República Bolivariana de Venezuela
Universidad Politécnica Territorial ¨ Andrés Eloy Blanco ¨
Ministerio del P.P para la Educación Universitaria, Ciencia y Tecnología
Barquisimeto – Estado Lara
Integrante:
Leiberth Sánchez
Cedula: 26.750.694
Un tipo de conjunto es una colección bien definida de objetos, entendiendo que dichos
objetos pueden ser cualquier cosa: números, personas, letras, otros conjuntos, etc.
Algunos ejemplos son:
A es el conjunto de los números naturales menores que 5.
B es el conjunto de los colores verde, blanco y rojo.
C es el conjunto de las vocales a, e, i, o y u.
D es el conjunto de los palos de la baraja francesa.
En las matemáticas, no podemos definir a un conjunto, por ser un concepto primitivo,
pero hacemos abstracción y lo pensamos como una colección desordenada de
objetos, los objetos de un conjunto pueden ser cualquier cosa siempre que tengan una
relación entre ellos, a los objetos de un conjunto se les llama elementos de dicho
conjunto, por lo tanto un conjunto contiene a sus elementos. Se representan con una
letra mayúscula y a los elementos o miembros de ese conjunto se les mete entre
llaves corchetes o paréntesis. ({,}).
Dos conjuntos se pueden combinar de muchas maneras distintas, por ejemplo,
teniendo un conjunto de la gente que juega al fútbol y otro de la gente que juega a
baloncesto podemos hacer muchas combinaciones como el conjunto de personas que
juegan a fútbol o baloncesto, las que juegan a fútbol y baloncesto, las que no juegan a
baloncesto, etc.
El conjunto de los números reales (denotado por incluye tanto a los números
racionales, (positivos, negativos y el cero) como a los números irracionales;1
y en otro
enfoque, trascendentes y algebraicos. Los irracionales y los trascendentes2
(1970) no
se pueden expresar mediante una fracción de dos enteros con denominador no nulo;
tienen infinitas cifras decimales aperiódicas, tales como √5, π, o el número real log2,
cuya trascendencia fue enunciada por Euler en el siglo XVIII.2
Los números reales pueden ser descritos y construidos de varias formas, algunas
simples aunque carentes del rigor necesario para los propósitos formales de
matemáticas y otras más complejas pero con el rigor necesario para el trabajo
matemático formal.
Durante los siglos XVI y XVII el cálculo avanzó mucho aunque carecía de una base
rigurosa, puesto que en el momento prescindían del rigor y fundamento lógico, tan
exigente en los enfoques teóricos de la actualidad, y se usaban expresiones como
«pequeño», límite se acerca sin una definición precisa.
En matemáticas, una desigualdad es una relación de orden que se da entre
dos valores cuando estos son distintos (en caso de ser iguales, lo que se tiene
es una igualdad).
Si los valores en cuestión son elementos de un conjunto ordenado, como
los enteros o los reales, entonces pueden ser comparados.
La notación a < b significa a es menor que b;
La notación a > b significa a es mayor que b
Estas relaciones se conocen como desigualdades estrictas, puesto que a no
puede ser igual a b; también puede leerse como "estrictamente menor que" o
"estrictamente mayor que".
La notación a ≤ b significa a es menor o igual que b;
La notación a ≥ b significa a es mayor o igual que b;
estos tipos de desigualdades reciben el nombre de desigualdades amplias (o no
estrictas).
La notación a ≪ b significa a es mucho menor que b;
La notación a ≫ b significa a es mucho mayor que b; esta relación indica por lo
general una diferencia de varios órdenes de magnitud.
La notación a ≠ b significa que a no es igual a b. Tal expresión no indica si uno es
mayor que el otro, o siquiera si son comparables.
La noción de valor absoluto se utiliza en el terreno de
las matemáticas para nombrar al valor que tiene un número más allá
de su signo. Esto quiere decir que el valor absoluto, que también se
conoce como módulo, es la magnitud numérica de la cifra sin importar
si su signo es positivo o negativo. Indica que el valor absoluto siempre
es igual o mayor que 0 y nunca es negativo. Por lo dicho
anteriormente, podemos agregar que el valor absoluto de los números
opuestos es el mismo; 8 y -8, de este modo, comparten el mismo valor
Una desigualdad de valor absoluto es una desigualdad que tiene un signo de
valor absoluto con una variable dentro.
La desigualdad | x | < 4 significa que la distancia entre x y 0 es menor que 4.
Así, x > -4 Y x < 4. El conjunto solución es .
Cuando se resuelven desiguales de valor absoluto, hay dos casos a considerar.
Caso 1: La expresión dentro de los símbolos de valor absoluto es positiva.
Caso 2: La expresión dentro de los símbolos de valor absoluto es negativa.
La solución es la intersección de las soluciones de estos dos casos.