SlideShare ist ein Scribd-Unternehmen logo
1 von 34
Downloaden Sie, um offline zu lesen
Kouki Nakata
Josephson Effects & Persistent Spin Currents
in Magnon-BEC due to Berry Phase
University of Basel, Switzerland
仲田光樹
Based on [arXiv:1406.7004]
[Note] All the responsibility of this slide rests with “Kouki Nakata”; Sep. 2014.
MAIN AIM
 Persistent spin current
 To CONTROL spin currents
“Directmeasurement”
(i.e. super spin current)
 Rapid PROGRESS of experiments
BACKGROUND
 Spin-wave spin current
 Quasi-equilibrium magnon-BEC
 Achieved even at “room temperature”
by using microwavepumping
(Low temperature is not required.)
Ferromagnetic insulator (YIG)
[Y. Kajiwara et al., Nature 464, 262 (2010)]
[S. O. Demokritov et al., Nature 443, 430 (2006)]
BEC
BEC
“Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping”
[S. O. Demokritov et al., Nature 443, 430 (2006)]
Based on
 Can be semi-classically treated
 Canonically conjugate variables; [𝓝, 𝝑]
𝒂 = 𝓝 𝒆 𝒊𝝑
𝒂 ~ 𝐒+
= 𝐒 𝐱
+ 𝐢𝐒 𝐲
𝝑~ Direction of spin
𝓝~ Length of macroscopicspin
Semantic issue;
Y. M. Bunkov and G. E. Volovik,arXiv:1003.4889.
Textbook by Leggett
D. Snoke, Nature 443, 403 (2006).
C. D. Batista et al., RMP. 86, 563 (2014).
Macroscopiccoherent stateQuantum effectsIndividual spins/quasi-particles
Condensed time:
over a few hundred ns.
𝓝;Magnon-BEC
𝝑; PhaseBEC
Quasi-equilibrium Magnon-BEC
Magnon
picture
Spin
picture
BEC
BEC
“Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping”
[S. O. Demokritov et al., Nature 443, 430 (2006)]
Based on
𝒂 = 𝓝 𝒆 𝒊𝝑
𝒂 ~ 𝐒+
= 𝐒 𝐱
+ 𝐢𝐒 𝐲
Semantic issue;
Y. M. Bunkov and G. E. Volovik,arXiv:1003.4889.
Textbook by Leggett
D. Snoke, Nature 443, 403 (2006).
C. D. Batista et al., RMP. 86, 563 (2014).
Macro
scopic
Spin
BEC
Quasi-equilibrium Magnon-BEC
Magnon
picture
Macroscopiccoherent stateQuantum effectsIndividual spins/quasi-particles
Condensed time:
over a few hundred ns.
𝓝;Magnon-BEC
𝝑; Phase
𝝑~ Direction of spin
𝓝~ Length of macroscopicspin
 Can be semi-classically treated
 Canonically conjugate variables; [𝓝, 𝝑]
Spin
picture
HOW TO ACHIEVE
 Berry phase(Geometric phase)
 Quasi-equilibrium magnon-BEC
Persistent magnon-BEC current
To electro-magnetically control spin currents
“Macroscopic quantum effect (coherence)”
 Spin currents; drastically ENHANCED !!
 Spin Current
”Persistent magnon-BEC current”
Under our control
Directmeasurement
 Electromagnet
Towardthe direct measurementof spin (magnon) current
 Berry Phase
Aharonov-Casher(A-C)位相
Magnon-BEC
(Ferromagnetic insulator)
「MacroscopicEffect」
CONCEPT
OUTLINE
 INTRODUCTION
 REVIEW
 SUMMARY
 RESULT
 Josephson effects
 Persistent magnon-BEC current (i.e. super spin current)
 Magnon-BEC Josephson junction (MJJ)
 SYSTEM
 REVIEW
 Superconductors (SC)
[Cooper pair] = [Boson]
B. D. Josephson, [Phys.Lett.1,251 (1962)]
1962~
𝑑
𝑑𝑡
∆𝑁 𝑡 =
2J
ℏ
sin ∆𝜙(𝑡)
𝑑
𝑑𝑡
∆𝜙 𝑡 = −
2𝑒𝑉(𝑡)
ℏ
Josephsonequations in SC
 dc Josephson effect;
𝑑
𝑑𝑡
∆𝜙 𝑡 ∝ 𝑉 𝑡 = 0
 Relative phase is time-independent;
𝑑
𝑑𝑡
∆𝜙 𝑡 = 0
; Josephson current
”charge current”
Josephson current
J (tunneling)(1973)
Textbook
by Leggett
w.f. w.f.
Josephson Effects Universal Phenomenon of bosonic particles
𝑉(𝑡); the external voltage applied across thejunction
J (> 0); the tunneling amplitude,
∆𝑁 ≔ the relative population, ∆𝜙; the relative phase•
•
•
Figby [Fa Wang and Dung-Hai Lee, Science, 332 (2011) 200]
Fig by[J. Q. You andF. Nori, Nature, 474, 589 (2011)]
Picture by Googlesearch (HPfornovel prize).
 Universal Phenomenon of bosonic particles
Anderson et al., Science (‘95)
Atomic BEC
 Atomic BEC  Magnon BEC
[Magnon] = [Bosonic quasi-particle]
Josephson Effects
B. D. Josephson, [Phys.Lett.1,251 (1962)]
Berry Phase
(Aharonov-Casher phase)
1962~ 1997~ Now
We
(Our present work)
 Superconductors (SC)
[Cooper pair] = [Boson]
A. Smerzi etal., [PRL. 79, 4950 (1997)]
[PRA, 59, 620 (1999)]
[PRL.84, 4521 (2000)]
Leggett[Rev.Mod.Phys. 73, 307 (2001)]
M. Albiezetal.[PRL.95, 010402 (2005)]
S. Levyetal. [Nature 449, 579 (2007)]
(2001)(1973)
Figby [Fa Wang and Dung-Hai Lee, Science, 332 (2011) 200]
Picture by Googlesearch (HPfornovel prize).
Berry Phases
Aharonov- Bohm phase
[Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959)]
Aharonov- Casher phase
[Y. Aharonov and A. Casher, PRL, 53, 319 (1984)]
Charged particle; 𝑒 Magnetic dipole; 𝜇
𝜇 = 𝑔𝜇 𝐵 𝒆 𝑧
;(Magnon)
Magnetic vector potential 𝐴 [Electric field]×[Magnetic dipole]; 𝐸 × 𝜇
𝜑A−B =
𝑒
ℏ𝑐
𝐴 ∙ 𝑑𝑠
=:
𝑒
ℏ𝑐
𝛷A−B
𝜑A−C =
𝑔𝜇 𝐵
ℏ𝑐2 (𝐸 × 𝜇) ∙ 𝑑𝑠
𝐸
𝜇
𝐴
𝑒
𝛷A−B
 Special casesof Berryphase [R.Mignani,J.Phys.A:Math. Gen. 24, L421 (1991)] [X.-G.Hea and B. McKellarb,Phys.Lett.B264, 129(1991)]
A special case of
Berry phase
Microwave Pumping
Magnon
Magnon-BEC
(macroscopicstate)
Magnon pumping Room temperature
[S.O. Demokritov etal.,Nature 443, 430 (2006)]
 Excite additionalmagnons.
 Create a gas of quasi-equilibriummagnons
with a non-zerochemical potential.
 A Bose condensate of magnons is formed.
Microwave pumping
 We can directlyinject magnons so that
it becomes a macroscopicnumber(BEC).
[K.Nakataand G. Tatara, J.Phys.Soc. Jpn. 80, 054602 (2011).]
[K.Nakata,Doctoral Thesis,KyotoUniversity(2014).]
Magnon
Magnon-BEC
(macroscopicstate)
Magnon pumping
Room temperature
𝒂 = 𝑵 𝐁𝐄𝐂 𝒆𝒊𝝁𝒕+𝒊𝜶
 BEC order parameter
Quasi-equilibrium Magnon-BEC
[S.O. Demokritov etal.,Nature 443, 430 (2006)]
𝑛BEC~1018 − 1919cm−3
[Y. M. Bunkov andG. E. Volovik,arXiv:1003.4889.]
[C.D. Batistaet al., Rev.Mod. Phys., 86, 563 (2014).]
[Y. M. Bunkov andG. E. Volovik,arXiv:1003.4889.]
Quasi-equilibrium Magnon-BEC
 [Metastable state]≠[Groundstate]
[J. Hick et al., Phys. Rev. B 86, 184417 (2012)]
[T. Kloss et al., Phys. Rev. B 81, 104308 (2010)]
[S. M. Rezende, Phys. Rev. B 79, 174411(2009)]
[F. S. Vannucchi et al., Phys. Rev. B 82, 140404(R) (2010)]
[F. S. Vannucchi et al., EPJB 86 (2013) 463]
[S. M. Rezende, Phys. Rev. B 79, 174411 (2009)]
Thermalizationprocess
𝒂 = 𝑵 𝐁𝐄𝐂 𝒆𝒊𝝁𝒕+𝒊𝜶
 BEC order parameter
[K.Nakataand G. Tatara, J.Phys.Soc. Jpn. 80, 054602 (2011).]
[K.Nakata,Doctoral Thesis,KyotoUniversity(2014).]
OUR WORK
SYSTEM
E = E𝐞 𝐲
𝒏 𝐋, 𝝑 𝐋 𝒏 𝐑, 𝝑 𝐑
𝐉 𝐞𝐱
J
J
𝒏 𝐋, 𝝑 𝐋
𝒏 𝐑, 𝝑 𝐑
ΓL
ΓR
A-C phase:
Magnon BEC Josephson Junction
 Tunneling Hamiltonian (boundary spins)
 Hamiltonian of each single FIs (Magnon BECs)
with Diag 𝐉 = J{1, 1, 𝜂}, J < 0
E = E𝐞 𝐲
ℋH =(Gross-Pitaevskii Hamiltonian;ℋGP)
Microscopic spin model
Electric field
(E = E𝐞 𝐲)
Magnon picture
−𝜽 𝐀−𝐂
𝜽 𝐀−𝐂
( Jex ≪ J )
Magnon BEC
(Holstein-Primakoff tr.);
~ 𝐒+
= 𝐒 𝐱
+ 𝐢𝐒 𝐲
Magnon
picture
BEC
𝒂 = 𝓝 𝒆𝒊𝝑
~ 𝐒+
= 𝐒 𝐱
+ 𝐢𝐒 𝐲
𝐉 𝐞𝐱
𝐉 𝐞𝐱
𝓝 𝐋, 𝝑 𝐋 𝓝 𝐑, 𝝑 𝐑
CALCULATION PROCEDURE
Spin
picture
Canonically conjugate variables
[𝓝, 𝝑]
BEC BEC
Macro
scopic
Spin
Macro
scopic
Spin
𝓝;Magnon-BEC
𝝑; Phase
𝒩T: = 𝒩L + 𝒩R• Population imbalance; 𝐳 ≔ (𝒩L − 𝒩R)/𝒩T,
• Relative phase; 𝛉 ≔ ϑR − ϑL
~Two macroscopicspins interact with each other through 𝐉 𝐞𝐱
EACH VALUE
E = E𝐞 𝐲
Each Value Our estimation
The exchange interaction between the two FIs Jex = 1μeV
The exchange interaction between the neighboring spins in a single FI J ≈ 0.1eV
The density of magnpn-BECs [S. O. Demokritov et al., Nature (2006).] nBEC = 1019
cm−3
The applied magnetic field 𝐵 ≈ 1mT
The applied electric field to the interface 𝐸 ≈ 5GV/m
The width of the interface Δ𝑥 ≈ 10Å
The lattice constant of a FI 𝛼 ≈ 1Å
 RESULTS
Josephson Equations in MJJ
;Renormalized time 𝜏 = 1 ↔ 𝑡 = 1ns (ex. K0/𝑆 ≡ Jex = 1μeV)
 Josephson spin current ∝
nL, ϑL
E = E𝐞 𝐲
nR, ϑR
−𝜽 𝐀−𝐂
𝜽 𝐀−𝐂
Δ𝐸 & Λ; renormalized magnetic field difference & mag-mag interactionin terms of K0
(K0 ; tunnelingmagnitude)

