SlideShare ist ein Scribd-Unternehmen logo
1 von 40
Downloaden Sie, um offline zu lesen
Section 2.4
                        Continuity

                           Math 1a


                       February 6, 2008


Announcements
   Day-by-day calendar is on the course website
   The MQC is open: Sun–Thu 8:30pm–10:30pm, SC B-09
   Homework for Friday 2/8: practice 2.4: 1, 3, 7, 13, 15, 17,
   35, 37, 41, 47, 49; turn in 2.4: 4, 8, 16, 24, 28, 38
   Homework for Monday 2/11: 2.2.28, 2.3.30, 2.4.34
Outline


   Hatsumon

   Continuity
      Continuous functions
      Discontinuities

   The Intermediate Value Theorem
      Statement
      Illustration
      Applications

   Return to the questions
Questions



   True or False
   Right now there are two points on opposite sides of the Earth with
   exactly the same temperature.
Questions



   True or False
   Right now there are two points on opposite sides of the Earth with
   exactly the same temperature.

   True or False
   At one point in your life your height in inches equaled your weight
   in pounds.
Questions



   True or False
   Right now there are two points on opposite sides of the Earth with
   exactly the same temperature.

   True or False
   At one point in your life your height in inches equaled your weight
   in pounds.

   True or False
   At one point in your life you were exactly three feet tall.
Outline


   Hatsumon

   Continuity
      Continuous functions
      Discontinuities

   The Intermediate Value Theorem
      Statement
      Illustration
      Applications

   Return to the questions
Direct Substitution Property




   Theorem (The Direct Substitution Property)
   If f is a polynomial or a rational function and a is in the domain of
   f , then
                              lim f (x) = f (a)
                             x→a
Definition of Continuity




   Definition
   Let f be a function defined near a. We say that f is continuous at
   a if
                            lim f (x) = f (a).
                           x→a
Free Theorems




  Theorem
   (a) Any polynomial is continuous everywhere; that is, it is
       continuous on R = (−∞, ∞).
  (b) Any rational function is continuous wherever it is defined; that
      is, it is continuous on its domain.
Showing a function is continuous


   Example
                 √
   Let f (x) =       4x + 1. Show that f is continuous at 2.
Showing a function is continuous


   Example
                 √
   Let f (x) =       4x + 1. Show that f is continuous at 2.

   Solution
   We have
                                              √
                           lim f (x) = lim        4x + 1
                           x→a          x→2

                                    =       lim (4x + 1)
                                            x→2
                                        √
                                    =       9 = 3.

   Each step comes from the limit laws.
Showing a function is continuous


   Example
                 √
   Let f (x) =       4x + 1. Show that f is continuous at 2.

   Solution
   We have
                                              √
                           lim f (x) = lim        4x + 1
                           x→a          x→2

                                    =       lim (4x + 1)
                                            x→2
                                        √
                                    =       9 = 3.

   Each step comes from the limit laws.
   In fact, f is continuous on its whole domain, which is − 1 , ∞ .
                                                            4
The Limit Laws give Continuity Laws



   Theorem
   If f and g are continuous at a and c is a constant, then the
   following functions are also continuous at a:
    1. f + g
    2. f − g
    3. cf
    4. fg
       f
    5.    (if g (a) = 0)
       g
Transcendental functions are continuous, too




   Theorem
   The following functions are continuous wherever they are defined:
    1. sin, cos, tan, cot sec, csc
    2. x → ax , loga , ln
    3. sin−1 , tan−1 , sec−1
What could go wrong?




  In what ways could a function f fail to be continuous at a point a?
  Look again at the definition:

                           lim f (x) = f (a)
                           x→a
Pitfall #1
   Example
   Let
                                x2    if 0 ≤ x ≤ 1
                      f (x) =
                                2x    if 1 < x ≤ 2
   At which points is f continuous?
Pitfall #1: The limit does not exist
   Example
   Let
                                  x2    if 0 ≤ x ≤ 1
                        f (x) =
                                  2x    if 1 < x ≤ 2
   At which points is f continuous?

   Solution
   At any point a in [0, 2] besides 1, lim f (x) = f (a) because f is
                                       x→a
   represented by a polynomial near a, and polynomials have the
   direct substitution property. However,

                     lim f (x) = lim x 2 = 12 = 1
                    x→1−          x→1−
                      lim f (x) = lim+ 2x = 2(1) = 2
                     x→1+         x→1

   So f has no limit at 1. Therefore f is not continuous at 1.
Pitfall #2



   Example
   Let
                                  x 2 + 2x + 1
                          f (x) =
                                      x +1
   At which points is f continuous?
Pitfall #2: The function has no value



   Example
   Let
                                  x 2 + 2x + 1
                          f (x) =
                                      x +1
   At which points is f continuous?

