesson 22: Optimization (Section 021 slides)Lesson 22: Optimization (Section 021 slides)
Lesson 22: Optimization (Section 021 slides)Matthew Leingang
 
Lesson 24: Areas, Distances, the Integral (Section 041 slides)
Lesson 24: Areas, Distances, the Integral (Section 041 slides)Lesson 24: Areas, Distances, the Integral (Section 041 slides)
Lesson 24: Areas, Distances, the Integral (Section 041 slides)Matthew Leingang
 
Lesson 16: Inverse Trigonometric Functions (Section 041 handout)
Lesson 16: Inverse Trigonometric Functions (Section 041 handout)Lesson 16: Inverse Trigonometric Functions (Section 041 handout)
Lesson 16: Inverse Trigonometric Functions (Section 041 handout)Matthew Leingang
 
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)Matthew Leingang
 
Lesson 22: Optimization (Section 041 slides)
Lesson 22: Optimization (Section 041 slides)Lesson 22: Optimization (Section 041 slides)
Lesson 22: Optimization (Section 041 slides)Matthew Leingang
 
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...Matthew Leingang
 
Lesson20 -derivatives_and_the_shape_of_curves_021_slides
Lesson20  -derivatives_and_the_shape_of_curves_021_slidesLesson20  -derivatives_and_the_shape_of_curves_021_slides
Lesson20 -derivatives_and_the_shape_of_curves_021_slidesMatthew Leingang
 
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...Matthew Leingang
 
Lesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential FunctionsLesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential FunctionsMatthew Leingang
 
Lesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential FunctionsLesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential FunctionsMel Anthony Pepito
 
Lesson 3: Limits (Section 21 slides)
Lesson 3: Limits (Section 21 slides)Lesson 3: Limits (Section 21 slides)
Lesson 3: Limits (Section 21 slides)Matthew Leingang
 

Similar to Lesson 16: Inverse Trigonometric Functions (Section 021 slides) (20)

Lesson 16: Inverse Trigonometric Functions (Section 021 slides)
Lesson 16: Inverse Trigonometric Functions (Section 021 slides)Lesson 16: Inverse Trigonometric Functions (Section 021 slides)
Lesson 16: Inverse Trigonometric Functions (Section 021 slides)
 
Lesson 16: Inverse Trigonometric Functions (Section 041 slides)
Lesson 16: Inverse Trigonometric Functions (Section 041 slides)Lesson 16: Inverse Trigonometric Functions (Section 041 slides)
Lesson 16: Inverse Trigonometric Functions (Section 041 slides)
 
Lesson16 -inverse_trigonometric_functions_041_slides
Lesson16  -inverse_trigonometric_functions_041_slidesLesson16  -inverse_trigonometric_functions_041_slides
Lesson16 -inverse_trigonometric_functions_041_slides
 
Lesson16 -inverse_trigonometric_functions_021_handout
Lesson16  -inverse_trigonometric_functions_021_handoutLesson16  -inverse_trigonometric_functions_021_handout
Lesson16 -inverse_trigonometric_functions_021_handout
 
Lesson16 -inverse_trigonometric_functions_021_handout
Lesson16  -inverse_trigonometric_functions_021_handoutLesson16  -inverse_trigonometric_functions_021_handout
Lesson16 -inverse_trigonometric_functions_021_handout
 
Lesson 12: Linear Approximation and Differentials (Section 21 slides)
Lesson 12: Linear Approximation and Differentials (Section 21 slides)Lesson 12: Linear Approximation and Differentials (Section 21 slides)
Lesson 12: Linear Approximation and Differentials (Section 21 slides)
 
Lesson 12: Linear Approximation and Differentials (Section 21 slides)
Lesson 12: Linear Approximation and Differentials (Section 21 slides)Lesson 12: Linear Approximation and Differentials (Section 21 slides)
Lesson 12: Linear Approximation and Differentials (Section 21 slides)
 
Lesson 22: Optimization (Section 021 slides)
Lesson 22: Optimization (Section 021 slides)Lesson 22: Optimization (Section 021 slides)
Lesson 22: Optimization (Section 021 slides)
 
Lesson 24: Areas, Distances, the Integral (Section 041 slides)
Lesson 24: Areas, Distances, the Integral (Section 041 slides)Lesson 24: Areas, Distances, the Integral (Section 041 slides)
Lesson 24: Areas, Distances, the Integral (Section 041 slides)
 
