SlideShare a Scribd company logo
1 of 35
Download to read offline
Section 5.2
                  The Definite Integral

                           Math 1a


                      December 7, 2007


Announcements
   my next office hours: Monday 1–2, Tuesday 3–4 (SC 323)
   MT II is graded. You’ll get it back today
   Final seview sessions: Wed 1/9 and Thu 1/10 in Hall D, Sun
   1/13 in Hall C, all 7–8:30pm
   Final tentatively scheduled for January 17
Outline



   The definite integral as a limit


   Estimating the Definite Integral


   Properties of the integral


   Comparison Properties of the Integral
The definite integral as a limit




   Definition
   If f is a function defined on [a, b], the definite integral of f from
   a to b is the number
                                               n
                         b
                             f (x) dx = lim         f (ci ) ∆x
                                       ∆x→0
                     a                        i=1
Notation/Terminology


                           b
                               f (x) dx
                       a
Notation/Terminology


                               b
                                   f (x) dx
                           a


        — integral sign (swoopy S)
Notation/Terminology


                               b
                                   f (x) dx
                           a


        — integral sign (swoopy S)
      f (x) — integrand
Notation/Terminology


                                 b
                                     f (x) dx
                             a


         — integral sign (swoopy S)
      f (x) — integrand
      a and b — limits of integration (a is the lower limit and b
      the upper limit)
Notation/Terminology


                                 b
                                     f (x) dx
                             a


         — integral sign (swoopy S)
      f (x) — integrand
      a and b — limits of integration (a is the lower limit and b
      the upper limit)
      dx — ??? (a parenthesis? an infinitesimal? a variable?)
Notation/Terminology


                                  b
                                      f (x) dx
                              a


         — integral sign (swoopy S)
      f (x) — integrand
      a and b — limits of integration (a is the lower limit and b
      the upper limit)
      dx — ??? (a parenthesis? an infinitesimal? a variable?)
      The process of computing an integral is called integration
The limit can be simplified

   Theorem
   If f is continuous on [a, b] or if f has only finitely many jump
   discontinuities, then f is integrable on [a, b]; that is, the definite
                  b
   integral           f (x) dx exists.
              a
The limit can be simplified

   Theorem
   If f is continuous on [a, b] or if f has only finitely many jump
   discontinuities, then f is integrable on [a, b]; that is, the definite
                  b
   integral           f (x) dx exists.
              a

   Theorem
   If f is integrable on [a, b] then
                                                       n
                                 b
                                     f (x) dx = lim         f (xi )∆x,
                                               n→∞
                             a                        i=1

   where
                                 b−a
                       ∆x =                   and          xi = a + i ∆x
                                  n
Outline



   The definite integral as a limit


   Estimating the Definite Integral


   Properties of the integral


   Comparison Properties of the Integral
Estimating the Definite Integral




   Given a partition of [a, b] into n pieces, let xi be the midpoint of
                                                  ¯
   [xi−1 , xi ]. Define
                                   n
                           Mn =         f (¯i ) ∆x.
                                           x
                                  i=1
Example
               1
                     4
Estimate                  dx using the midpoint rule and four divisions.
                   1 + x2
           0
Example
               1
                     4
Estimate                  dx using the midpoint rule and four divisions.
                   1 + x2
           0

Solution
                          1  1 3
The partition is 0 <        < < < 1, so the estimate is
                          4  2 4
       1        4            4            4            4
M4 =                  +            +            +
                    2            2            2   1 + (7/8)2
       4   1 + (1/8)    1 + (3/8)    1 + (5/8)
Example
               1
                     4
Estimate                  dx using the midpoint rule and four divisions.
                   1 + x2
           0

Solution
                          1  1 3
The partition is 0 <        < < < 1, so the estimate is
                          4  2 4
      1         4            4            4            4
M4 =                  +            +            +
                    2            2            2   1 + (7/8)2
      4    1 + (1/8)    1 + (3/8)    1 + (5/8)
      1      4        4        4        4
    =             +       +        +
      4    65/64 73/64 89/64 113/64
Example
               1
                     4
Estimate                  dx using the midpoint rule and four divisions.
                   1 + x2
           0