nT: = nL + nR
• Population imbalance; z ≔ (nL − nR)/nT
• Relativephase; θ ≔ ϑR − ϑL
• A-C phase;
• ∆x; the width of the interface (~Å)
[Period]~𝟔ns
ac Josephson Effect
;Renormalized time 𝜏 = 1 ↔ 𝑡 = 1ns (ex. K0/𝑆 ≡ Jex = 1μeV)
 No Aharonov-Casherphase;
~(Chemical potential difference)
Condensed time:
over a few hundreds ns.
S. O.Demokritovetal., Nature 443, 430 (2006).
 dc Josephson Effects
𝜽 = 𝟎
Time-dependent Magnetic Field
i) Increasing rate; 𝑩 𝟎 ii) Josephson equation (weak coupling)
∝ 𝑬; electric field ∝ 𝑩 𝟎; magnetic field
(increasing rate)
dc effect 𝜽 = 𝟎 (steady-state solution)
θ(τ = 0) = 0
E = E𝐞 𝐲
θ ≔ ϑR − ϑL
z ≔ (nL − nR)/nT nL, ϑL
nR, ϑR
−𝜽 𝐀−𝐂
𝜽 𝐀−𝐂Λ; renormalized mag-mag interaction
in terms of K0 (K0 ; tunneling magnitude)
UL UR
Jex ≪ J
dc Josephson Effect
0
𝜏 = 1 ⟷ 𝑡~1ns
𝜽 ≠ 𝟎 𝜽 = 𝟎(+ small oscillationin “z”)
 AtomicBEC;A. Smerzi etal., [PRL. 79, 4950 (1997)]
[PRA, 59, 620 (1999)]
[PRL.84, 4521 (2000)]
dc-ac Transition; 𝐳 𝟎 = 𝐁 𝟎/𝚲
0
 (c) dc-ac transition; 𝒛 𝟎 ≈ 𝟎. 𝟕𝟐𝟓
𝑧0 = 0.10
𝑧0 = 0.724
𝑧0 = 0.726
𝑧0 = 1.1
dc-ac Transition
 (d) dc-ac transition; 𝒛 𝟎 ≈ 𝟏
𝑧0 = 0.726
𝑧0 = 0.726
Recovery
due to
A-C phase
𝜏 = 1 ⟷ 𝑡~1ns𝜏 = 1 ⟷ 𝑡~1ns
dc effect
ac effect
dc effect
ac effect
 Atomic BEC; A. Smerzi et al.,
[PRL. 79, 4950 (1997)]
[PRA, 59, 620 (1999)]
[PRL. 84, 4521 (2000)]
 Persistent Magnon-BEC Currents
Magnon-BEC Ring
・Electric-gradient flux
 Single-valuednessof the BEC wave function
In analogy to superconductingrings
𝑝 ∈ ℤ; phase winding number
・Electric flux quantum
 Persistent magnon-BEC current
The A-C phase in the ring
Quantized electric-gradientflux
𝐄(𝜌, 𝜑) =
Direct Measurement
≫ 10−13
V
nBEC = 1019cm−3
J ≈ 0.1eV
[F. Meier and D. L., PRL 90, 167204 (2003).]
 [Persistentmagnon-BEC current 𝐈 𝐁𝐄𝐂] = [Steady flow of the magnetic dipoles]
(i.e. magnons or magnetic moment 𝑔𝜇 𝐵 𝒆 𝑧)
 Moving magnetic dipoles  “Electric dipole fields 𝐄 𝐦”  Voltage drop 𝐕 𝐦.
S. O. Demokritov et al., Nature (2006).
; Spin chains
Largely enhanced 
due to
“Macroscopic coherence”
[D.Loss and P.M. Goldbart,PLA215, 197 (1996)]
𝐕 𝐦
𝜌0 = 1mm
𝑟0 = 1mm
Vm~1nV
𝑔 = 2, 𝑆 = 1/2
× 𝟏𝟎, 𝟎𝟎𝟎 times!!
𝑔𝜇 𝐵 𝒆 𝑧
𝑅 ≈ 10mm
𝑝 ≈ 50
(Phase winding number;𝜙 = 𝑝𝜙0 )
 REMARKS
Analogous Phenomenon
Magnon Josephson effect Magnon Hall effect
Dzyaloshinskii-Moriya interaction
Temperature gradient
≈ Onose et al. [Science 329, 297 (2010)]
[Josephson spin current] ⊥ [Electric field] [Thermal spin current] ⊥ [temperature gradient]
≈
Key point; Transverse spin currents
Picture from [Science 329, 297 (2010)]
SIGNIFICANCE
The Bose Josephson junction (BJJ) of atomic BEC
𝜽 𝐀−𝐂 = 𝟎
The magnon Josephson junction (MJJ)
M. Albiez et al. [PRL. 95, 010402 (2005)]
S. Levy et al. [Nature 449, 579 (2007)]
Leggett [Rev. Mod. Phys. 73, 307 (2001)]
A. Smerzi et al., [PRL. 79, 4950 (1997)]
[PRA, 59, 620 (1999)]
[PRL. 84, 4521 (2000)]
[Theory] [Experiment]
 Exact dc Josephson effect
・Time-dependent magnetic field
・Aharonov-Casher phase
・ac-dc transition
・Persistent magnon-BEC
current
 Magnon-interferenceAharonov-Casher
phase
Cold atom
[Our work on MJJ] = [The generalization ofthe preceding studies on BJJ]
Picture byGoogle search.
LAST MESSAGE
Phys. Lett. A, 96 (1983), p. 365
 Our work [arXiv:1406.7004]
Persistent (charge) current due to the Aharonov-Bohm phase
Persistent “magnon-BEC” current due to the Aharonov-Casher phase
K. N., K. A. van Hoogdalem, P. Simon, and D. Loss
SUMMARY
“JosephsonEffects& PersistentSpinCurrentsin Magnon-BECduetoBerryPhase”
I). How to electromagnetically control Josephson spin currents
 [Period of ac Josephson effect]~10ns
III). How to directly measurethe Josephson magnon-BEC currents
 The resulting voltage drop from the flow of the magnons (i.e. magnetic dipoles).
 It is largely enhanced due the macroscopic coherence of magnon-BECs; Vm~1nV ≫ 10−13
V
 This method is applicable to Josephson junction; 0 ≤ Vm ≤ 1𝜇V due to ac or dc effects.
II). Persistentmagnon-BEC current (i.e. super spin current) due to the Berry phase
 It is quantized in the magnon-BEC ring.
Regarding macroscopic quantumself-trapping, please see the preprint [arXiv:1406.7004].
Each Value Our estimation
The exchange interactionbetweenthe twoFIs Jex = 1μeV
The exchange interactionbetweenthe neighboringspinsinasingle FI J ≈ 0.1eV
The densityof magnpn-BECs[S.O.Demokritov etal.,Nature (2006).] nBEC = 1019cm−3
The appliedmagneticfield 𝐵 ≈ 1mT
The appliedelectricfieldtothe interface 𝐸 ≈ 5GV/m
The widthof the interface (The lattice constant 𝛼 ≈ 1Å) Δ𝑥 ≈ 10Å
Based on [arXiv:1406.7004] K. N., K. A. van Hoogdalem, P. Simon, and D. Loss