Lesson 16: Inverse Trigonometric Functions (Section 041 handout)
Lesson 16: Inverse Trigonometric Functions (Section 041 handout)Lesson 16: Inverse Trigonometric Functions (Section 041 handout)
Lesson 16: Inverse Trigonometric Functions (Section 041 handout)
 
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
 
Lesson 3: Limits
Lesson 3: LimitsLesson 3: Limits
Lesson 3: Limits
 
Lesson 3: Limits
Lesson 3: LimitsLesson 3: Limits
Lesson 3: Limits
 
Lesson 22: Optimization (Section 041 slides)
Lesson 22: Optimization (Section 041 slides)Lesson 22: Optimization (Section 041 slides)
Lesson 22: Optimization (Section 041 slides)
 
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
 
Lesson20 -derivatives_and_the_shape_of_curves_021_slides
Lesson20  -derivatives_and_the_shape_of_curves_021_slidesLesson20  -derivatives_and_the_shape_of_curves_021_slides
Lesson20 -derivatives_and_the_shape_of_curves_021_slides
 
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
 
Lesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential FunctionsLesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential Functions
 
Lesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential FunctionsLesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential Functions
 
Lesson 3: Limits (Section 21 slides)
Lesson 3: Limits (Section 21 slides)Lesson 3: Limits (Section 21 slides)
Lesson 3: Limits (Section 21 slides)
 

More from Matthew Leingang

Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceMatthew Leingang
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsMatthew Leingang
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Matthew Leingang
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Matthew Leingang
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Matthew Leingang
 

More from Matthew Leingang (20)

Making Lesson Plans
Making Lesson PlansMaking Lesson Plans
Making Lesson Plans
 
Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choice
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper Assessments
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)
 

Lesson 16: Inverse Trigonometric Functions (Section 021 slides)