   Solution
   Because f is rational, it is continuous on its whole domain. Note
   that −1 is not in the domain of f , so f is not continuous there.
Pitfall #3



   Example
   Let
                                  46   if x = 1
                        f (x) =
                                  π    if x = 1
   At which points is f continuous?
Pitfall #3: function value = limit



   Example
   Let
                                   46   if x = 1
                         f (x) =
                                   π    if x = 1
   At which points is f continuous?

   Solution
   f is not continuous at 1 because f (1) = π but lim f (x) = 46.
                                                   x→1
Special types of discontinuites




   removable discontinuity The limit lim f (x) exists, but f is not
                                     x→a
                defined at a or its value at a is not equal to the limit
                at a.
   jump discontinuity The limits lim f (x) and lim+ f (x) exist, but
                                  x→a−            x→a
                are different. f (a) is one of these limits.
Special types of discontinuites




   removable discontinuity The limit lim f (x) exists, but f is not
                                     x→a
                defined at a or its value at a is not equal to the limit
                at a.
   jump discontinuity The limits lim f (x) and lim+ f (x) exist, but
                                   x→a−            x→a
                 are different. f (a) is one of these limits.
   The greatest integer function f (x) = [[x]] has jump discontinuities.
Outline


   Hatsumon

   Continuity
      Continuous functions
      Discontinuities

   The Intermediate Value Theorem
      Statement
      Illustration
      Applications

   Return to the questions
A Big Time Theorem




  Theorem (The Intermediate Value Theorem)
  Suppose that f is continuous on the closed interval [a, b] and let N
  be any number between f (a) and f (b), where f (a) = f (b). Then
  there exists a number c in (a, b) such that f (c) = N.
Illustrating the IVT



       f (x)




                       x
Illustrating the IVT
   Suppose that f is continuous on the closed interval [a, b]



       f (x)




                                                                x
Illustrating the IVT
   Suppose that f is continuous on the closed interval [a, b]



        f (x)


    f (b)




    f (a)




                       a                               b        x
Illustrating the IVT
   Suppose that f is continuous on the closed interval [a, b] and let N
   be any number between f (a) and f (b), where f (a) = f (b).


        f (x)


    f (b)

      N

    f (a)




                       a                              b       x
Illustrating the IVT
   Suppose that f is continuous on the closed interval [a, b] and let N
   be any number between f (a) and f (b), where f (a) = f (b). Then
   there exists a number c in (a, b) such that f (c) = N.
        f (x)


    f (b)

      N

    f (a)




                       a      c                       b       x
Illustrating the IVT
   Suppose that f is continuous on the closed interval [a, b] and let N
   be any number between f (a) and f (b), where f (a) = f (b). Then
   there exists a number c in (a, b) such that f (c) = N.
        f (x)


    f (b)

      N

    f (a)




                       a                              b       x
Illustrating the IVT
   Suppose that f is continuous on the closed interval [a, b] and let N
   be any number between f (a) and f (b), where f (a) = f (b). Then
   there exists a number c in (a, b) such that f (c) = N.
        f (x)


    f (b)

      N

    f (a)




                       a c1    c2                 c3 b        x
Using the IVT


   Example
   Prove that the square root of two exists.
Using the IVT


   Example
   Prove that the square root of two exists.

   Proof.
   Let f (x) = x 2 , a continuous function on [1, 2].
Using the IVT


   Example
   Prove that the square root of two exists.

   Proof.
   Let f (x) = x 2 , a continuous function on [1, 2]. Note f (1) = 1 and
   f (2) = 4. Since 2 is between 1 and 4, there exists a point c in
   (1, 2) such that
                               f (c) = c 2 = 2.
Using the IVT


   Example
   Prove that the square root of two exists.

   Proof.
   Let f (x) = x 2 , a continuous function on [1, 2]. Note f (1) = 1 and
   f (2) = 4. Since 2 is between 1 and 4, there exists a point c in
   (1, 2) such that
                               f (c) = c 2 = 2.


   In fact, we can “narrow in” on the square root of 2 by the method
   of bisections.
Outline


   Hatsumon

   Continuity
      Continuous functions
      Discontinuities

   The Intermediate Value Theorem
      Statement
      Illustration
      Applications

   Return to the questions
Back to the Questions



   True or False
   At one point in your life you were exactly three feet tall.
Back to the Questions



   True or False
   At one point in your life you were exactly three feet tall.