Weitere ähnliche Inhalte

Was ist angesagt?

Maxwell's equation and it's correction in Ampere's circuital law
Maxwell's equation and it's correction in Ampere's circuital lawMaxwell's equation and it's correction in Ampere's circuital law
Maxwell's equation and it's correction in Ampere's circuital lawKamran Ansari
 
(10) electron spin & angular momentum coupling
(10) electron spin & angular momentum coupling(10) electron spin & angular momentum coupling
(10) electron spin & angular momentum couplingIbenk Hallen
 
Energy band theory of solids
Energy band theory of solidsEnergy band theory of solids
Energy band theory of solidsBarani Tharan
 
Quantum mechanics for Engineering Students
Quantum mechanics for Engineering StudentsQuantum mechanics for Engineering Students
Quantum mechanics for Engineering StudentsPraveen Vaidya
 
Chapter5 carrier transport phenomena
Chapter5 carrier transport phenomenaChapter5 carrier transport phenomena
Chapter5 carrier transport phenomenaK. M.
 
Chapter4 semiconductor in equilibrium
Chapter4 semiconductor in equilibriumChapter4 semiconductor in equilibrium
Chapter4 semiconductor in equilibriumK. M.
 
Ch.4, The Semiconductor in Equilibrium
Ch.4, The Semiconductor in Equilibrium Ch.4, The Semiconductor in Equilibrium
Ch.4, The Semiconductor in Equilibrium Mazin A. Al-alousi
 
Lecture m.sc. (experiments)-hall effect
Lecture m.sc. (experiments)-hall effectLecture m.sc. (experiments)-hall effect
Lecture m.sc. (experiments)-hall effectChhagan Lal
 
Maxwell equation
Maxwell equationMaxwell equation
Maxwell equationKumar
 
Schrodinger equation and its applications: Chapter 2
Schrodinger equation and its applications: Chapter 2Schrodinger equation and its applications: Chapter 2
Schrodinger equation and its applications: Chapter 2Dr.Pankaj Khirade
 
Ferroelectric and piezoelectric materials
Ferroelectric and piezoelectric materialsFerroelectric and piezoelectric materials
Ferroelectric and piezoelectric materialsZaahir Salam
 
Langevin theory of Paramagnetism
Langevin theory of ParamagnetismLangevin theory of Paramagnetism
Langevin theory of ParamagnetismDr. HAROON
 
Optical properties of semiconductors ppt
Optical properties of semiconductors pptOptical properties of semiconductors ppt
Optical properties of semiconductors ppttedoado
 
Maglev train & Josephson effect
Maglev train & Josephson effectMaglev train & Josephson effect
Maglev train & Josephson effectManthan Dhavne
 
Unit 2 bjt numerical problems
Unit 2 bjt numerical problemsUnit 2 bjt numerical problems
Unit 2 bjt numerical problemsDr Piyush Charan
 
Metal Insulator Semiconductor devices
Metal Insulator Semiconductor devicesMetal Insulator Semiconductor devices
Metal Insulator Semiconductor devicesutpal sarkar
 
Polarization in Dielectrics | Applied Physics - II | Dielectrics
Polarization in Dielectrics | Applied Physics - II | DielectricsPolarization in Dielectrics | Applied Physics - II | Dielectrics
Polarization in Dielectrics | Applied Physics - II | DielectricsAyush Agarwal
 

Was ist angesagt? (20)

Maxwell's equation and it's correction in Ampere's circuital law
Maxwell's equation and it's correction in Ampere's circuital lawMaxwell's equation and it's correction in Ampere's circuital law
Maxwell's equation and it's correction in Ampere's circuital law
 