  • 1. Section 3.5 Inverse Trigonometric Functions V63.0121.021, Calculus I New York University November 2, 2010 Announcements Midterm grades have been submitted Quiz 3 this week in recitation on Section 2.6, 2.8, 3.1, 3.2 Thank you for the evaluations . . . . . .
  • 2. . . . . . . Announcements Midterm grades have been submitted Quiz 3 this week in recitation on Section 2.6, 2.8, 3.1, 3.2 Thank you for the evaluations V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 2 / 40
  • 3. . . . . . . Evaluations: The good “Exceptional competence and effectively articulate. (Do not fire him)” V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 3 / 40
  • 4. . . . . . . Evaluations: The good “Exceptional competence and effectively articulate. (Do not fire him)” “Good guy” V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 3 / 40
  • 5. . . . . . . Evaluations: The good “Exceptional competence and effectively articulate. (Do not fire him)” “Good guy” “He’s the clear man” V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 3 / 40
  • 6. . . . . . . Evaluations: The good “Exceptional competence and effectively articulate. (Do not fire him)” “Good guy” “He’s the clear man” “Love the juices” V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 3 / 40
  • 7. . . . . . . Evaluations: The bad Too fast, not enough examples V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 4 / 40
  • 8. . . . . . . Evaluations: The bad Too fast, not enough examples Not enough time to do everything Lecture is not the only learning time (recitation and independent study) I try to balance concept and procedure V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 4 / 40
  • 9. . . . . . . Evaluations: The bad Too fast, not enough examples Not enough time to do everything Lecture is not the only learning time (recitation and independent study) I try to balance concept and procedure Too many proofs V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 4 / 40
  • 10. . . . . . . Evaluations: The bad Too fast, not enough examples Not enough time to do everything Lecture is not the only learning time (recitation and independent study) I try to balance concept and procedure Too many proofs In this course we care about concepts There will be conceptual problems on the exam Concepts are the keys to overcoming templated problems V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 4 / 40
  • 11. . . . . . . Evaluations: technological comments Smart board issues laser pointer visibility slides sometimes move fast V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 5 / 40
  • 12. . . . . . . Evaluations: The ugly “If class was even remotely interesting this class would be awesome.” V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 6 / 40
  • 13. . . . . . . Evaluations: The ugly “If class was even remotely interesting this class would be awesome.” “Sometimes condescending/rude.” V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 6 / 40
  • 14. . . . . . . Evaluations: The ugly “If class was even remotely interesting this class would be awesome.” “Sometimes condescending/rude.” “Can’t pick his nose without checking his notes, and he still gets it wrong the first time.” V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 6 / 40
  • 15. . . . . . . Evaluations: The ugly “If class was even remotely interesting this class would be awesome.” “Sometimes condescending/rude.” “Can’t pick his nose without checking his notes, and he still gets it wrong the first time.” “If I were chained to a desk and forced to see this guy teach, I would chew my arm off in order to get free.” V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 6 / 40
  • 16. . . . . . . A slide on slides Pro “Powerpoints explain topics carefully step-by-step” “Powerpoint and lesson flow smoothly” “Can visualize material well” “I like that you post slides beforehand” V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 7 / 40
  • 17. . . . . . . A slide on slides Pro “Powerpoints explain topics carefully step-by-step” “Powerpoint and lesson flow smoothly” “Can visualize material well” “I like that you post slides beforehand” Con “I would like to have him use the chalkboard more.” “It’s so unnatural to learn math via powerpoint.” “I hate powerpoint.” V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 7 / 40
  • 18. . . . . . . A slide on slides Pro “Powerpoints explain topics carefully step-by-step” “Powerpoint and lesson flow smoothly” “Can visualize material well” “I like that you post slides beforehand” Con “I would like to have him use the chalkboard more.” “It’s so unnatural to learn math via powerpoint.” “I hate powerpoint.” Why I like them Board handwriting not an issue Easy to put online; notetaking is more than transcription V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 7 / 40
  • 19. . . . . . . My handwriting V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 8 / 40