Solution
                          1  1 3
The partition is 0 <        < < < 1, so the estimate is
                          4  2 4
      1        4             4            4            4
M4 =                  +            +            +
                    2            2            2   1 + (7/8)2
      4 1 + (1/8)       1 + (3/8)    1 + (5/8)
      1     4         4        4        4
    =            +        +        +
      4 65/64 73/64 89/64 113/64
      150, 166, 784
                    ≈ 3.1468
    =
      47, 720, 465
Outline



   The definite integral as a limit


   Estimating the Definite Integral


   Properties of the integral


   Comparison Properties of the Integral
Properties of the integral


   Theorem (Additive Properties of the Integral)
   Let f and g be integrable functions on [a, b] and c a constant.
   Then
             b
                 c dx = c(b − a)
    1.
         a
Properties of the integral


   Theorem (Additive Properties of the Integral)
   Let f and g be integrable functions on [a, b] and c a constant.
   Then
             b
                 c dx = c(b − a)
    1.
         a
             b                              b                    b
    2.           [f (x) + g (x)] dx =           f (x) dx +           g (x) dx.
         a                              a                    a
Properties of the integral


   Theorem (Additive Properties of the Integral)
   Let f and g be integrable functions on [a, b] and c a constant.
   Then
             b
                 c dx = c(b − a)
    1.
         a
             b                                   b                    b
    2.           [f (x) + g (x)] dx =                f (x) dx +           g (x) dx.
         a                                   a                    a
             b                       b
    3.           cf (x) dx = c           f (x) dx.
         a                       a
Properties of the integral


   Theorem (Additive Properties of the Integral)
   Let f and g be integrable functions on [a, b] and c a constant.
   Then
             b
                 c dx = c(b − a)
    1.
         a
             b                                   b                    b
    2.           [f (x) + g (x)] dx =                f (x) dx +           g (x) dx.
         a                                   a                    a
             b                       b
    3.           cf (x) dx = c           f (x) dx.
         a                       a
             b                                   b                    b
                 [f (x) − g (x)] dx =                f (x) dx −
    4.                                                                    g (x) dx.
         a                                   a                    a
More Properties of the Integral



   Conventions:
                       a                      b
                           f (x) dx = −           f (x) dx
                   b                      a
More Properties of the Integral



   Conventions:
                       a                          b
                           f (x) dx = −               f (x) dx
                   b                          a
                                  a
                                      f (x) dx = 0
                              a
More Properties of the Integral



   Conventions:
                                  a                                b
                                      f (x) dx = −                     f (x) dx
                              b                                a
                                              a
                                                  f (x) dx = 0
                                          a
   This allows us to have
             c                    b                        c
    5.           f (x) dx =           f (x) dx +               f (x) dx for all a, b, and c.
         a                    a                        b
Example
Suppose f and g are functions with
           4
               f (x) dx = 4
       0
           5
               f (x) dx = 7
       0
           5
               g (x) dx = 3.
       0
Find
           5
               [2f (x) − g (x)] dx
(a)
       0
           5
(b)            f (x) dx.
       4
Solution
We have
(a)
               5                                 5                    5
                   [2f (x) − g (x)] dx = 2           f (x) dx −           g (x) dx
           0                                 0                    0
                                      = 2 · 7 − 3 = 11
Solution
We have
(a)
               5                                          5                       5
                   [2f (x) − g (x)] dx = 2                    f (x) dx −              g (x) dx
           0                                          0                       0
                                           = 2 · 7 − 3 = 11

(b)
                          5                    5                       4
                                                   f (x) dx −
                              f (x) dx =                                   f (x) dx
                      4                    0                       0
                                      =7−4=3
Outline



   The definite integral as a limit


   Estimating the Definite Integral


   Properties of the integral


   Comparison Properties of the Integral
Comparison Properties of the Integral
   Theorem
   Let f and g be integrable functions on [a, b].
Comparison Properties of the Integral
   Theorem
   Let f and g be integrable functions on [a, b].
    6. If f (x) ≥ 0 for all x in [a, b], then
                                      b
                                          f (x) dx ≥ 0
                                  a
Comparison Properties of the Integral
   Theorem
   Let f and g be integrable functions on [a, b].
    6. If f (x) ≥ 0 for all x in [a, b], then
                                           b
                                               f (x) dx ≥ 0
                                       a