Free electron in_metal
Free electron in_metalFree electron in_metal
Free electron in_metal
 
(10) electron spin & angular momentum coupling
(10) electron spin & angular momentum coupling(10) electron spin & angular momentum coupling
(10) electron spin & angular momentum coupling
 
Energy band theory of solids
Energy band theory of solidsEnergy band theory of solids
Energy band theory of solids
 
Quantum mechanics for Engineering Students
Quantum mechanics for Engineering StudentsQuantum mechanics for Engineering Students
Quantum mechanics for Engineering Students
 
Chapter5 carrier transport phenomena
Chapter5 carrier transport phenomenaChapter5 carrier transport phenomena
Chapter5 carrier transport phenomena
 
Chapter4 semiconductor in equilibrium
Chapter4 semiconductor in equilibriumChapter4 semiconductor in equilibrium
Chapter4 semiconductor in equilibrium
 
Ch.4, The Semiconductor in Equilibrium
Ch.4, The Semiconductor in Equilibrium Ch.4, The Semiconductor in Equilibrium
Ch.4, The Semiconductor in Equilibrium
 
Lecture m.sc. (experiments)-hall effect
Lecture m.sc. (experiments)-hall effectLecture m.sc. (experiments)-hall effect
Lecture m.sc. (experiments)-hall effect
 
Maxwell equation
Maxwell equationMaxwell equation
Maxwell equation
 
Schrodinger equation and its applications: Chapter 2
Schrodinger equation and its applications: Chapter 2Schrodinger equation and its applications: Chapter 2
Schrodinger equation and its applications: Chapter 2
 
Quantum Hall Effect
Quantum Hall EffectQuantum Hall Effect
Quantum Hall Effect
 
P n junction--eema
P n junction--eemaP n junction--eema
P n junction--eema
 
Ferroelectric and piezoelectric materials
Ferroelectric and piezoelectric materialsFerroelectric and piezoelectric materials
Ferroelectric and piezoelectric materials
 
Langevin theory of Paramagnetism
Langevin theory of ParamagnetismLangevin theory of Paramagnetism
Langevin theory of Paramagnetism
 
Optical properties of semiconductors ppt
Optical properties of semiconductors pptOptical properties of semiconductors ppt
Optical properties of semiconductors ppt
 
Maglev train & Josephson effect
Maglev train & Josephson effectMaglev train & Josephson effect
Maglev train & Josephson effect
 
Unit 2 bjt numerical problems
Unit 2 bjt numerical problemsUnit 2 bjt numerical problems
Unit 2 bjt numerical problems
 
Metal Insulator Semiconductor devices
Metal Insulator Semiconductor devicesMetal Insulator Semiconductor devices
Metal Insulator Semiconductor devices
 
Polarization in Dielectrics | Applied Physics - II | Dielectrics
Polarization in Dielectrics | Applied Physics - II | DielectricsPolarization in Dielectrics | Applied Physics - II | Dielectrics
Polarization in Dielectrics | Applied Physics - II | Dielectrics
 

Andere mochten auch

josphenson junction
josphenson junctionjosphenson junction
josphenson junctionKumar Vivek
 
Josephson effect presentation
Josephson effect presentationJosephson effect presentation
Josephson effect presentationbarbercummings
 
Magnonic Wiedemann-Franz Law
Magnonic Wiedemann-Franz LawMagnonic Wiedemann-Franz Law
Magnonic Wiedemann-Franz LawKouki Nakata
 
Suppl. Mat. for magnon WF law
Suppl. Mat. for magnon WF lawSuppl. Mat. for magnon WF law
Suppl. Mat. for magnon WF lawKouki Nakata
 
Superconductivity(as macroscopic phenomena) term paper presentation
Superconductivity(as macroscopic phenomena) term paper presentationSuperconductivity(as macroscopic phenomena) term paper presentation
Superconductivity(as macroscopic phenomena) term paper presentationsujeet1022
 
Magnonic Quantum Hall Effect & the Wiedemann-Franz Law
Magnonic Quantum Hall Effect & the Wiedemann-Franz LawMagnonic Quantum Hall Effect & the Wiedemann-Franz Law
Magnonic Quantum Hall Effect & the Wiedemann-Franz LawKouki Nakata
 
マグノンWiedemann-Franz則
マグノンWiedemann-Franz則マグノンWiedemann-Franz則
マグノンWiedemann-Franz則Kouki Nakata
 
The Fermi Level 1
The Fermi Level 1The Fermi Level 1
The Fermi Level 1RDaCampo
 
Pertemuan 7 vibrational properties-lattice
Pertemuan 7   vibrational properties-latticePertemuan 7   vibrational properties-lattice
Pertemuan 7 vibrational properties-latticejayamartha
 
量子アニーリングを用いたクラスタ分析 (QIT32)
量子アニーリングを用いたクラスタ分析 (QIT32)量子アニーリングを用いたクラスタ分析 (QIT32)
量子アニーリングを用いたクラスタ分析 (QIT32)Shu Tanaka
 
Oleg malishev development of thin films for superconducting rf cavities in ...
Oleg malishev   development of thin films for superconducting rf cavities in ...Oleg malishev   development of thin films for superconducting rf cavities in ...
Oleg malishev development of thin films for superconducting rf cavities in ...thinfilmsworkshop
 

Andere mochten auch (20)

josphenson junction
josphenson junctionjosphenson junction
josphenson junction
 
Josephson effect presentation
Josephson effect presentationJosephson effect presentation
Josephson effect presentation
 
Magnonic Wiedemann-Franz Law
Magnonic Wiedemann-Franz LawMagnonic Wiedemann-Franz Law
Magnonic Wiedemann-Franz Law
 
Suppl. Mat. for magnon WF law
Suppl. Mat. for magnon WF lawSuppl. Mat. for magnon WF law
Suppl. Mat. for magnon WF law
 
Superconductivity(as macroscopic phenomena) term paper presentation
Superconductivity(as macroscopic phenomena) term paper presentationSuperconductivity(as macroscopic phenomena) term paper presentation
Superconductivity(as macroscopic phenomena) term paper presentation
 
Magnonic Quantum Hall Effect & the Wiedemann-Franz Law
Magnonic Quantum Hall Effect & the Wiedemann-Franz LawMagnonic Quantum Hall Effect & the Wiedemann-Franz Law
Magnonic Quantum Hall Effect & the Wiedemann-Franz Law
 
マグノンWiedemann-Franz則
マグノンWiedemann-Franz則マグノンWiedemann-Franz則
マグノンWiedemann-Franz則
 
Sonjoy kundu
Sonjoy kunduSonjoy kundu
Sonjoy kundu
 
The Fermi Level 1
The Fermi Level 1The Fermi Level 1
The Fermi Level 1
 
Phonons lecture
Phonons lecturePhonons lecture
Phonons lecture
 
Crystal imperfections
Crystal imperfections Crystal imperfections
Crystal imperfections
 
Pertemuan 7 vibrational properties-lattice
Pertemuan 7   vibrational properties-latticePertemuan 7   vibrational properties-lattice
Pertemuan 7 vibrational properties-lattice
 
量子アニーリングを用いたクラスタ分析 (QIT32)
量子アニーリングを用いたクラスタ分析 (QIT32)量子アニーリングを用いたクラスタ分析 (QIT32)
量子アニーリングを用いたクラスタ分析 (QIT32)
 
5.Hall Effect
5.Hall Effect5.Hall Effect
5.Hall Effect
 
Crystal dynamics
Crystal dynamicsCrystal dynamics
Crystal dynamics
 
Squid2
Squid2Squid2
Squid2
 
The hall effect
The hall effectThe hall effect
The hall effect
 
Oleg malishev development of thin films for superconducting rf cavities in ...
Oleg malishev   development of thin films for superconducting rf cavities in ...Oleg malishev   development of thin films for superconducting rf cavities in ...
Oleg malishev development of thin films for superconducting rf cavities in ...
 