  • 20. . . . . . . A slide on slides Pro “Powerpoints explain topics carefully step-by-step” “Powerpoint and lesson flow smoothly” “Can visualize material well” “I like that you post slides beforehand” Con “I would like to have him use the chalkboard more.” “It’s so unnatural to learn math via powerpoint.” “I hate powerpoint.” Why I like them Board handwriting not an issue Easy to put online; notetaking is more than transcription What we can do if you have suggestions for details to put in, I’m listening Feel free to ask me to fill in something on the board V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 9 / 40
  • 21. . . . . . . Objectives Know the definitions, domains, ranges, and other properties of the inverse trignometric functions: arcsin, arccos, arctan, arcsec, arccsc, arccot. Know the derivatives of the inverse trignometric functions. V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 10 / 40
  • 22. . . . . . . Outline Inverse Trigonometric Functions Derivatives of Inverse Trigonometric Functions Arcsine Arccosine Arctangent Arcsecant Applications V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 11 / 40
  • 23. . . . . . . What is an inverse function? Definition Let f be a function with domain D and range E. The inverse of f is the function f−1 defined by: f−1 (b) = a, where a is chosen so that f(a) = b. V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 12 / 40
  • 24. . . . . . . What is an inverse function? Definition Let f be a function with domain D and range E. The inverse of f is the function f−1 defined by: f−1 (b) = a, where a is chosen so that f(a) = b. So f−1 (f(x)) = x, f(f−1 (x)) = x V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 12 / 40
  • 25. . . . . . . What functions are invertible? In order for f−1 to be a function, there must be only one a in D corresponding to each b in E. Such a function is called one-to-one The graph of such a function passes the horizontal line test: any horizontal line intersects the graph in exactly one point if at all. If f is continuous, then f−1 is continuous. V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 13 / 40
  • 26. . . . . . . Graphing the inverse function If b = f(a), then f−1 (b) = a. . .x .y V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 14 / 40
  • 27. . . . . . . Graphing the inverse function If b = f(a), then f−1 (b) = a. So if (a, b) is on the graph of f, then (b, a) is on the graph of f−1 . . .x .y . .(a, b) . .(b, a) V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 14 / 40
  • 28. . . . . . . Graphing the inverse function If b = f(a), then f−1 (b) = a. So if (a, b) is on the graph of f, then (b, a) is on the graph of f−1 . On the xy-plane, the point (b, a) is the reflection of (a, b) in the line y = x. . .x .y . .(a, b) . .(b, a) .y = x V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 14 / 40
  • 29. . . . . . . Graphing the inverse function If b = f(a), then f−1 (b) = a. So if (a, b) is on the graph of f, then (b, a) is on the graph of f−1 . On the xy-plane, the point (b, a) is the reflection of (a, b) in the line y = x. . .x .y . .(a, b) . .(b, a) .y = x V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 14 / 40
  • 30. . . . . . . Graphing the inverse function If b = f(a), then f−1 (b) = a. So if (a, b) is on the graph of f, then (b, a) is on the graph of f−1 . On the xy-plane, the point (b, a) is the reflection of (a, b) in the line y = x. . .x .y . .(a, b) . .(b, a) .y = x V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 14 / 40
  • 31. . . . . . . Graphing the inverse function If b = f(a), then f−1 (b) = a. So if (a, b) is on the graph of f, then (b, a) is on the graph of f−1 . On the xy-plane, the point (b, a) is the reflection of (a, b) in the line y = x. Therefore: . .x .y . .(a, b) . .(b, a) .y = x Fact The graph of f−1 is the reflection of the graph of f in the line y = x. V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 14 / 40
  • 32. . . . . . . Graphing the inverse function If b = f(a), then f−1 (b) = a. So if (a, b) is on the graph of f, then (b, a) is on the graph of f−1 . On the xy-plane, the point (b, a) is the reflection of (a, b) in the line y = x. Therefore: . .x .y . .(a, b) . .(b, a) .y = x Fact The graph of f−1 is the reflection of the graph of f in the line y = x. V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 14 / 40
  • 33. . . . . . . arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. . .x .y .sin . .− π 2 . . π 2 V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 15 / 40
  • 34. . . . . . . arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. . .x .y .sin . . . .− π 2 . . π 2 V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 15 / 40
  • 35. . . . . . . arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. . .x .y .sin . . . .− π 2 . . π 2 .y = x V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 15 / 40