    7. If f (x) ≥ g (x) for all x in [a, b], then
                                 b                       b
                                     f (x) dx ≥              g (x) dx
                             a                       a
Comparison Properties of the Integral
   Theorem
   Let f and g be integrable functions on [a, b].
    6. If f (x) ≥ 0 for all x in [a, b], then
                                           b
                                               f (x) dx ≥ 0
                                       a

    7. If f (x) ≥ g (x) for all x in [a, b], then
                                 b                         b
                                     f (x) dx ≥                g (x) dx
                             a                         a

    8. If m ≤ f (x) ≤ M for all x in [a, b], then
                                               b
                     m(b − a) ≤                    f (x) dx ≤ M(b − a)
                                           a
Example
               2
                   1
Estimate             dx using the comparison properties.
                   x
           1
Example
               2
                   1
Estimate             dx using the comparison properties.
                   x
           1

Solution
Since
                                 1      1
                                   ≤x ≤
                                 2      1
for all x in [1, 2], we have
                                       2
                           1               1
                             ·1≤             dx ≤ 1 · 1
                           2               x
                                   1

More Related Content

What's hot

Techniques of Integration ppt.ppt
Techniques of Integration ppt.pptTechniques of Integration ppt.ppt
Techniques of Integration ppt.pptJaysonFabela1
 
Lesson 8 the definite integrals
Lesson 8 the definite integralsLesson 8 the definite integrals
Lesson 8 the definite integralsLawrence De Vera
 
Lesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic FunctionsLesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic FunctionsMatthew Leingang
 
5.1 anti derivatives
5.1 anti derivatives5.1 anti derivatives
5.1 anti derivativesmath265
 
Unit Circle - Trigonometry
Unit Circle - TrigonometryUnit Circle - Trigonometry
Unit Circle - TrigonometrySimon Borgert
 
6.2 the indefinite integral
6.2 the indefinite integral 6.2 the indefinite integral
6.2 the indefinite integral dicosmo178
 
Lesson 1: Functions and their Representations
Lesson 1: Functions and their RepresentationsLesson 1: Functions and their Representations
Lesson 1: Functions and their RepresentationsMatthew Leingang
 
Intermediate Value Theorem
Intermediate Value TheoremIntermediate Value Theorem
Intermediate Value Theoremgizemk
 
Basic Calculus 11 - Derivatives and Differentiation Rules
Basic Calculus 11 - Derivatives and Differentiation RulesBasic Calculus 11 - Derivatives and Differentiation Rules
Basic Calculus 11 - Derivatives and Differentiation RulesJuan Miguel Palero
 
Basic Rules Of Differentiation
Basic Rules Of DifferentiationBasic Rules Of Differentiation
Basic Rules Of Differentiationseltzermath
 
APPLICATION OF PARTIAL DIFFERENTIATION
APPLICATION OF PARTIAL DIFFERENTIATIONAPPLICATION OF PARTIAL DIFFERENTIATION
APPLICATION OF PARTIAL DIFFERENTIATIONDhrupal Patel
 
Inverse functions
Inverse functionsInverse functions
Inverse functionsJJkedst
 
PPt on Functions
PPt on FunctionsPPt on Functions
PPt on Functionscoolhanddav
 
3.1 derivative of a function
3.1 derivative of a function3.1 derivative of a function
3.1 derivative of a functionbtmathematics
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Limit of Function And Its Types
Limit of Function And Its TypesLimit of Function And Its Types
Limit of Function And Its TypesAdeel Rasheed
 

What's hot (20)

Techniques of Integration ppt.ppt
Techniques of Integration ppt.pptTechniques of Integration ppt.ppt
Techniques of Integration ppt.ppt
 
Lesson 8 the definite integrals
Lesson 8 the definite integralsLesson 8 the definite integrals
Lesson 8 the definite integrals
 
Lesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic FunctionsLesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic Functions
 
5.1 anti derivatives
5.1 anti derivatives5.1 anti derivatives
5.1 anti derivatives
 
Unit Circle - Trigonometry
Unit Circle - TrigonometryUnit Circle - Trigonometry
Unit Circle - Trigonometry
 
Functions
FunctionsFunctions
Functions
 
6.2 the indefinite integral
6.2 the indefinite integral 6.2 the indefinite integral
6.2 the indefinite integral
 
Lesson 1: Functions and their Representations
Lesson 1: Functions and their RepresentationsLesson 1: Functions and their Representations
Lesson 1: Functions and their Representations
 
Riemann sumsdefiniteintegrals
Riemann sumsdefiniteintegralsRiemann sumsdefiniteintegrals
Riemann sumsdefiniteintegrals
 
Intermediate Value Theorem
Intermediate Value TheoremIntermediate Value Theorem
Intermediate Value Theorem
 
Basic Calculus 11 - Derivatives and Differentiation Rules
Basic Calculus 11 - Derivatives and Differentiation RulesBasic Calculus 11 - Derivatives and Differentiation Rules
Basic Calculus 11 - Derivatives and Differentiation Rules
 
Basic Rules Of Differentiation
Basic Rules Of DifferentiationBasic Rules Of Differentiation
Basic Rules Of Differentiation
 
APPLICATION OF PARTIAL DIFFERENTIATION
APPLICATION OF PARTIAL DIFFERENTIATIONAPPLICATION OF PARTIAL DIFFERENTIATION
APPLICATION OF PARTIAL DIFFERENTIATION
 
Inverse functions
Inverse functionsInverse functions
Inverse functions
 
PPt on Functions
PPt on FunctionsPPt on Functions
PPt on Functions
 
Lesson 10: The Chain Rule
Lesson 10: The Chain RuleLesson 10: The Chain Rule
Lesson 10: The Chain Rule
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
3.1 derivative of a function
3.1 derivative of a function3.1 derivative of a function
3.1 derivative of a function
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Limit of Function And Its Types
Limit of Function And Its TypesLimit of Function And Its Types
Limit of Function And Its Types
 

Viewers also liked

Lesson 26: The Definite Integral
Lesson 26: The Definite IntegralLesson 26: The Definite Integral
Lesson 26: The Definite IntegralMatthew Leingang
 
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsLesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsMatthew Leingang
 
Lesson 26: Evaluating Definite Integrals
Lesson 26: Evaluating Definite IntegralsLesson 26: Evaluating Definite Integrals
Lesson 26: Evaluating Definite IntegralsMatthew Leingang
 
Lesson 24: Area and Distances
Lesson 24: Area and DistancesLesson 24: Area and Distances
Lesson 24: Area and DistancesMatthew Leingang
 
Lesson 26: Optimization II: Data Fitting
Lesson 26: Optimization II: Data FittingLesson 26: Optimization II: Data Fitting
Lesson 26: Optimization II: Data FittingMatthew Leingang
 
Lesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization ILesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization IMatthew Leingang
 
Lesson24 Implicit Differentiation Slides
Lesson24    Implicit  Differentiation SlidesLesson24    Implicit  Differentiation Slides
Lesson24 Implicit Differentiation SlidesMatthew Leingang
 
Lesson20 Tangent Planes Slides+Notes
Lesson20   Tangent Planes Slides+NotesLesson20   Tangent Planes Slides+Notes
Lesson20 Tangent Planes Slides+NotesMatthew Leingang
 
Lesson 28: Lagrange Multipliers II
Lesson 28: Lagrange  Multipliers IILesson 28: Lagrange  Multipliers II
Lesson 28: Lagrange Multipliers IIMatthew Leingang
 
Lesson 25: Indeterminate Forms and L'Hôpital's Rule
Lesson 25: Indeterminate Forms and L'Hôpital's RuleLesson 25: Indeterminate Forms and L'Hôpital's Rule
Lesson 25: Indeterminate Forms and L'Hôpital's RuleMatthew Leingang
 
