Anzeige
Definicion de conjuntos leiberth sanchez
Definicion de conjuntos leiberth sanchez
Definicion de conjuntos leiberth sanchez
Definicion de conjuntos leiberth sanchez
Anzeige
Definicion de conjuntos leiberth sanchez
Definicion de conjuntos leiberth sanchez
Definicion de conjuntos leiberth sanchez
Nächste SlideShare
Conjuntos elianny meloConjuntos elianny melo
Wird geladen in ... 3
1 von 7
Anzeige

Más contenido relacionado

Anzeige

Definicion de conjuntos leiberth sanchez

  1. República Bolivariana de Venezuela Universidad Politécnica Territorial ¨ Andrés Eloy Blanco ¨ Ministerio del P.P para la Educación Universitaria, Ciencia y Tecnología Barquisimeto – Estado Lara Integrante: Leiberth Sánchez Cedula: 26.750.694
  2. Un tipo de conjunto es una colección bien definida de objetos, entendiendo que dichos objetos pueden ser cualquier cosa: números, personas, letras, otros conjuntos, etc. Algunos ejemplos son: A es el conjunto de los números naturales menores que 5. B es el conjunto de los colores verde, blanco y rojo. C es el conjunto de las vocales a, e, i, o y u. D es el conjunto de los palos de la baraja francesa. En las matemáticas, no podemos definir a un conjunto, por ser un concepto primitivo, pero hacemos abstracción y lo pensamos como una colección desordenada de objetos, los objetos de un conjunto pueden ser cualquier cosa siempre que tengan una relación entre ellos, a los objetos de un conjunto se les llama elementos de dicho conjunto, por lo tanto un conjunto contiene a sus elementos. Se representan con una letra mayúscula y a los elementos o miembros de ese conjunto se les mete entre llaves corchetes o paréntesis. ({,}). Dos conjuntos se pueden combinar de muchas maneras distintas, por ejemplo, teniendo un conjunto de la gente que juega al fútbol y otro de la gente que juega a baloncesto podemos hacer muchas combinaciones como el conjunto de personas que juegan a fútbol o baloncesto, las que juegan a fútbol y baloncesto, las que no juegan a baloncesto, etc.
  3. El conjunto de los números reales (denotado por incluye tanto a los números racionales, (positivos, negativos y el cero) como a los números irracionales;1 y en otro enfoque, trascendentes y algebraicos. Los irracionales y los trascendentes2 (1970) no se pueden expresar mediante una fracción de dos enteros con denominador no nulo; tienen infinitas cifras decimales aperiódicas, tales como √5, π, o el número real log2, cuya trascendencia fue enunciada por Euler en el siglo XVIII.2 Los números reales pueden ser descritos y construidos de varias formas, algunas simples aunque carentes del rigor necesario para los propósitos formales de matemáticas y otras más complejas pero con el rigor necesario para el trabajo matemático formal. Durante los siglos XVI y XVII el cálculo avanzó mucho aunque carecía de una base rigurosa, puesto que en el momento prescindían del rigor y fundamento lógico, tan exigente en los enfoques teóricos de la actualidad, y se usaban expresiones como «pequeño», límite se acerca sin una definición precisa.
  4. En matemáticas, una desigualdad es una relación de orden que se da entre dos valores cuando estos son distintos (en caso de ser iguales, lo que se tiene es una igualdad). Si los valores en cuestión son elementos de un conjunto ordenado, como los enteros o los reales, entonces pueden ser comparados.  La notación a < b significa a es menor que b;  La notación a > b significa a es mayor que b Estas relaciones se conocen como desigualdades estrictas, puesto que a no puede ser igual a b; también puede leerse como "estrictamente menor que" o "estrictamente mayor que".  La notación a ≤ b significa a es menor o igual que b;  La notación a ≥ b significa a es mayor o igual que b; estos tipos de desigualdades reciben el nombre de desigualdades amplias (o no estrictas).  La notación a ≪ b significa a es mucho menor que b;  La notación a ≫ b significa a es mucho mayor que b; esta relación indica por lo general una diferencia de varios órdenes de magnitud.  La notación a ≠ b significa que a no es igual a b. Tal expresión no indica si uno es mayor que el otro, o siquiera si son comparables.
  5. La noción de valor absoluto se utiliza en el terreno de las matemáticas para nombrar al valor que tiene un número más allá de su signo. Esto quiere decir que el valor absoluto, que también se conoce como módulo, es la magnitud numérica de la cifra sin importar si su signo es positivo o negativo. Indica que el valor absoluto siempre es igual o mayor que 0 y nunca es negativo. Por lo dicho anteriormente, podemos agregar que el valor absoluto de los números opuestos es el mismo; 8 y -8, de este modo, comparten el mismo valor
  6. Una desigualdad de valor absoluto es una desigualdad que tiene un signo de valor absoluto con una variable dentro. La desigualdad | x | < 4 significa que la distancia entre x y 0 es menor que 4. Así, x > -4 Y x < 4. El conjunto solución es . Cuando se resuelven desiguales de valor absoluto, hay dos casos a considerar. Caso 1: La expresión dentro de los símbolos de valor absoluto es positiva. Caso 2: La expresión dentro de los símbolos de valor absoluto es negativa. La solución es la intersección de las soluciones de estos dos casos.
Anzeige