  • 36. . . . . . . arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. . .x .y .sin . . . .− π 2 . . π 2 . ..arcsin The domain of arcsin is [−1, 1] The range of arcsin is [ − π 2 , π 2 ] V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 15 / 40
  • 37. . . . . . . arccos Arccos is the inverse of the cosine function after restriction to [0, π] . .x .y .cos . .0 . .π V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 16 / 40
  • 38. . . . . . . arccos Arccos is the inverse of the cosine function after restriction to [0, π] . .x .y .cos . . . .0 . .π V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 16 / 40
  • 39. . . . . . . arccos Arccos is the inverse of the cosine function after restriction to [0, π] . .x .y .cos . . . .0 . .π .y = x V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 16 / 40
  • 40. . . . . . . arccos Arccos is the inverse of the cosine function after restriction to [0, π] . .x .y .cos . . . .0 . .π . ..arccos The domain of arccos is [−1, 1] The range of arccos is [0, π] V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 16 / 40
  • 41. . . . . . . arctan Arctan is the inverse of the tangent function after restriction to [−π/2, π/2]. . .x .y .tan .− 3π 2 .− π 2 . π 2 . 3π 2 V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 17 / 40
  • 42. . . . . . . arctan Arctan is the inverse of the tangent function after restriction to [−π/2, π/2]. . .x .y .tan .− 3π 2 .− π 2 . π 2 . 3π 2 V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 17 / 40
  • 43. . . . . . . arctan Arctan is the inverse of the tangent function after restriction to [−π/2, π/2]. . .x .y .tan .− 3π 2 .− π 2 . π 2 . 3π 2 .y = x V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 17 / 40
  • 44. . . . . . . arctan Arctan is the inverse of the tangent function after restriction to [−π/2, π/2]. . .x .y .arctan .− π 2 . π 2 The domain of arctan is (−∞, ∞) The range of arctan is ( − π 2 , π 2 ) lim x→∞ arctan x = π 2 , lim x→−∞ arctan x = − π 2 V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 17 / 40
  • 45. . . . . . . arcsec Arcsecant is the inverse of secant after restriction to [0, π/2) ∪ (π, 3π/2]. . .x .y .sec .− 3π 2 .− π 2 . π 2 . 3π 2 V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 18 / 40
  • 46. . . . . . . arcsec Arcsecant is the inverse of secant after restriction to [0, π/2) ∪ (π, 3π/2]. . .x .y .sec .− 3π 2 .− π 2 . π 2 . 3π 2 . . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 18 / 40
  • 47. . . . . . . arcsec Arcsecant is the inverse of secant after restriction to [0, π/2) ∪ (π, 3π/2]. . .x .y .sec .− 3π 2 .− π 2 . π 2 . 3π 2 . . .y = x V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 18 / 40
  • 48. . . . . . . arcsec Arcsecant is the inverse of secant after restriction to [0, π/2) ∪ (π, 3π/2]. . .x .y . . . . . π 2 . 3π 2 The domain of arcsec is (−∞, −1] ∪ [1, ∞) The range of arcsec is [ 0, π 2 ) ∪ (π 2 , π ] lim x→∞ arcsec x = π 2 , lim x→−∞ arcsec x = 3π 2 V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 18 / 40
  • 49. . . . . . . Values of Trigonometric Functions x 0 π 6 π 4 π 3 π 2 sin x 0 1 2 √ 2 2 √ 3 2 1 cos x 1 √ 3 2 √ 2 2 1 2 0 tan x 0 1 √ 3 1 √ 3 undef cot x undef √ 3 1 1 √ 3 0 sec x 1 2 √ 3 2 √ 2 2 undef csc x undef 2 2 √ 2 2 √ 3 1 V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 19 / 40
  • 50. . . . . . . Check: Values of inverse trigonometric functions Example Find arcsin(1/2) arctan(−1) arccos ( − √ 2 2 ) V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 20 / 40
  • 51. . . . . . . Check: Values of inverse trigonometric functions Example Find arcsin(1/2) arctan(−1) arccos ( − √ 2 2 ) Solution π 6 V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 20 / 40
  • 52. . . . . . . What is arctan(−1)? . . . . .3π/4 . .−π/4 V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 21 / 40
  • 53. . . . . . . What is arctan(−1)? . . . . .3π/4 . .−π/4 .sin(3π/4) = √ 2 2 .cos(3π/4) = − √ 2 2 Yes, tan ( 3π 4 ) = −1 V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 21 / 40
  • 54. . . . . . . What is arctan(−1)? . . . . .3π/4 . .−π/4 .sin(3π/4) = √ 2 2 .cos(3π/4) = − √ 2 2 Yes, tan ( 3π 4 ) = −1 But, the range of arctan is( − π 2 , π 2 ) V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 21 / 40
  • 55. . . . . . . What is arctan(−1)? . . . . .3π/4 . .−π/4 .sin(π/4) = − √ 2 2 .cos(π/4) = √ 2 2 Yes, tan ( 3π 4 ) = −1 But, the range of arctan is( − π 2 , π 2 ) Another angle whose tangent is −1 is − π 4 , and this is in the right range. V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 21 / 40
  • 56. . . . . . . What is arctan(−1)? . . . . .3π/4 . .−π/4 .sin(π/4) = − √ 2 2 .cos(π/4) = √ 2 2 Yes, tan ( 3π 4 ) = −1 But, the range of arctan is( − π 2 , π 2 ) Another angle whose tangent is −1 is − π 4 , and this is in the right range. So arctan(−1) = − π 4 V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 21 / 40