Lesson 32: The Fundamental Theorem Of Calculus
Lesson 32: The Fundamental Theorem Of CalculusLesson 32: The Fundamental Theorem Of Calculus
Lesson 32: The Fundamental Theorem Of CalculusMatthew Leingang
 
Lesson 31: Evaluating Definite Integrals
Lesson 31: Evaluating Definite IntegralsLesson 31: Evaluating Definite Integrals
Lesson 31: Evaluating Definite IntegralsMatthew Leingang
 
Lesson 22: Quadratic Forms
Lesson 22: Quadratic FormsLesson 22: Quadratic Forms
Lesson 22: Quadratic FormsMatthew Leingang
 
Lesson 27: Lagrange Multipliers I
Lesson 27: Lagrange Multipliers ILesson 27: Lagrange Multipliers I
Lesson 27: Lagrange Multipliers IMatthew Leingang
 

Viewers also liked (20)

Lesson 26: The Definite Integral
Lesson 26: The Definite IntegralLesson 26: The Definite Integral
Lesson 26: The Definite Integral
 
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsLesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite Integrals
 
Lesson 26: Evaluating Definite Integrals
Lesson 26: Evaluating Definite IntegralsLesson 26: Evaluating Definite Integrals
Lesson 26: Evaluating Definite Integrals
 
Larson 4.1
Larson 4.1Larson 4.1
Larson 4.1
 
Integral Rules
Integral RulesIntegral Rules
Integral Rules
 
Lesson 24: Area and Distances
Lesson 24: Area and DistancesLesson 24: Area and Distances
Lesson 24: Area and Distances
 
İntegral 04
İntegral 04İntegral 04
İntegral 04
 
Lesson 26: Optimization II: Data Fitting
Lesson 26: Optimization II: Data FittingLesson 26: Optimization II: Data Fitting
Lesson 26: Optimization II: Data Fitting
 
Lesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization ILesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization I
 
Lesson24 Implicit Differentiation Slides
Lesson24    Implicit  Differentiation SlidesLesson24    Implicit  Differentiation Slides
Lesson24 Implicit Differentiation Slides
 
Midterm II Review
Midterm II ReviewMidterm II Review
Midterm II Review
 
Lesson20 Tangent Planes Slides+Notes
Lesson20   Tangent Planes Slides+NotesLesson20   Tangent Planes Slides+Notes
Lesson20 Tangent Planes Slides+Notes
 
Lesson 29: Areas
Lesson 29: AreasLesson 29: Areas
Lesson 29: Areas
 
Lesson 28: Lagrange Multipliers II
Lesson 28: Lagrange  Multipliers IILesson 28: Lagrange  Multipliers II
Lesson 28: Lagrange Multipliers II
 
Lesson 25: Indeterminate Forms and L'Hôpital's Rule
Lesson 25: Indeterminate Forms and L'Hôpital's RuleLesson 25: Indeterminate Forms and L'Hôpital's Rule
Lesson 25: Indeterminate Forms and L'Hôpital's Rule
 
Lesson 32: The Fundamental Theorem Of Calculus
Lesson 32: The Fundamental Theorem Of CalculusLesson 32: The Fundamental Theorem Of Calculus
Lesson 32: The Fundamental Theorem Of Calculus
 
Lesson 31: Evaluating Definite Integrals
Lesson 31: Evaluating Definite IntegralsLesson 31: Evaluating Definite Integrals
Lesson 31: Evaluating Definite Integrals
 
Lesson 22: Quadratic Forms
Lesson 22: Quadratic FormsLesson 22: Quadratic Forms
Lesson 22: Quadratic Forms
 
Lesson 23: The Chain Rule
Lesson 23: The Chain RuleLesson 23: The Chain Rule
Lesson 23: The Chain Rule
 
Lesson 27: Lagrange Multipliers I
Lesson 27: Lagrange Multipliers ILesson 27: Lagrange Multipliers I
Lesson 27: Lagrange Multipliers I
 