Band theory of semiconductor
Band theory of semiconductorBand theory of semiconductor
Band theory of semiconductor
 
Quantization
QuantizationQuantization
Quantization
 

Ähnlich wie Josephson and Persistent Spin Currents in Bose-Einstein Condensates of Magnons

Direct and indirect excitations in boron nitride: atomic structure and electr...
Direct and indirect excitations in boron nitride: atomic structure and electr...Direct and indirect excitations in boron nitride: atomic structure and electr...
Direct and indirect excitations in boron nitride: atomic structure and electr...Claudio Attaccalite
 
Possible Inverse Isotope effect in High Tc Superconductors Using the Non Vari...
Possible Inverse Isotope effect in High Tc Superconductors Using the Non Vari...Possible Inverse Isotope effect in High Tc Superconductors Using the Non Vari...
Possible Inverse Isotope effect in High Tc Superconductors Using the Non Vari...IOSR Journals
 
Binping xiao superconducting surface impedance under radiofrequency field
Binping xiao   superconducting surface impedance under radiofrequency fieldBinping xiao   superconducting surface impedance under radiofrequency field
Binping xiao superconducting surface impedance under radiofrequency fieldthinfilmsworkshop
 
2DIAGNOSTICSe-p.ppt
2DIAGNOSTICSe-p.ppt2DIAGNOSTICSe-p.ppt
2DIAGNOSTICSe-p.pptHoca26
 
Dipolar and Superexchange Interaction Model.pdf
Dipolar and Superexchange Interaction Model.pdfDipolar and Superexchange Interaction Model.pdf
Dipolar and Superexchange Interaction Model.pdfHeiddyPaolaQuirozGai
 
Calculation of isotopic dipole moments with spectroscopic accuracy
Calculation of isotopic dipole moments with spectroscopic accuracyCalculation of isotopic dipole moments with spectroscopic accuracy
Calculation of isotopic dipole moments with spectroscopic accuracyAntônio Arapiraca
 
My presentation Jose M. Escalante Fernandez
My presentation Jose M. Escalante FernandezMy presentation Jose M. Escalante Fernandez
My presentation Jose M. Escalante FernandezEscalante Supertramp
 
Coupling JOREK and STARWALL for Non-linear Resistive-wall Simulations
Coupling JOREK and STARWALL for Non-linear Resistive-wall SimulationsCoupling JOREK and STARWALL for Non-linear Resistive-wall Simulations
Coupling JOREK and STARWALL for Non-linear Resistive-wall SimulationsRachel McAdams
 
Optical band gap measurement by diffuse reflectance spectroscopy (drs)
Optical band gap measurement by diffuse reflectance spectroscopy (drs)Optical band gap measurement by diffuse reflectance spectroscopy (drs)
Optical band gap measurement by diffuse reflectance spectroscopy (drs)Sajjad Ullah
 
Ugrad_conf_Foss_2015
Ugrad_conf_Foss_2015Ugrad_conf_Foss_2015
Ugrad_conf_Foss_2015cjfoss
 
Ugrad conf foss_2015
Ugrad conf foss_2015Ugrad conf foss_2015
Ugrad conf foss_2015cjfoss
 
Antigravity: Biefeld-Brown Effect / ZPF field
Antigravity: Biefeld-Brown Effect / ZPF fieldAntigravity: Biefeld-Brown Effect / ZPF field
Antigravity: Biefeld-Brown Effect / ZPF fieldVapula
 
Ion energy Distribution of Multi-Frequency Capacitively Coupled Plasma
Ion energy Distribution of Multi-Frequency Capacitively Coupled Plasma Ion energy Distribution of Multi-Frequency Capacitively Coupled Plasma
Ion energy Distribution of Multi-Frequency Capacitively Coupled Plasma Tahmid Abtahi
 
reeja seminar.pdf rotational spectroscopy
reeja seminar.pdf rotational spectroscopyreeja seminar.pdf rotational spectroscopy
reeja seminar.pdf rotational spectroscopyreejakgeorge
 

Ähnlich wie Josephson and Persistent Spin Currents in Bose-Einstein Condensates of Magnons (20)

Direct and indirect excitations in boron nitride: atomic structure and electr...
Direct and indirect excitations in boron nitride: atomic structure and electr...Direct and indirect excitations in boron nitride: atomic structure and electr...
Direct and indirect excitations in boron nitride: atomic structure and electr...
 
Possible Inverse Isotope effect in High Tc Superconductors Using the Non Vari...
Possible Inverse Isotope effect in High Tc Superconductors Using the Non Vari...Possible Inverse Isotope effect in High Tc Superconductors Using the Non Vari...
Possible Inverse Isotope effect in High Tc Superconductors Using the Non Vari...
 
Binping xiao superconducting surface impedance under radiofrequency field
Binping xiao   superconducting surface impedance under radiofrequency fieldBinping xiao   superconducting surface impedance under radiofrequency field
Binping xiao superconducting surface impedance under radiofrequency field
 
2DIAGNOSTICSe-p.ppt
2DIAGNOSTICSe-p.ppt2DIAGNOSTICSe-p.ppt
2DIAGNOSTICSe-p.ppt
 
Dipolar and Superexchange Interaction Model.pdf
Dipolar and Superexchange Interaction Model.pdfDipolar and Superexchange Interaction Model.pdf
Dipolar and Superexchange Interaction Model.pdf
 
Calculation of isotopic dipole moments with spectroscopic accuracy
Calculation of isotopic dipole moments with spectroscopic accuracyCalculation of isotopic dipole moments with spectroscopic accuracy
Calculation of isotopic dipole moments with spectroscopic accuracy
 
My presentation Jose M. Escalante Fernandez
My presentation Jose M. Escalante FernandezMy presentation Jose M. Escalante Fernandez
My presentation Jose M. Escalante Fernandez
 
Coupling JOREK and STARWALL for Non-linear Resistive-wall Simulations
Coupling JOREK and STARWALL for Non-linear Resistive-wall SimulationsCoupling JOREK and STARWALL for Non-linear Resistive-wall Simulations
Coupling JOREK and STARWALL for Non-linear Resistive-wall Simulations
 
Elecnem
ElecnemElecnem
Elecnem
 
Optical band gap measurement by diffuse reflectance spectroscopy (drs)
Optical band gap measurement by diffuse reflectance spectroscopy (drs)Optical band gap measurement by diffuse reflectance spectroscopy (drs)
Optical band gap measurement by diffuse reflectance spectroscopy (drs)
 
Ugrad_conf_Foss_2015
Ugrad_conf_Foss_2015Ugrad_conf_Foss_2015
Ugrad_conf_Foss_2015
 
Ugrad conf foss_2015
Ugrad conf foss_2015Ugrad conf foss_2015
Ugrad conf foss_2015
 
Paper
PaperPaper
Paper
 
Antigravity: Biefeld-Brown Effect / ZPF field
Antigravity: Biefeld-Brown Effect / ZPF fieldAntigravity: Biefeld-Brown Effect / ZPF field
Antigravity: Biefeld-Brown Effect / ZPF field
 
UHF Transistors
UHF TransistorsUHF Transistors
UHF Transistors
 
project
projectproject
project
 
Ion energy Distribution of Multi-Frequency Capacitively Coupled Plasma
Ion energy Distribution of Multi-Frequency Capacitively Coupled Plasma Ion energy Distribution of Multi-Frequency Capacitively Coupled Plasma
Ion energy Distribution of Multi-Frequency Capacitively Coupled Plasma
 
reeja seminar.pdf rotational spectroscopy
reeja seminar.pdf rotational spectroscopyreeja seminar.pdf rotational spectroscopy
reeja seminar.pdf rotational spectroscopy
 