   True or False
   At one point in your life your height in inches equaled your weight
   in pounds.
Back to the Questions



   True or False
   At one point in your life you were exactly three feet tall.

   True or False
   At one point in your life your height in inches equaled your weight
   in pounds.

   True or False
   Right now there are two points on opposite sides of the Earth with
   exactly the same temperature.

Weitere ähnliche Inhalte

Was ist angesagt?

transformation of functions.ppt
transformation of functions.ppttransformation of functions.ppt
transformation of functions.pptAsad672922
 
Integration of Trigonometric Functions
Integration of Trigonometric FunctionsIntegration of Trigonometric Functions
Integration of Trigonometric FunctionsRaymundo Raymund
 
1.1.1C Midpoint and Distance Formulas
1.1.1C Midpoint and Distance Formulas1.1.1C Midpoint and Distance Formulas
1.1.1C Midpoint and Distance Formulassmiller5
 
Math - Operations on Functions, Kinds of Functions
Math - Operations on Functions, Kinds of FunctionsMath - Operations on Functions, Kinds of Functions
Math - Operations on Functions, Kinds of FunctionsChuckie Balbuena
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Matthew Leingang
 
Lesson 30: Integration by Parts
Lesson 30: Integration by PartsLesson 30: Integration by Parts
Lesson 30: Integration by PartsMatthew Leingang
 
Limits and continuity[1]
Limits and continuity[1]Limits and continuity[1]
Limits and continuity[1]indu thakur
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Composition and inverse of functions
Composition  and inverse of functionsComposition  and inverse of functions
Composition and inverse of functionsCharliez Jane Soriano
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuityPume Ananda
 
Applied Calculus: Continuity and Discontinuity of Function
Applied Calculus: Continuity and Discontinuity of FunctionApplied Calculus: Continuity and Discontinuity of Function
Applied Calculus: Continuity and Discontinuity of Functionbaetulilm
 
Limits and continuity powerpoint
Limits and continuity powerpointLimits and continuity powerpoint
Limits and continuity powerpointcanalculus
 
Lesson 3: The Limit of a Function
Lesson 3: The Limit of a FunctionLesson 3: The Limit of a Function
Lesson 3: The Limit of a FunctionMatthew Leingang
 
Rational Exponents
Rational ExponentsRational Exponents
Rational ExponentsPhil Saraspe
 
Rational Root Theorem
Rational Root TheoremRational Root Theorem
Rational Root Theoremcmorgancavo
 
Differentiation using First Principle - By Mohd Noor Abdul Hamid
Differentiation using First Principle  - By Mohd Noor Abdul HamidDifferentiation using First Principle  - By Mohd Noor Abdul Hamid
Differentiation using First Principle - By Mohd Noor Abdul HamidMohd. Noor Abdul Hamid
 
Proving trigonometric identities
Proving trigonometric identitiesProving trigonometric identities
Proving trigonometric identitiesFroyd Wess
 

Was ist angesagt? (20)

Lesson 3: Limit Laws
Lesson 3: Limit LawsLesson 3: Limit Laws
Lesson 3: Limit Laws
 
transformation of functions.ppt
transformation of functions.ppttransformation of functions.ppt
transformation of functions.ppt
 
Integration of Trigonometric Functions
Integration of Trigonometric FunctionsIntegration of Trigonometric Functions
Integration of Trigonometric Functions
 
1.1.1C Midpoint and Distance Formulas
1.1.1C Midpoint and Distance Formulas1.1.1C Midpoint and Distance Formulas
1.1.1C Midpoint and Distance Formulas
 
Math - Operations on Functions, Kinds of Functions
Math - Operations on Functions, Kinds of FunctionsMath - Operations on Functions, Kinds of Functions
Math - Operations on Functions, Kinds of Functions
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
 
Lesson 30: Integration by Parts
Lesson 30: Integration by PartsLesson 30: Integration by Parts
Lesson 30: Integration by Parts
 
Limits and continuity[1]
Limits and continuity[1]Limits and continuity[1]
Limits and continuity[1]
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Composition and inverse of functions
Composition  and inverse of functionsComposition  and inverse of functions
Composition and inverse of functions
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuity
 
Limits, Continuity & Differentiation (Theory)
Limits, Continuity & Differentiation (Theory)Limits, Continuity & Differentiation (Theory)
Limits, Continuity & Differentiation (Theory)
 
Applied Calculus: Continuity and Discontinuity of Function
Applied Calculus: Continuity and Discontinuity of FunctionApplied Calculus: Continuity and Discontinuity of Function
Applied Calculus: Continuity and Discontinuity of Function
 