Similar to Lesson 30: The Definite Integral

Lesson 25: Evaluating Definite Integrals (slides
Lesson 25: Evaluating Definite Integrals (slidesLesson 25: Evaluating Definite Integrals (slides
Lesson 25: Evaluating Definite Integrals (slidesMel Anthony Pepito
 
Final Exam Review (Integration)
Final Exam Review (Integration)Final Exam Review (Integration)
Final Exam Review (Integration)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)Matthew Leingang
 
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsLesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsMatthew Leingang
 
Lesson 25: Evaluating Definite Integrals (Section 10 version)
Lesson 25: Evaluating Definite Integrals (Section 10 version)Lesson 25: Evaluating Definite Integrals (Section 10 version)
Lesson 25: Evaluating Definite Integrals (Section 10 version)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)Matthew Leingang
 
Lesson05 Continuity Slides+Notes
Lesson05    Continuity Slides+NotesLesson05    Continuity Slides+Notes
Lesson05 Continuity Slides+NotesMatthew Leingang
 
Lesson05 Continuity Slides+Notes
Lesson05    Continuity Slides+NotesLesson05    Continuity Slides+Notes
Lesson05 Continuity Slides+NotesMatthew Leingang
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusMatthew Leingang
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusMatthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)Matthew Leingang
 
Approximate Integration
Approximate IntegrationApproximate Integration
Approximate IntegrationSilvius
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Mel Anthony Pepito
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 

Similar to Lesson 30: The Definite Integral (20)

Lesson 25: Evaluating Definite Integrals (slides
Lesson 25: Evaluating Definite Integrals (slidesLesson 25: Evaluating Definite Integrals (slides
Lesson 25: Evaluating Definite Integrals (slides
 
Final Exam Review (Integration)
Final Exam Review (Integration)Final Exam Review (Integration)
Final Exam Review (Integration)
 
Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)
 
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsLesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite Integrals
 
Evaluating definite integrals
Evaluating definite integralsEvaluating definite integrals
Evaluating definite integrals
 
Lesson 25: Evaluating Definite Integrals (Section 10 version)
Lesson 25: Evaluating Definite Integrals (Section 10 version)Lesson 25: Evaluating Definite Integrals (Section 10 version)
Lesson 25: Evaluating Definite Integrals (Section 10 version)
 
Business math
Business mathBusiness math
Business math
 
gfg
gfggfg
gfg
 
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
 
Lesson05 Continuity Slides+Notes
Lesson05    Continuity Slides+NotesLesson05    Continuity Slides+Notes
Lesson05 Continuity Slides+Notes
 
Lesson 5: Continuity
Lesson 5: ContinuityLesson 5: Continuity
Lesson 5: Continuity
 
Lesson05 Continuity Slides+Notes
Lesson05    Continuity Slides+NotesLesson05    Continuity Slides+Notes
Lesson05 Continuity Slides+Notes
 
Lesson 3: Continuity
Lesson 3: ContinuityLesson 3: Continuity
Lesson 3: Continuity
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of Calculus
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of Calculus
 
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
 
Approximate Integration
Approximate IntegrationApproximate Integration
Approximate Integration
 
Lesson 5: Continuity
Lesson 5: ContinuityLesson 5: Continuity
Lesson 5: Continuity
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 

More from Matthew Leingang

Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceMatthew Leingang
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsMatthew Leingang
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Matthew Leingang
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Matthew Leingang
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Matthew Leingang
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Matthew Leingang
 
Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Matthew Leingang
 
Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)Matthew Leingang
 
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)Matthew Leingang
 

More from Matthew Leingang (20)

Making Lesson Plans
Making Lesson PlansMaking Lesson Plans
Making Lesson Plans
 
Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choice
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper Assessments
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)
 
Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)
 
Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)
 
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
 

Recently uploaded

Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Jeffrey Haguewood
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...apidays
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businesspanagenda
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxRustici Software
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesrafiqahmad00786416
 
Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusZilliz
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWERMadyBayot
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...DianaGray10
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingEdi Saputra
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistandanishmna97
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024The Digital Insurer
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century educationjfdjdjcjdnsjd
 