  • 57. . . . . . . Check: Values of inverse trigonometric functions Example Find arcsin(1/2) arctan(−1) arccos ( − √ 2 2 ) Solution π 6 − π 4 V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 22 / 40
  • 58. . . . . . . Check: Values of inverse trigonometric functions Example Find arcsin(1/2) arctan(−1) arccos ( − √ 2 2 ) Solution π 6 − π 4 3π 4 V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 22 / 40
  • 59. . . . . . . Caution: Notational ambiguity ..sin2 x = (sin x)2 .sin−1 x = (sin x)−1 sinn x means the nth power of sin x, except when n = −1! The book uses sin−1 x for the inverse of sin x, and never for (sin x)−1 . I use csc x for 1 sin x and arcsin x for the inverse of sin x. V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 23 / 40
  • 60. . . . . . . Outline Inverse Trigonometric Functions Derivatives of Inverse Trigonometric Functions Arcsine Arccosine Arctangent Arcsecant Applications V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 24 / 40
  • 61. . . . . . . The Inverse Function Theorem Theorem (The Inverse Function Theorem) Let f be differentiable at a, and f′ (a) ̸= 0. Then f−1 is defined in an open interval containing b = f(a), and (f−1 )′ (b) = 1 f′ (f−1 (b)) In Leibniz notation we have dx dy = 1 dy/dx V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 25 / 40
  • 62. . . . . . . The Inverse Function Theorem Theorem (The Inverse Function Theorem) Let f be differentiable at a, and f′ (a) ̸= 0. Then f−1 is defined in an open interval containing b = f(a), and (f−1 )′ (b) = 1 f′ (f−1 (b)) In Leibniz notation we have dx dy = 1 dy/dx Upshot: Many times the derivative of f−1 (x) can be found by implicit differentiation and the derivative of f: V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 25 / 40
  • 63. . . . . . . Illustrating the Inverse Function Theorem . . Example Use the inverse function theorem to find the derivative of the square root function. V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 26 / 40
  • 64. . . . . . . Illustrating the Inverse Function Theorem . . Example Use the inverse function theorem to find the derivative of the square root function. Solution (Newtonian notation) Let f(x) = x2 so that f−1 (y) = √ y. Then f′ (u) = 2u so for any b > 0 we have (f−1 )′ (b) = 1 2 √ b V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 26 / 40
  • 65. . . . . . . Illustrating the Inverse Function Theorem . . Example Use the inverse function theorem to find the derivative of the square root function. Solution (Newtonian notation) Let f(x) = x2 so that f−1 (y) = √ y. Then f′ (u) = 2u so for any b > 0 we have (f−1 )′ (b) = 1 2 √ b Solution (Leibniz notation) If the original function is y = x2 , then the inverse function is defined by x = y2 . Differentiate implicitly: 1 = 2y dy dx =⇒ dy dx = 1 2 √ x V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 26 / 40
  • 66. . . . . . . Derivation: The derivative of arcsin Let y = arcsin x, so x = sin y. Then cos y dy dx = 1 =⇒ dy dx = 1 cos y = 1 cos(arcsin x) V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 27 / 40
  • 67. . . . . . . Derivation: The derivative of arcsin Let y = arcsin x, so x = sin y. Then cos y dy dx = 1 =⇒ dy dx = 1 cos y = 1 cos(arcsin x) To simplify, look at a right triangle: . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 27 / 40
  • 68. . . . . . . Derivation: The derivative of arcsin Let y = arcsin x, so x = sin y. Then cos y dy dx = 1 =⇒ dy dx = 1 cos y = 1 cos(arcsin x) To simplify, look at a right triangle: . . . . .y = arcsin x V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 27 / 40
  • 69. . . . . . . Derivation: The derivative of arcsin Let y = arcsin x, so x = sin y. Then cos y dy dx = 1 =⇒ dy dx = 1 cos y = 1 cos(arcsin x) To simplify, look at a right triangle: . . . . .y = arcsin x .1 .x V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 27 / 40
  • 70. . . . . . . Derivation: The derivative of arcsin Let y = arcsin x, so x = sin y. Then cos y dy dx = 1 =⇒ dy dx = 1 cos y = 1 cos(arcsin x) To simplify, look at a right triangle: . . . . .y = arcsin x .1 .x . √ 1 − x2 V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 27 / 40
  • 71. . . . . . . Derivation: The derivative of arcsin Let y = arcsin x, so x = sin y. Then cos y dy dx = 1 =⇒ dy dx = 1 cos y = 1 cos(arcsin x) To simplify, look at a right triangle: cos(arcsin x) = √ 1 − x2 . . . . .y = arcsin x .1 .x . √ 1 − x2 V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 27 / 40
  • 72. . . . . . . Derivation: The derivative of arcsin Let y = arcsin x, so x = sin y. Then cos y dy dx = 1 =⇒ dy dx = 1 cos y = 1 cos(arcsin x) To simplify, look at a right triangle: cos(arcsin x) = √ 1 − x2 So Fact d dx arcsin(x) = 1 √ 1 − x2 . . . . .y = arcsin x .1 .x . √ 1 − x2 V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 27 / 40
  • 73. . . . . . . Graphing arcsin and its derivative The domain of f is [−1, 1], but the domain of f′ is (−1, 1) lim x→1− f′ (x) = +∞ lim x→−1+ f′ (x) = +∞ ..| .−1 .| .1 . ..arcsin . 1 √ 1 − x2 V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 28 / 40