Limits and continuity powerpoint
Limits and continuity powerpointLimits and continuity powerpoint
Limits and continuity powerpoint
 
Lesson 3: The Limit of a Function
Lesson 3: The Limit of a FunctionLesson 3: The Limit of a Function
Lesson 3: The Limit of a Function
 
Rational Exponents
Rational ExponentsRational Exponents
Rational Exponents
 
Rational Root Theorem
Rational Root TheoremRational Root Theorem
Rational Root Theorem
 
Differentiation using First Principle - By Mohd Noor Abdul Hamid
Differentiation using First Principle  - By Mohd Noor Abdul HamidDifferentiation using First Principle  - By Mohd Noor Abdul Hamid
Differentiation using First Principle - By Mohd Noor Abdul Hamid
 
Proving trigonometric identities
Proving trigonometric identitiesProving trigonometric identities
Proving trigonometric identities
 
Factor theorem
Factor theoremFactor theorem
Factor theorem
 

Andere mochten auch

Lesson 1: The Tangent and Velocity Problems
Lesson 1: The Tangent and Velocity ProblemsLesson 1: The Tangent and Velocity Problems
Lesson 1: The Tangent and Velocity ProblemsMatthew Leingang
 
Lesson34 Intro To Game Theory Slides
Lesson34    Intro To  Game  Theory SlidesLesson34    Intro To  Game  Theory Slides
Lesson34 Intro To Game Theory SlidesMatthew Leingang
 
Final Exam Review (Integration)
Final Exam Review (Integration)Final Exam Review (Integration)
Final Exam Review (Integration)Matthew Leingang
 
Lesson 6: The derivative as a function
Lesson 6: The derivative as a functionLesson 6: The derivative as a function
Lesson 6: The derivative as a functionMatthew Leingang
 
Lesson 5: Tangents, Velocity, the Derivative
Lesson 5: Tangents, Velocity, the DerivativeLesson 5: Tangents, Velocity, the Derivative
Lesson 5: Tangents, Velocity, the DerivativeMatthew Leingang
 
Lesson 32: Simplex Method II
Lesson 32: Simplex Method IILesson 32: Simplex Method II
Lesson 32: Simplex Method IIMatthew Leingang
 
Lesson 1: Coordinates and Distance
Lesson 1: Coordinates and DistanceLesson 1: Coordinates and Distance
Lesson 1: Coordinates and DistanceMatthew Leingang
 
Surface treatment technologies
Surface treatment technologiesSurface treatment technologies
Surface treatment technologiesAhmed Khalaf
 
Lesson 3: The Cross Product
Lesson 3: The Cross ProductLesson 3: The Cross Product
Lesson 3: The Cross ProductMatthew Leingang
 
Lesson 31: The Simplex Method, I
Lesson 31: The Simplex Method, ILesson 31: The Simplex Method, I
Lesson 31: The Simplex Method, IMatthew Leingang
 
Lesson 7: What does f' say about f?
Lesson 7: What does f' say about f?Lesson 7: What does f' say about f?
Lesson 7: What does f' say about f?Matthew Leingang
 
Lesson 5: Functions and surfaces
Lesson 5: Functions and surfacesLesson 5: Functions and surfaces
Lesson 5: Functions and surfacesMatthew Leingang
 
Lesson 4: Limits Involving Infinity
Lesson 4: Limits Involving InfinityLesson 4: Limits Involving Infinity
Lesson 4: Limits Involving InfinityMatthew Leingang
 
Lesson 29: Linear Programming I
Lesson 29: Linear Programming ILesson 29: Linear Programming I
Lesson 29: Linear Programming IMatthew Leingang
 
F and G Taylor Series Solutions to the Circular Restricted Three-Body Problem
F and G Taylor Series Solutions to the Circular Restricted Three-Body ProblemF and G Taylor Series Solutions to the Circular Restricted Three-Body Problem
F and G Taylor Series Solutions to the Circular Restricted Three-Body ProblemEtienne Pellegrini
 
Lesson 2: Limits and Limit Laws
Lesson 2: Limits and Limit LawsLesson 2: Limits and Limit Laws
Lesson 2: Limits and Limit LawsMatthew Leingang
 
Lesson 4: Lines, Planes, and the Distance Formula
Lesson 4: Lines, Planes, and the Distance FormulaLesson 4: Lines, Planes, and the Distance Formula
Lesson 4: Lines, Planes, and the Distance FormulaMatthew Leingang
 