Spring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUKSpring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUKJago de Vreede
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Zilliz
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Victor Rentea
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native ApplicationsWSO2
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Victor Rentea
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...Zilliz
 

Recently uploaded (20)

Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with Milvus
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistan
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Spring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUKSpring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUK
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 

Lesson 30: The Definite Integral

  • 1. Section 5.2 The Definite Integral Math 1a December 7, 2007 Announcements my next office hours: Monday 1–2, Tuesday 3–4 (SC 323) MT II is graded. You’ll get it back today Final seview sessions: Wed 1/9 and Thu 1/10 in Hall D, Sun 1/13 in Hall C, all 7–8:30pm Final tentatively scheduled for January 17
  • 2. Outline The definite integral as a limit Estimating the Definite Integral Properties of the integral Comparison Properties of the Integral
  • 3. The definite integral as a limit Definition If f is a function defined on [a, b], the definite integral of f from a to b is the number n b f (x) dx = lim f (ci ) ∆x ∆x→0 a i=1
  • 4. Notation/Terminology b f (x) dx a
  • 5. Notation/Terminology b f (x) dx a — integral sign (swoopy S)
  • 6. Notation/Terminology b f (x) dx a — integral sign (swoopy S) f (x) — integrand
  • 7. Notation/Terminology b f (x) dx a — integral sign (swoopy S) f (x) — integrand a and b — limits of integration (a is the lower limit and b the upper limit)
  • 8. Notation/Terminology b f (x) dx a — integral sign (swoopy S) f (x) — integrand a and b — limits of integration (a is the lower limit and b the upper limit) dx — ??? (a parenthesis? an infinitesimal? a variable?)
  • 9. Notation/Terminology b f (x) dx a — integral sign (swoopy S) f (x) — integrand a and b — limits of integration (a is the lower limit and b the upper limit) dx — ??? (a parenthesis? an infinitesimal? a variable?) The process of computing an integral is called integration
  • 10. The limit can be simplified Theorem If f is continuous on [a, b] or if f has only finitely many jump discontinuities, then f is integrable on [a, b]; that is, the definite b integral f (x) dx exists. a
  • 11. The limit can be simplified Theorem If f is continuous on [a, b] or if f has only finitely many jump discontinuities, then f is integrable on [a, b]; that is, the definite b integral f (x) dx exists. a Theorem If f is integrable on [a, b] then n b f (x) dx = lim f (xi )∆x, n→∞ a i=1 where b−a ∆x = and xi = a + i ∆x n
  • 12. Outline The definite integral as a limit Estimating the Definite Integral Properties of the integral Comparison Properties of the Integral
  • 13. Estimating the Definite Integral Given a partition of [a, b] into n pieces, let xi be the midpoint of ¯ [xi−1 , xi ]. Define n Mn = f (¯i ) ∆x. x i=1
  • 14. Example 1 4 Estimate dx using the midpoint rule and four divisions. 1 + x2 0
  • 15. Example 1 4 Estimate dx using the midpoint rule and four divisions. 1 + x2 0 Solution 1 1 3 The partition is 0 < < < < 1, so the estimate is 4 2 4 1 4 4 4 4 M4 = + + + 2 2 2 1 + (7/8)2 4 1 + (1/8) 1 + (3/8) 1 + (5/8)