Sonjoy
SonjoySonjoy
Sonjoy
 
Ferro2016
Ferro2016Ferro2016
Ferro2016
 

Kürzlich hochgeladen

bonjourmadame.tumblr.com bhaskar's girls
bonjourmadame.tumblr.com bhaskar's girlsbonjourmadame.tumblr.com bhaskar's girls
bonjourmadame.tumblr.com bhaskar's girlshansessene
 
well logging & petrophysical analysis.pptx
well logging & petrophysical analysis.pptxwell logging & petrophysical analysis.pptx
well logging & petrophysical analysis.pptxzaydmeerab121
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPirithiRaju
 
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptxECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptxmaryFF1
 
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptxGENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptxRitchAndruAgustin
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)riyaescorts54
 
PROJECTILE MOTION-Horizontal and Vertical
PROJECTILE MOTION-Horizontal and VerticalPROJECTILE MOTION-Horizontal and Vertical
PROJECTILE MOTION-Horizontal and VerticalMAESTRELLAMesa2
 
FREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naFREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naJASISJULIANOELYNV
 
Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsSérgio Sacani
 
Oxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptxOxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptxfarhanvvdk
 
GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024Jene van der Heide
 
Davis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologyDavis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologycaarthichand2003
 
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...Universidade Federal de Sergipe - UFS
 
Four Spheres of the Earth Presentation.ppt
Four Spheres of the Earth Presentation.pptFour Spheres of the Earth Presentation.ppt
Four Spheres of the Earth Presentation.pptJoemSTuliba
 
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 GenuineCall Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuinethapagita
 
Organic farming with special reference to vermiculture
Organic farming with special reference to vermicultureOrganic farming with special reference to vermiculture
Organic farming with special reference to vermicultureTakeleZike1
 
OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024innovationoecd
 
trihybrid cross , test cross chi squares
trihybrid cross , test cross chi squarestrihybrid cross , test cross chi squares
trihybrid cross , test cross chi squaresusmanzain586
 

Kürzlich hochgeladen (20)

bonjourmadame.tumblr.com bhaskar's girls
bonjourmadame.tumblr.com bhaskar's girlsbonjourmadame.tumblr.com bhaskar's girls
bonjourmadame.tumblr.com bhaskar's girls
 
well logging & petrophysical analysis.pptx
well logging & petrophysical analysis.pptxwell logging & petrophysical analysis.pptx
well logging & petrophysical analysis.pptx
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
 
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptxECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
 
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptxGENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
 
PROJECTILE MOTION-Horizontal and Vertical
PROJECTILE MOTION-Horizontal and VerticalPROJECTILE MOTION-Horizontal and Vertical
PROJECTILE MOTION-Horizontal and Vertical
 
FREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naFREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by na
 
Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive stars
 
Oxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptxOxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptx
 
GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024
 
Davis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologyDavis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technology
 
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
 
AZOTOBACTER AS BIOFERILIZER.PPTX
AZOTOBACTER AS BIOFERILIZER.PPTXAZOTOBACTER AS BIOFERILIZER.PPTX
AZOTOBACTER AS BIOFERILIZER.PPTX
 
Interferons.pptx.
Interferons.pptx.Interferons.pptx.
Interferons.pptx.
 
Four Spheres of the Earth Presentation.ppt
Four Spheres of the Earth Presentation.pptFour Spheres of the Earth Presentation.ppt
Four Spheres of the Earth Presentation.ppt
 
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 GenuineCall Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
 
Organic farming with special reference to vermiculture
Organic farming with special reference to vermicultureOrganic farming with special reference to vermiculture
Organic farming with special reference to vermiculture
 
OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024
 
trihybrid cross , test cross chi squares
trihybrid cross , test cross chi squarestrihybrid cross , test cross chi squares
trihybrid cross , test cross chi squares
 