Taylor Polynomials and Series
Taylor Polynomials and SeriesTaylor Polynomials and Series
Taylor Polynomials and SeriesMatthew Leingang
 

Andere mochten auch (20)

Lesson 1: The Tangent and Velocity Problems
Lesson 1: The Tangent and Velocity ProblemsLesson 1: The Tangent and Velocity Problems
Lesson 1: The Tangent and Velocity Problems
 
Lesson34 Intro To Game Theory Slides
Lesson34    Intro To  Game  Theory SlidesLesson34    Intro To  Game  Theory Slides
Lesson34 Intro To Game Theory Slides
 
Final Exam Review (Integration)
Final Exam Review (Integration)Final Exam Review (Integration)
Final Exam Review (Integration)
 
Lesson 6: The derivative as a function
Lesson 6: The derivative as a functionLesson 6: The derivative as a function
Lesson 6: The derivative as a function
 
Lesson 5: Tangents, Velocity, the Derivative
Lesson 5: Tangents, Velocity, the DerivativeLesson 5: Tangents, Velocity, the Derivative
Lesson 5: Tangents, Velocity, the Derivative
 
Lesson 32: Simplex Method II
Lesson 32: Simplex Method IILesson 32: Simplex Method II
Lesson 32: Simplex Method II
 
Introduction to Math 1a
Introduction to Math 1aIntroduction to Math 1a
Introduction to Math 1a
 
Lesson 1: Coordinates and Distance
Lesson 1: Coordinates and DistanceLesson 1: Coordinates and Distance
Lesson 1: Coordinates and Distance
 
Surface treatment technologies
Surface treatment technologiesSurface treatment technologies
Surface treatment technologies
 
Lesson 3: The Cross Product
Lesson 3: The Cross ProductLesson 3: The Cross Product
Lesson 3: The Cross Product
 
Review for final exam
Review for final examReview for final exam
Review for final exam
 
Lesson 31: The Simplex Method, I
Lesson 31: The Simplex Method, ILesson 31: The Simplex Method, I
Lesson 31: The Simplex Method, I
 
Lesson 7: What does f' say about f?
Lesson 7: What does f' say about f?Lesson 7: What does f' say about f?
Lesson 7: What does f' say about f?
 
Lesson 5: Functions and surfaces
Lesson 5: Functions and surfacesLesson 5: Functions and surfaces
Lesson 5: Functions and surfaces
 
Lesson 4: Limits Involving Infinity
Lesson 4: Limits Involving InfinityLesson 4: Limits Involving Infinity
Lesson 4: Limits Involving Infinity
 
Lesson 29: Linear Programming I
Lesson 29: Linear Programming ILesson 29: Linear Programming I
Lesson 29: Linear Programming I
 
F and G Taylor Series Solutions to the Circular Restricted Three-Body Problem
F and G Taylor Series Solutions to the Circular Restricted Three-Body ProblemF and G Taylor Series Solutions to the Circular Restricted Three-Body Problem
F and G Taylor Series Solutions to the Circular Restricted Three-Body Problem
 
Lesson 2: Limits and Limit Laws
Lesson 2: Limits and Limit LawsLesson 2: Limits and Limit Laws
Lesson 2: Limits and Limit Laws
 
Lesson 4: Lines, Planes, and the Distance Formula
Lesson 4: Lines, Planes, and the Distance FormulaLesson 4: Lines, Planes, and the Distance Formula
Lesson 4: Lines, Planes, and the Distance Formula
 
Taylor Polynomials and Series
Taylor Polynomials and SeriesTaylor Polynomials and Series
Taylor Polynomials and Series
 

Ähnlich wie Lesson 3: Continuity

Lesson05 Continuity Slides+Notes
Lesson05    Continuity Slides+NotesLesson05    Continuity Slides+Notes
Lesson05 Continuity Slides+NotesMatthew Leingang
 
Lesson05 Continuity Slides+Notes
Lesson05    Continuity Slides+NotesLesson05    Continuity Slides+Notes
Lesson05 Continuity Slides+NotesMatthew Leingang
 
Lesson 5: Continuity (Section 21 slides)
Lesson 5: Continuity (Section 21 slides)Lesson 5: Continuity (Section 21 slides)
Lesson 5: Continuity (Section 21 slides)Matthew Leingang
 
Lesson 5: Continuity (Section 21 slides)
Lesson 5: Continuity (Section 21 slides)Lesson 5: Continuity (Section 21 slides)
Lesson 5: Continuity (Section 21 slides)Mel Anthony Pepito
 
Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)Matthew Leingang
 
Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)Mel Anthony Pepito
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Mel Anthony Pepito
 
Derivatives Lesson Oct 19
Derivatives Lesson  Oct 19Derivatives Lesson  Oct 19
Derivatives Lesson Oct 19ingroy
 
Lesson 5: Continuity (slides)
Lesson 5: Continuity (slides)Lesson 5: Continuity (slides)
Lesson 5: Continuity (slides)Matthew Leingang
 
Lesson 5: Continuity (Section 41 slides)
Lesson 5: Continuity (Section 41 slides)Lesson 5: Continuity (Section 41 slides)
Lesson 5: Continuity (Section 41 slides)Mel Anthony Pepito
 
Lesson 5: Continuity (Section 41 slides)
Lesson 5: Continuity (Section 41 slides)Lesson 5: Continuity (Section 41 slides)
Lesson 5: Continuity (Section 41 slides)Matthew Leingang
 
dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd
dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd
ddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddKarmaX1
 

Ähnlich wie Lesson 3: Continuity (20)

Lesson05 Continuity Slides+Notes
Lesson05    Continuity Slides+NotesLesson05    Continuity Slides+Notes
Lesson05 Continuity Slides+Notes
 
Lesson 5: Continuity
Lesson 5: ContinuityLesson 5: Continuity
Lesson 5: Continuity
 
Lesson05 Continuity Slides+Notes
Lesson05    Continuity Slides+NotesLesson05    Continuity Slides+Notes
Lesson05 Continuity Slides+Notes
 
Lesson 5: Continuity
Lesson 5: ContinuityLesson 5: Continuity
Lesson 5: Continuity
 
Lesson 5: Continuity
Lesson 5: ContinuityLesson 5: Continuity
Lesson 5: Continuity
 
Lesson 5: Continuity (Section 21 slides)
Lesson 5: Continuity (Section 21 slides)Lesson 5: Continuity (Section 21 slides)
Lesson 5: Continuity (Section 21 slides)
 
Lesson 5: Continuity (Section 21 slides)
Lesson 5: Continuity (Section 21 slides)Lesson 5: Continuity (Section 21 slides)
Lesson 5: Continuity (Section 21 slides)
 
Limit and continuity
Limit and continuityLimit and continuity
Limit and continuity
 
Lesson 5: Continuity
Lesson 5: ContinuityLesson 5: Continuity
Lesson 5: Continuity
 
Lesson 5: Continuity
Lesson 5: ContinuityLesson 5: Continuity
Lesson 5: Continuity
 
Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)
 
Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)
 
Derivatives Lesson Oct 19
Derivatives Lesson  Oct 19Derivatives Lesson  Oct 19
Derivatives Lesson Oct 19
 
Lesson 5: Continuity (slides)
Lesson 5: Continuity (slides)Lesson 5: Continuity (slides)
Lesson 5: Continuity (slides)
 
Lesson 5: Continuity (slides)
Lesson 5: Continuity (slides)Lesson 5: Continuity (slides)
Lesson 5: Continuity (slides)
 
Lesson 5: Continuity (Section 41 slides)
Lesson 5: Continuity (Section 41 slides)Lesson 5: Continuity (Section 41 slides)
Lesson 5: Continuity (Section 41 slides)
 
Lesson 5: Continuity (Section 41 slides)
Lesson 5: Continuity (Section 41 slides)Lesson 5: Continuity (Section 41 slides)
Lesson 5: Continuity (Section 41 slides)
 
dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd
dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd
dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd
 

Mehr von Matthew Leingang

Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceMatthew Leingang
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsMatthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Matthew Leingang
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Matthew Leingang
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Matthew Leingang
 
Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Matthew Leingang
 
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)Matthew Leingang
 
Lesson 18: Maximum and Minimum Values (handout)
Lesson 18: Maximum and Minimum Values (handout)Lesson 18: Maximum and Minimum Values (handout)
Lesson 18: Maximum and Minimum Values (handout)Matthew Leingang
 

Mehr von Matthew Leingang (20)

Making Lesson Plans
Making Lesson PlansMaking Lesson Plans
Making Lesson Plans
 
Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choice
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper Assessments
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)
 
Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)
 
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
 
Lesson 18: Maximum and Minimum Values (handout)
Lesson 18: Maximum and Minimum Values (handout)Lesson 18: Maximum and Minimum Values (handout)
Lesson 18: Maximum and Minimum Values (handout)
 

Kürzlich hochgeladen

TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxLoriGlavin3
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESmohitsingh558521
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
Sample pptx for embedding into website for demo
Sample pptx for embedding into website for demoSample pptx for embedding into website for demo
Sample pptx for embedding into website for demoHarshalMandlekar2
 