  • 16. Example 1 4 Estimate dx using the midpoint rule and four divisions. 1 + x2 0 Solution 1 1 3 The partition is 0 < < < < 1, so the estimate is 4 2 4 1 4 4 4 4 M4 = + + + 2 2 2 1 + (7/8)2 4 1 + (1/8) 1 + (3/8) 1 + (5/8) 1 4 4 4 4 = + + + 4 65/64 73/64 89/64 113/64
  • 17. Example 1 4 Estimate dx using the midpoint rule and four divisions. 1 + x2 0 Solution 1 1 3 The partition is 0 < < < < 1, so the estimate is 4 2 4 1 4 4 4 4 M4 = + + + 2 2 2 1 + (7/8)2 4 1 + (1/8) 1 + (3/8) 1 + (5/8) 1 4 4 4 4 = + + + 4 65/64 73/64 89/64 113/64 150, 166, 784 ≈ 3.1468 = 47, 720, 465
  • 18. Outline The definite integral as a limit Estimating the Definite Integral Properties of the integral Comparison Properties of the Integral
  • 19. Properties of the integral Theorem (Additive Properties of the Integral) Let f and g be integrable functions on [a, b] and c a constant. Then b c dx = c(b − a) 1. a
  • 20. Properties of the integral Theorem (Additive Properties of the Integral) Let f and g be integrable functions on [a, b] and c a constant. Then b c dx = c(b − a) 1. a b b b 2. [f (x) + g (x)] dx = f (x) dx + g (x) dx. a a a
  • 21. Properties of the integral Theorem (Additive Properties of the Integral) Let f and g be integrable functions on [a, b] and c a constant. Then b c dx = c(b − a) 1. a b b b 2. [f (x) + g (x)] dx = f (x) dx + g (x) dx. a a a b b 3. cf (x) dx = c f (x) dx. a a
  • 22. Properties of the integral Theorem (Additive Properties of the Integral) Let f and g be integrable functions on [a, b] and c a constant. Then b c dx = c(b − a) 1. a b b b 2. [f (x) + g (x)] dx = f (x) dx + g (x) dx. a a a b b 3. cf (x) dx = c f (x) dx. a a b b b [f (x) − g (x)] dx = f (x) dx − 4. g (x) dx. a a a
  • 23. More Properties of the Integral Conventions: a b f (x) dx = − f (x) dx b a
  • 24. More Properties of the Integral Conventions: a b f (x) dx = − f (x) dx b a a f (x) dx = 0 a
  • 25. More Properties of the Integral Conventions: a b f (x) dx = − f (x) dx b a a f (x) dx = 0 a This allows us to have c b c 5. f (x) dx = f (x) dx + f (x) dx for all a, b, and c. a a b
  • 26. Example Suppose f and g are functions with 4 f (x) dx = 4 0 5 f (x) dx = 7 0 5 g (x) dx = 3. 0 Find 5 [2f (x) − g (x)] dx (a) 0 5 (b) f (x) dx. 4
  • 27. Solution We have (a) 5 5 5 [2f (x) − g (x)] dx = 2 f (x) dx − g (x) dx 0 0 0 = 2 · 7 − 3 = 11
  • 28. Solution We have (a) 5 5 5 [2f (x) − g (x)] dx = 2 f (x) dx − g (x) dx 0 0 0 = 2 · 7 − 3 = 11 (b) 5 5 4 f (x) dx − f (x) dx = f (x) dx 4 0 0 =7−4=3
  • 29. Outline The definite integral as a limit Estimating the Definite Integral Properties of the integral Comparison Properties of the Integral
  • 30. Comparison Properties of the Integral Theorem Let f and g be integrable functions on [a, b].
  • 31. Comparison Properties of the Integral Theorem Let f and g be integrable functions on [a, b]. 6. If f (x) ≥ 0 for all x in [a, b], then b f (x) dx ≥ 0 a
  • 32. Comparison Properties of the Integral Theorem Let f and g be integrable functions on [a, b]. 6. If f (x) ≥ 0 for all x in [a, b], then b f (x) dx ≥ 0 a 7. If f (x) ≥ g (x) for all x in [a, b], then b b f (x) dx ≥ g (x) dx a a
  • 33. Comparison Properties of the Integral Theorem Let f and g be integrable functions on [a, b]. 6. If f (x) ≥ 0 for all x in [a, b], then b f (x) dx ≥ 0 a 7. If f (x) ≥ g (x) for all x in [a, b], then b b f (x) dx ≥ g (x) dx a a 8. If m ≤ f (x) ≤ M for all x in [a, b], then b m(b − a) ≤ f (x) dx ≤ M(b − a) a
  • 34. Example 2 1 Estimate dx using the comparison properties. x 1
  • 35. Example 2 1 Estimate dx using the comparison properties. x 1 Solution Since 1 1 ≤x ≤ 2 1 for all x in [1, 2], we have 2 1 1 ·1≤ dx ≤ 1 · 1 2 x 1