Josephson and Persistent Spin Currents in Bose-Einstein Condensates of Magnons

  • 1. Kouki Nakata Josephson Effects & Persistent Spin Currents in Magnon-BEC due to Berry Phase University of Basel, Switzerland 仲田光樹 Based on [arXiv:1406.7004] [Note] All the responsibility of this slide rests with “Kouki Nakata”; Sep. 2014.
  • 2. MAIN AIM  Persistent spin current  To CONTROL spin currents “Directmeasurement” (i.e. super spin current)
  • 3.  Rapid PROGRESS of experiments BACKGROUND  Spin-wave spin current  Quasi-equilibrium magnon-BEC  Achieved even at “room temperature” by using microwavepumping (Low temperature is not required.) Ferromagnetic insulator (YIG) [Y. Kajiwara et al., Nature 464, 262 (2010)] [S. O. Demokritov et al., Nature 443, 430 (2006)]
  • 4. BEC BEC “Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping” [S. O. Demokritov et al., Nature 443, 430 (2006)] Based on  Can be semi-classically treated  Canonically conjugate variables; [𝓝, 𝝑] 𝒂 = 𝓝 𝒆 𝒊𝝑 𝒂 ~ 𝐒+ = 𝐒 𝐱 + 𝐢𝐒 𝐲 𝝑~ Direction of spin 𝓝~ Length of macroscopicspin Semantic issue; Y. M. Bunkov and G. E. Volovik,arXiv:1003.4889. Textbook by Leggett D. Snoke, Nature 443, 403 (2006). C. D. Batista et al., RMP. 86, 563 (2014). Macroscopiccoherent stateQuantum effectsIndividual spins/quasi-particles Condensed time: over a few hundred ns. 𝓝;Magnon-BEC 𝝑; PhaseBEC Quasi-equilibrium Magnon-BEC Magnon picture Spin picture
  • 5. BEC BEC “Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping” [S. O. Demokritov et al., Nature 443, 430 (2006)] Based on 𝒂 = 𝓝 𝒆 𝒊𝝑 𝒂 ~ 𝐒+ = 𝐒 𝐱 + 𝐢𝐒 𝐲 Semantic issue; Y. M. Bunkov and G. E. Volovik,arXiv:1003.4889. Textbook by Leggett D. Snoke, Nature 443, 403 (2006). C. D. Batista et al., RMP. 86, 563 (2014). Macro scopic Spin BEC Quasi-equilibrium Magnon-BEC Magnon picture Macroscopiccoherent stateQuantum effectsIndividual spins/quasi-particles Condensed time: over a few hundred ns. 𝓝;Magnon-BEC 𝝑; Phase 𝝑~ Direction of spin 𝓝~ Length of macroscopicspin  Can be semi-classically treated  Canonically conjugate variables; [𝓝, 𝝑] Spin picture
  • 6. HOW TO ACHIEVE  Berry phase(Geometric phase)  Quasi-equilibrium magnon-BEC Persistent magnon-BEC current To electro-magnetically control spin currents “Macroscopic quantum effect (coherence)”  Spin currents; drastically ENHANCED !!
  • 7.  Spin Current ”Persistent magnon-BEC current” Under our control Directmeasurement  Electromagnet Towardthe direct measurementof spin (magnon) current  Berry Phase Aharonov-Casher(A-C)位相 Magnon-BEC (Ferromagnetic insulator) 「MacroscopicEffect」 CONCEPT
  • 8. OUTLINE  INTRODUCTION  REVIEW  SUMMARY  RESULT  Josephson effects  Persistent magnon-BEC current (i.e. super spin current)  Magnon-BEC Josephson junction (MJJ)  SYSTEM
  • 10.  Superconductors (SC) [Cooper pair] = [Boson] B. D. Josephson, [Phys.Lett.1,251 (1962)] 1962~ 𝑑 𝑑𝑡 ∆𝑁 𝑡 = 2J ℏ sin ∆𝜙(𝑡) 𝑑 𝑑𝑡 ∆𝜙 𝑡 = − 2𝑒𝑉(𝑡) ℏ Josephsonequations in SC  dc Josephson effect; 𝑑 𝑑𝑡 ∆𝜙 𝑡 ∝ 𝑉 𝑡 = 0  Relative phase is time-independent; 𝑑 𝑑𝑡 ∆𝜙 𝑡 = 0 ; Josephson current ”charge current” Josephson current J (tunneling)(1973) Textbook by Leggett w.f. w.f. Josephson Effects Universal Phenomenon of bosonic particles 𝑉(𝑡); the external voltage applied across thejunction J (> 0); the tunneling amplitude, ∆𝑁 ≔ the relative population, ∆𝜙; the relative phase• • • Figby [Fa Wang and Dung-Hai Lee, Science, 332 (2011) 200] Fig by[J. Q. You andF. Nori, Nature, 474, 589 (2011)] Picture by Googlesearch (HPfornovel prize).
  • 11.  Universal Phenomenon of bosonic particles Anderson et al., Science (‘95) Atomic BEC  Atomic BEC  Magnon BEC [Magnon] = [Bosonic quasi-particle] Josephson Effects B. D. Josephson, [Phys.Lett.1,251 (1962)] Berry Phase (Aharonov-Casher phase) 1962~ 1997~ Now We (Our present work)  Superconductors (SC) [Cooper pair] = [Boson] A. Smerzi etal., [PRL. 79, 4950 (1997)] [PRA, 59, 620 (1999)] [PRL.84, 4521 (2000)] Leggett[Rev.Mod.Phys. 73, 307 (2001)] M. Albiezetal.[PRL.95, 010402 (2005)] S. Levyetal. [Nature 449, 579 (2007)] (2001)(1973) Figby [Fa Wang and Dung-Hai Lee, Science, 332 (2011) 200] Picture by Googlesearch (HPfornovel prize).
  • 12. Berry Phases Aharonov- Bohm phase [Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959)] Aharonov- Casher phase [Y. Aharonov and A. Casher, PRL, 53, 319 (1984)] Charged particle; 𝑒 Magnetic dipole; 𝜇 𝜇 = 𝑔𝜇 𝐵 𝒆 𝑧 ;(Magnon) Magnetic vector potential 𝐴 [Electric field]×[Magnetic dipole]; 𝐸 × 𝜇 𝜑A−B = 𝑒 ℏ𝑐 𝐴 ∙ 𝑑𝑠 =: 𝑒 ℏ𝑐 𝛷A−B 𝜑A−C = 𝑔𝜇 𝐵 ℏ𝑐2 (𝐸 × 𝜇) ∙ 𝑑𝑠 𝐸 𝜇 𝐴 𝑒 𝛷A−B  Special casesof Berryphase [R.Mignani,J.Phys.A:Math. Gen. 24, L421 (1991)] [X.-G.Hea and B. McKellarb,Phys.Lett.B264, 129(1991)] A special case of Berry phase
  • 13. Microwave Pumping Magnon Magnon-BEC (macroscopicstate) Magnon pumping Room temperature [S.O. Demokritov etal.,Nature 443, 430 (2006)]  Excite additionalmagnons.  Create a gas of quasi-equilibriummagnons with a non-zerochemical potential.  A Bose condensate of magnons is formed. Microwave pumping  We can directlyinject magnons so that it becomes a macroscopicnumber(BEC). [K.Nakataand G. Tatara, J.Phys.Soc. Jpn. 80, 054602 (2011).] [K.Nakata,Doctoral Thesis,KyotoUniversity(2014).]
  • 14. Magnon Magnon-BEC (macroscopicstate) Magnon pumping Room temperature 𝒂 = 𝑵 𝐁𝐄𝐂 𝒆𝒊𝝁𝒕+𝒊𝜶  BEC order parameter Quasi-equilibrium Magnon-BEC [S.O. Demokritov etal.,Nature 443, 430 (2006)] 𝑛BEC~1018 − 1919cm−3 [Y. M. Bunkov andG. E. Volovik,arXiv:1003.4889.]
  • 15. [C.D. Batistaet al., Rev.Mod. Phys., 86, 563 (2014).] [Y. M. Bunkov andG. E. Volovik,arXiv:1003.4889.] Quasi-equilibrium Magnon-BEC  [Metastable state]≠[Groundstate] [J. Hick et al., Phys. Rev. B 86, 184417 (2012)] [T. Kloss et al., Phys. Rev. B 81, 104308 (2010)] [S. M. Rezende, Phys. Rev. B 79, 174411(2009)] [F. S. Vannucchi et al., Phys. Rev. B 82, 140404(R) (2010)] [F. S. Vannucchi et al., EPJB 86 (2013) 463] [S. M. Rezende, Phys. Rev. B 79, 174411 (2009)] Thermalizationprocess 𝒂 = 𝑵 𝐁𝐄𝐂 𝒆𝒊𝝁𝒕+𝒊𝜶  BEC order parameter [K.Nakataand G. Tatara, J.Phys.Soc. Jpn. 80, 054602 (2011).] [K.Nakata,Doctoral Thesis,KyotoUniversity(2014).]