  • 74. . . . . . . Composing with arcsin Example Let f(x) = arcsin(x3 + 1). Find f′ (x). V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 29 / 40
  • 75. . . . . . . Composing with arcsin Example Let f(x) = arcsin(x3 + 1). Find f′ (x). Solution We have d dx arcsin(x3 + 1) = 1 √ 1 − (x3 + 1)2 d dx (x3 + 1) = 3x2 √ −x6 − 2x3 V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 29 / 40
  • 76. . . . . . . Derivation: The derivative of arccos Let y = arccos x, so x = cos y. Then − sin y dy dx = 1 =⇒ dy dx = 1 − sin y = 1 − sin(arccos x) V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 30 / 40
  • 77. . . . . . . Derivation: The derivative of arccos Let y = arccos x, so x = cos y. Then − sin y dy dx = 1 =⇒ dy dx = 1 − sin y = 1 − sin(arccos x) To simplify, look at a right triangle: sin(arccos x) = √ 1 − x2 So Fact d dx arccos(x) = − 1 √ 1 − x2 . .1 . √ 1 − x2 .x . .y = arccos x V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 30 / 40
  • 78. . . . . . . Graphing arcsin and arccos ..| .−1 .| .1 . ..arcsin . ..arccos V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 31 / 40
  • 79. . . . . . . Graphing arcsin and arccos ..| .−1 .| .1 . ..arcsin . ..arccos Note cos θ = sin (π 2 − θ ) =⇒ arccos x = π 2 − arcsin x So it’s not a surprise that their derivatives are opposites. V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 31 / 40
  • 80. . . . . . . Derivation: The derivative of arctan Let y = arctan x, so x = tan y. Then sec2 y dy dx = 1 =⇒ dy dx = 1 sec2 y = cos2 (arctan x) V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 32 / 40
  • 81. . . . . . . Derivation: The derivative of arctan Let y = arctan x, so x = tan y. Then sec2 y dy dx = 1 =⇒ dy dx = 1 sec2 y = cos2 (arctan x) To simplify, look at a right triangle: . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 32 / 40
  • 82. . . . . . . Derivation: The derivative of arctan Let y = arctan x, so x = tan y. Then sec2 y dy dx = 1 =⇒ dy dx = 1 sec2 y = cos2 (arctan x) To simplify, look at a right triangle: . . .. .y = arctan x V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 32 / 40
  • 83. . . . . . . Derivation: The derivative of arctan Let y = arctan x, so x = tan y. Then sec2 y dy dx = 1 =⇒ dy dx = 1 sec2 y = cos2 (arctan x) To simplify, look at a right triangle: . . .. .y = arctan x .x .1 V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 32 / 40
  • 84. . . . . . . Derivation: The derivative of arctan Let y = arctan x, so x = tan y. Then sec2 y dy dx = 1 =⇒ dy dx = 1 sec2 y = cos2 (arctan x) To simplify, look at a right triangle: . . .. .y = arctan x .x .1 . √ 1 + x2 V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 32 / 40
  • 85. . . . . . . Derivation: The derivative of arctan Let y = arctan x, so x = tan y. Then sec2 y dy dx = 1 =⇒ dy dx = 1 sec2 y = cos2 (arctan x) To simplify, look at a right triangle: cos(arctan x) = 1 √ 1 + x2 . . .. .y = arctan x .x .1 . √ 1 + x2 V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 32 / 40
  • 86. . . . . . . Derivation: The derivative of arctan Let y = arctan x, so x = tan y. Then sec2 y dy dx = 1 =⇒ dy dx = 1 sec2 y = cos2 (arctan x) To simplify, look at a right triangle: cos(arctan x) = 1 √ 1 + x2 So Fact d dx arctan(x) = 1 1 + x2 . . .. .y = arctan x .x .1 . √ 1 + x2 V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 32 / 40
  • 87. . . . . . . Graphing arctan and its derivative . .x .y .arctan . 1 1 + x2 .π/2 .−π/2 The domain of f and f′ are both (−∞, ∞) Because of the horizontal asymptotes, lim x→±∞ f′ (x) = 0 V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 33 / 40
  • 88. . . . . . . Composing with arctan Example Let f(x) = arctan √ x. Find f′ (x). V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 34 / 40
  • 89. . . . . . . Composing with arctan Example Let f(x) = arctan √ x. Find f′ (x). Solution d dx arctan √ x = 1 1 + (√ x )2 d dx √ x = 1 1 + x · 1 2 √ x = 1 2 √ x + 2x √ x V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 34 / 40
  • 90. . . . . . . Derivation: The derivative of arcsec Try this first. V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 35 / 40
  • 91. . . . . . . Derivation: The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then sec y tan y dy dx = 1 =⇒ dy dx = 1 sec y tan y = 1 x tan(arcsec(x)) V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 35 / 40
  • 92. . . . . . . Derivation: The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then sec y tan y dy dx = 1 =⇒ dy dx = 1 sec y tan y = 1 x tan(arcsec(x)) To simplify, look at a right triangle: . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 35 / 40
  • 93. . . . . . . Derivation: The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then sec y tan y dy dx = 1 =⇒ dy dx = 1 sec y tan y = 1 x tan(arcsec(x)) To simplify, look at a right triangle: . V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 35 / 40