Training state-of-the-art general text embedding
Training state-of-the-art general text embeddingTraining state-of-the-art general text embedding
Training state-of-the-art general text embeddingZilliz
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Manik S Magar
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rick Flair
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxBkGupta21
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxhariprasad279825
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionDilum Bandara
 

Kürzlich hochgeladen (20)

TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
Sample pptx for embedding into website for demo
Sample pptx for embedding into website for demoSample pptx for embedding into website for demo
Sample pptx for embedding into website for demo
 
Training state-of-the-art general text embedding
Training state-of-the-art general text embeddingTraining state-of-the-art general text embedding
Training state-of-the-art general text embedding
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptx
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptx
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An Introduction
 

Lesson 3: Continuity

  • 1. Section 2.4 Continuity Math 1a February 6, 2008 Announcements Day-by-day calendar is on the course website The MQC is open: Sun–Thu 8:30pm–10:30pm, SC B-09 Homework for Friday 2/8: practice 2.4: 1, 3, 7, 13, 15, 17, 35, 37, 41, 47, 49; turn in 2.4: 4, 8, 16, 24, 28, 38 Homework for Monday 2/11: 2.2.28, 2.3.30, 2.4.34
  • 2. Outline Hatsumon Continuity Continuous functions Discontinuities The Intermediate Value Theorem Statement Illustration Applications Return to the questions
  • 3. Questions True or False Right now there are two points on opposite sides of the Earth with exactly the same temperature.
  • 4. Questions True or False Right now there are two points on opposite sides of the Earth with exactly the same temperature. True or False At one point in your life your height in inches equaled your weight in pounds.
  • 5. Questions True or False Right now there are two points on opposite sides of the Earth with exactly the same temperature. True or False At one point in your life your height in inches equaled your weight in pounds. True or False At one point in your life you were exactly three feet tall.
  • 6. Outline Hatsumon Continuity Continuous functions Discontinuities The Intermediate Value Theorem Statement Illustration Applications Return to the questions
  • 7. Direct Substitution Property Theorem (The Direct Substitution Property) If f is a polynomial or a rational function and a is in the domain of f , then lim f (x) = f (a) x→a
  • 8. Definition of Continuity Definition Let f be a function defined near a. We say that f is continuous at a if lim f (x) = f (a). x→a
  • 9. Free Theorems Theorem (a) Any polynomial is continuous everywhere; that is, it is continuous on R = (−∞, ∞). (b) Any rational function is continuous wherever it is defined; that is, it is continuous on its domain.
  • 10. Showing a function is continuous Example √ Let f (x) = 4x + 1. Show that f is continuous at 2.
  • 11. Showing a function is continuous Example √ Let f (x) = 4x + 1. Show that f is continuous at 2. Solution We have √ lim f (x) = lim 4x + 1 x→a x→2 = lim (4x + 1) x→2 √ = 9 = 3. Each step comes from the limit laws.
  • 12. Showing a function is continuous Example √ Let f (x) = 4x + 1. Show that f is continuous at 2. Solution We have √ lim f (x) = lim 4x + 1 x→a x→2 = lim (4x + 1) x→2 √ = 9 = 3. Each step comes from the limit laws. In fact, f is continuous on its whole domain, which is − 1 , ∞ . 4
  • 13. The Limit Laws give Continuity Laws Theorem If f and g are continuous at a and c is a constant, then the following functions are also continuous at a: 1. f + g 2. f − g 3. cf 4. fg f 5. (if g (a) = 0) g
  • 14. Transcendental functions are continuous, too Theorem The following functions are continuous wherever they are defined: 1. sin, cos, tan, cot sec, csc 2. x → ax , loga , ln 3. sin−1 , tan−1 , sec−1
  • 15. What could go wrong? In what ways could a function f fail to be continuous at a point a? Look again at the definition: lim f (x) = f (a) x→a
  • 16. Pitfall #1 Example Let x2 if 0 ≤ x ≤ 1 f (x) = 2x if 1 < x ≤ 2 At which points is f continuous?
  • 17. Pitfall #1: The limit does not exist Example Let x2 if 0 ≤ x ≤ 1 f (x) = 2x if 1 < x ≤ 2 At which points is f continuous? Solution At any point a in [0, 2] besides 1, lim f (x) = f (a) because f is x→a represented by a polynomial near a, and polynomials have the direct substitution property. However, lim f (x) = lim x 2 = 12 = 1 x→1− x→1− lim f (x) = lim+ 2x = 2(1) = 2 x→1+ x→1 So f has no limit at 1. Therefore f is not continuous at 1.