  • 17. E = E𝐞 𝐲 𝒏 𝐋, 𝝑 𝐋 𝒏 𝐑, 𝝑 𝐑 𝐉 𝐞𝐱 J J 𝒏 𝐋, 𝝑 𝐋 𝒏 𝐑, 𝝑 𝐑 ΓL ΓR A-C phase: Magnon BEC Josephson Junction  Tunneling Hamiltonian (boundary spins)  Hamiltonian of each single FIs (Magnon BECs) with Diag 𝐉 = J{1, 1, 𝜂}, J < 0 E = E𝐞 𝐲 ℋH =(Gross-Pitaevskii Hamiltonian;ℋGP) Microscopic spin model Electric field (E = E𝐞 𝐲) Magnon picture −𝜽 𝐀−𝐂 𝜽 𝐀−𝐂 ( Jex ≪ J ) Magnon BEC (Holstein-Primakoff tr.); ~ 𝐒+ = 𝐒 𝐱 + 𝐢𝐒 𝐲
  • 18. Magnon picture BEC 𝒂 = 𝓝 𝒆𝒊𝝑 ~ 𝐒+ = 𝐒 𝐱 + 𝐢𝐒 𝐲 𝐉 𝐞𝐱 𝐉 𝐞𝐱 𝓝 𝐋, 𝝑 𝐋 𝓝 𝐑, 𝝑 𝐑 CALCULATION PROCEDURE Spin picture Canonically conjugate variables [𝓝, 𝝑] BEC BEC Macro scopic Spin Macro scopic Spin 𝓝;Magnon-BEC 𝝑; Phase 𝒩T: = 𝒩L + 𝒩R• Population imbalance; 𝐳 ≔ (𝒩L − 𝒩R)/𝒩T, • Relative phase; 𝛉 ≔ ϑR − ϑL ~Two macroscopicspins interact with each other through 𝐉 𝐞𝐱
  • 19. EACH VALUE E = E𝐞 𝐲 Each Value Our estimation The exchange interaction between the two FIs Jex = 1μeV The exchange interaction between the neighboring spins in a single FI J ≈ 0.1eV The density of magnpn-BECs [S. O. Demokritov et al., Nature (2006).] nBEC = 1019 cm−3 The applied magnetic field 𝐵 ≈ 1mT The applied electric field to the interface 𝐸 ≈ 5GV/m The width of the interface Δ𝑥 ≈ 10Å The lattice constant of a FI 𝛼 ≈ 1Å
  • 21. Josephson Equations in MJJ ;Renormalized time 𝜏 = 1 ↔ 𝑡 = 1ns (ex. K0/𝑆 ≡ Jex = 1μeV)  Josephson spin current ∝ nL, ϑL E = E𝐞 𝐲 nR, ϑR −𝜽 𝐀−𝐂 𝜽 𝐀−𝐂 Δ𝐸 & Λ; renormalized magnetic field difference & mag-mag interactionin terms of K0 (K0 ; tunnelingmagnitude)  nT: = nL + nR • Population imbalance; z ≔ (nL − nR)/nT • Relativephase; θ ≔ ϑR − ϑL • A-C phase; • ∆x; the width of the interface (~Å)
  • 22. [Period]~𝟔ns ac Josephson Effect ;Renormalized time 𝜏 = 1 ↔ 𝑡 = 1ns (ex. K0/𝑆 ≡ Jex = 1μeV)  No Aharonov-Casherphase; ~(Chemical potential difference) Condensed time: over a few hundreds ns. S. O.Demokritovetal., Nature 443, 430 (2006).
  • 23.  dc Josephson Effects 𝜽 = 𝟎
  • 24. Time-dependent Magnetic Field i) Increasing rate; 𝑩 𝟎 ii) Josephson equation (weak coupling) ∝ 𝑬; electric field ∝ 𝑩 𝟎; magnetic field (increasing rate) dc effect 𝜽 = 𝟎 (steady-state solution) θ(τ = 0) = 0 E = E𝐞 𝐲 θ ≔ ϑR − ϑL z ≔ (nL − nR)/nT nL, ϑL nR, ϑR −𝜽 𝐀−𝐂 𝜽 𝐀−𝐂Λ; renormalized mag-mag interaction in terms of K0 (K0 ; tunneling magnitude) UL UR Jex ≪ J
  • 25. dc Josephson Effect 0 𝜏 = 1 ⟷ 𝑡~1ns 𝜽 ≠ 𝟎 𝜽 = 𝟎(+ small oscillationin “z”)  AtomicBEC;A. Smerzi etal., [PRL. 79, 4950 (1997)] [PRA, 59, 620 (1999)] [PRL.84, 4521 (2000)]
  • 26. dc-ac Transition; 𝐳 𝟎 = 𝐁 𝟎/𝚲 0  (c) dc-ac transition; 𝒛 𝟎 ≈ 𝟎. 𝟕𝟐𝟓 𝑧0 = 0.10 𝑧0 = 0.724 𝑧0 = 0.726 𝑧0 = 1.1 dc-ac Transition  (d) dc-ac transition; 𝒛 𝟎 ≈ 𝟏 𝑧0 = 0.726 𝑧0 = 0.726 Recovery due to A-C phase 𝜏 = 1 ⟷ 𝑡~1ns𝜏 = 1 ⟷ 𝑡~1ns dc effect ac effect dc effect ac effect  Atomic BEC; A. Smerzi et al., [PRL. 79, 4950 (1997)] [PRA, 59, 620 (1999)] [PRL. 84, 4521 (2000)]
  • 28. Magnon-BEC Ring ・Electric-gradient flux  Single-valuednessof the BEC wave function In analogy to superconductingrings 𝑝 ∈ ℤ; phase winding number ・Electric flux quantum  Persistent magnon-BEC current The A-C phase in the ring Quantized electric-gradientflux 𝐄(𝜌, 𝜑) =
  • 29. Direct Measurement ≫ 10−13 V nBEC = 1019cm−3 J ≈ 0.1eV [F. Meier and D. L., PRL 90, 167204 (2003).]  [Persistentmagnon-BEC current 𝐈 𝐁𝐄𝐂] = [Steady flow of the magnetic dipoles] (i.e. magnons or magnetic moment 𝑔𝜇 𝐵 𝒆 𝑧)  Moving magnetic dipoles  “Electric dipole fields 𝐄 𝐦”  Voltage drop 𝐕 𝐦. S. O. Demokritov et al., Nature (2006). ; Spin chains Largely enhanced  due to “Macroscopic coherence” [D.Loss and P.M. Goldbart,PLA215, 197 (1996)] 𝐕 𝐦 𝜌0 = 1mm 𝑟0 = 1mm Vm~1nV 𝑔 = 2, 𝑆 = 1/2 × 𝟏𝟎, 𝟎𝟎𝟎 times!! 𝑔𝜇 𝐵 𝒆 𝑧 𝑅 ≈ 10mm 𝑝 ≈ 50 (Phase winding number;𝜙 = 𝑝𝜙0 )
  • 31. Analogous Phenomenon Magnon Josephson effect Magnon Hall effect Dzyaloshinskii-Moriya interaction Temperature gradient ≈ Onose et al. [Science 329, 297 (2010)] [Josephson spin current] ⊥ [Electric field] [Thermal spin current] ⊥ [temperature gradient] ≈ Key point; Transverse spin currents Picture from [Science 329, 297 (2010)]
  • 32. SIGNIFICANCE The Bose Josephson junction (BJJ) of atomic BEC 𝜽 𝐀−𝐂 = 𝟎 The magnon Josephson junction (MJJ) M. Albiez et al. [PRL. 95, 010402 (2005)] S. Levy et al. [Nature 449, 579 (2007)] Leggett [Rev. Mod. Phys. 73, 307 (2001)] A. Smerzi et al., [PRL. 79, 4950 (1997)] [PRA, 59, 620 (1999)] [PRL. 84, 4521 (2000)] [Theory] [Experiment]  Exact dc Josephson effect ・Time-dependent magnetic field ・Aharonov-Casher phase ・ac-dc transition ・Persistent magnon-BEC current  Magnon-interferenceAharonov-Casher phase Cold atom [Our work on MJJ] = [The generalization ofthe preceding studies on BJJ] Picture byGoogle search.
  • 33. LAST MESSAGE Phys. Lett. A, 96 (1983), p. 365  Our work [arXiv:1406.7004] Persistent (charge) current due to the Aharonov-Bohm phase Persistent “magnon-BEC” current due to the Aharonov-Casher phase K. N., K. A. van Hoogdalem, P. Simon, and D. Loss
  • 34. SUMMARY “JosephsonEffects& PersistentSpinCurrentsin Magnon-BECduetoBerryPhase” I). How to electromagnetically control Josephson spin currents  [Period of ac Josephson effect]~10ns III). How to directly measurethe Josephson magnon-BEC currents  The resulting voltage drop from the flow of the magnons (i.e. magnetic dipoles).  It is largely enhanced due the macroscopic coherence of magnon-BECs; Vm~1nV ≫ 10−13 V  This method is applicable to Josephson junction; 0 ≤ Vm ≤ 1𝜇V due to ac or dc effects. II). Persistentmagnon-BEC current (i.e. super spin current) due to the Berry phase  It is quantized in the magnon-BEC ring. Regarding macroscopic quantumself-trapping, please see the preprint [arXiv:1406.7004]. Each Value Our estimation The exchange interactionbetweenthe twoFIs Jex = 1μeV The exchange interactionbetweenthe neighboringspinsinasingle FI J ≈ 0.1eV The densityof magnpn-BECs[S.O.Demokritov etal.,Nature (2006).] nBEC = 1019cm−3 The appliedmagneticfield 𝐵 ≈ 1mT The appliedelectricfieldtothe interface 𝐸 ≈ 5GV/m The widthof the interface (The lattice constant 𝛼 ≈ 1Å) Δ𝑥 ≈ 10Å Based on [arXiv:1406.7004] K. N., K. A. van Hoogdalem, P. Simon, and D. Loss