  • 94. . . . . . . Derivation: The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then sec y tan y dy dx = 1 =⇒ dy dx = 1 sec y tan y = 1 x tan(arcsec(x)) To simplify, look at a right triangle: .. .y = arcsec x V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 35 / 40
  • 95. . . . . . . Derivation: The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then sec y tan y dy dx = 1 =⇒ dy dx = 1 sec y tan y = 1 x tan(arcsec(x)) To simplify, look at a right triangle: . .x .1 . .y = arcsec x V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 35 / 40
  • 96. . . . . . . Derivation: The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then sec y tan y dy dx = 1 =⇒ dy dx = 1 sec y tan y = 1 x tan(arcsec(x)) To simplify, look at a right triangle: tan(arcsec x) = √ x2 − 1 1 . .x .1 . .y = arcsec x . √ x2 − 1 V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 35 / 40
  • 97. . . . . . . Derivation: The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then sec y tan y dy dx = 1 =⇒ dy dx = 1 sec y tan y = 1 x tan(arcsec(x)) To simplify, look at a right triangle: tan(arcsec x) = √ x2 − 1 1 So Fact d dx arcsec(x) = 1 x √ x2 − 1 . .x .1 . .y = arcsec x . √ x2 − 1 V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 35 / 40
  • 98. . . . . . . Another Example Example Let f(x) = earcsec 3x . Find f′ (x). V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 36 / 40
  • 99. . . . . . . Another Example Example Let f(x) = earcsec 3x . Find f′ (x). Solution f′ (x) = earcsec 3x · 1 3x √ (3x)2 − 1 · 3 = 3earcsec 3x 3x √ 9x2 − 1 V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 36 / 40
  • 100. . . . . . . Outline Inverse Trigonometric Functions Derivatives of Inverse Trigonometric Functions Arcsine Arccosine Arctangent Arcsecant Applications V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 37 / 40
  • 101. . . . . . . Application Example One of the guiding principles of most sports is to “keep your eye on the ball.” In baseball, a batter stands 2 ft away from home plate as a pitch is thrown with a velocity of 130 ft/sec (about 90 mph). At what rate does the batter’s angle of gaze need to change to follow the ball as it crosses home plate? V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 38 / 40
  • 102. . . . . . . Application Example One of the guiding principles of most sports is to “keep your eye on the ball.” In baseball, a batter stands 2 ft away from home plate as a pitch is thrown with a velocity of 130 ft/sec (about 90 mph). At what rate does the batter’s angle of gaze need to change to follow the ball as it crosses home plate? Solution Let y(t) be the distance from the ball to home plate, and θ the angle the batter’s eyes make with home plate while following the ball. We know y′ = −130 and we want θ′ at the moment that y = 0. V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 38 / 40
  • 103. . . . . . . Solution Let y(t) be the distance from the ball to home plate, and θ the angle the batter’s eyes make with home plate while following the ball. We know y′ = −130 and we want θ′ at the moment that y = 0. . .2 ft .y .130 ft/sec . .θ V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 39 / 40
  • 104. . . . . . . Solution Let y(t) be the distance from the ball to home plate, and θ the angle the batter’s eyes make with home plate while following the ball. We know y′ = −130 and we want θ′ at the moment that y = 0. We have θ = arctan(y/2). Thus dθ dt = 1 1 + (y/2)2 · 1 2 dy dt . .2 ft .y .130 ft/sec . .θ V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 39 / 40
  • 105. . . . . . . Solution Let y(t) be the distance from the ball to home plate, and θ the angle the batter’s eyes make with home plate while following the ball. We know y′ = −130 and we want θ′ at the moment that y = 0. We have θ = arctan(y/2). Thus dθ dt = 1 1 + (y/2)2 · 1 2 dy dt When y = 0 and y′ = −130, then dθ dt y=0 = 1 1 + 0 · 1 2 (−130) = −65 rad/sec . .2 ft .y .130 ft/sec . .θ V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 39 / 40
  • 106. . . . . . . Solution Let y(t) be the distance from the ball to home plate, and θ the angle the batter’s eyes make with home plate while following the ball. We know y′ = −130 and we want θ′ at the moment that y = 0. We have θ = arctan(y/2). Thus dθ dt = 1 1 + (y/2)2 · 1 2 dy dt When y = 0 and y′ = −130, then dθ dt y=0 = 1 1 + 0 · 1 2 (−130) = −65 rad/sec The human eye can only track at 3 rad/sec! . .2 ft .y .130 ft/sec . .θ V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 39 / 40
  • 107. . . . . . . Summary y y′ arcsin x 1 √ 1 − x2 arccos x − 1 √ 1 − x2 arctan x 1 1 + x2 arccot x − 1 1 + x2 arcsec x 1 x √ x2 − 1 arccsc x − 1 x √ x2 − 1 Remarkable that the derivatives of these transcendental functions are algebraic (or even rational!) V63.0121.021, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 2, 2010 40 / 40