  • 18. Pitfall #2 Example Let x 2 + 2x + 1 f (x) = x +1 At which points is f continuous?
  • 19. Pitfall #2: The function has no value Example Let x 2 + 2x + 1 f (x) = x +1 At which points is f continuous? Solution Because f is rational, it is continuous on its whole domain. Note that −1 is not in the domain of f , so f is not continuous there.
  • 20. Pitfall #3 Example Let 46 if x = 1 f (x) = π if x = 1 At which points is f continuous?
  • 21. Pitfall #3: function value = limit Example Let 46 if x = 1 f (x) = π if x = 1 At which points is f continuous? Solution f is not continuous at 1 because f (1) = π but lim f (x) = 46. x→1
  • 22. Special types of discontinuites removable discontinuity The limit lim f (x) exists, but f is not x→a defined at a or its value at a is not equal to the limit at a. jump discontinuity The limits lim f (x) and lim+ f (x) exist, but x→a− x→a are different. f (a) is one of these limits.
  • 23. Special types of discontinuites removable discontinuity The limit lim f (x) exists, but f is not x→a defined at a or its value at a is not equal to the limit at a. jump discontinuity The limits lim f (x) and lim+ f (x) exist, but x→a− x→a are different. f (a) is one of these limits. The greatest integer function f (x) = [[x]] has jump discontinuities.
  • 24. Outline Hatsumon Continuity Continuous functions Discontinuities The Intermediate Value Theorem Statement Illustration Applications Return to the questions
  • 25. A Big Time Theorem Theorem (The Intermediate Value Theorem) Suppose that f is continuous on the closed interval [a, b] and let N be any number between f (a) and f (b), where f (a) = f (b). Then there exists a number c in (a, b) such that f (c) = N.
  • 27. Illustrating the IVT Suppose that f is continuous on the closed interval [a, b] f (x) x
  • 28. Illustrating the IVT Suppose that f is continuous on the closed interval [a, b] f (x) f (b) f (a) a b x
  • 29. Illustrating the IVT Suppose that f is continuous on the closed interval [a, b] and let N be any number between f (a) and f (b), where f (a) = f (b). f (x) f (b) N f (a) a b x
  • 30. Illustrating the IVT Suppose that f is continuous on the closed interval [a, b] and let N be any number between f (a) and f (b), where f (a) = f (b). Then there exists a number c in (a, b) such that f (c) = N. f (x) f (b) N f (a) a c b x
  • 31. Illustrating the IVT Suppose that f is continuous on the closed interval [a, b] and let N be any number between f (a) and f (b), where f (a) = f (b). Then there exists a number c in (a, b) such that f (c) = N. f (x) f (b) N f (a) a b x
  • 32. Illustrating the IVT Suppose that f is continuous on the closed interval [a, b] and let N be any number between f (a) and f (b), where f (a) = f (b). Then there exists a number c in (a, b) such that f (c) = N. f (x) f (b) N f (a) a c1 c2 c3 b x
  • 33. Using the IVT Example Prove that the square root of two exists.
  • 34. Using the IVT Example Prove that the square root of two exists. Proof. Let f (x) = x 2 , a continuous function on [1, 2].
  • 35. Using the IVT Example Prove that the square root of two exists. Proof. Let f (x) = x 2 , a continuous function on [1, 2]. Note f (1) = 1 and f (2) = 4. Since 2 is between 1 and 4, there exists a point c in (1, 2) such that f (c) = c 2 = 2.
  • 36. Using the IVT Example Prove that the square root of two exists. Proof. Let f (x) = x 2 , a continuous function on [1, 2]. Note f (1) = 1 and f (2) = 4. Since 2 is between 1 and 4, there exists a point c in (1, 2) such that f (c) = c 2 = 2. In fact, we can “narrow in” on the square root of 2 by the method of bisections.
  • 37. Outline Hatsumon Continuity Continuous functions Discontinuities The Intermediate Value Theorem Statement Illustration Applications Return to the questions
  • 38. Back to the Questions True or False At one point in your life you were exactly three feet tall.
  • 39. Back to the Questions True or False At one point in your life you were exactly three feet tall. True or False At one point in your life your height in inches equaled your weight in pounds.
  • 40. Back to the Questions True or False At one point in your life you were exactly three feet tall. True or False At one point in your life your height in inches equaled your weight in pounds. True or False Right now there are two points on opposite sides of the Earth with exactly the same temperature.