Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.
Recent advances in nuclear chemistry 
III Schoolof Energetic and Nuclear Chemistry 
Biological and Chemical Research Centr...
Scope 
• 
Nuclear prospects in Russia 
• 
NMR for radioactive materials analyses 
• 
Sync Radiation 
• 
Actinide hypothesi...
Homo sapience sp. was the most efficient one in applying technologies to improving its life 
Economist Kenneth Boulding(19...
Petroleum energeticswiki : 
• 
Themodern historyof petroleum began in the 19thcentury with the refining ofparaffinfrom cru...
Discovery of radioactivity and estimation of its importance 
Becquerel 
• 
In 1896 found out that Uranium ore is emitting ...
2014 ‐60thanniversary of the First World NPP • 
The first NPP was constructed in Obninsk, Russia , the first grid connecti...
Potential of nuclear 
• 
To use the full potential of U (and Pu bred from it) requires fast‐neutron reactors 
• 
The stock...
Fast neutron reactors• 
Fast neutron reactors are a technological step beyond conventional power reactors. 
• 
They offer ...
Fast reactors with diff. coolants: LLMC (Na), HLMC (Pb, LBE = Pb‐Bi) 
• 
FN types: 
• 
BN‐60 
• 
Brest‐300 
• 
BN‐600 
• 
...
Fast reactors in Russia and ChinaBeloyarskNPP CEFR ‐China 
• 
The single reactor now in operation was a BN‐600 fast breede...
FastBN‐800withmixedUO2‐PuO2fuelandsodium‐ sodiumcoolantstarted2014inRussia. 
Fast BN‐1200 reactor with breeding ratio of 1...
Generation IVreactor design 
• 
The generation IVlead‐cooled fast reactorfeatures a fast neutron spectrum, molten Pbor Pb‐...
•Develop and demonstrate fast reactor technology that can be commercially deployed 
•Focus on sodium fast reactors because...
Some of the concepts developed in the past or under development nowadays are the following: 
• 
—In the Russian Federation...
Small Modular Reactors (SMRs) 
• 
Small Modular Reactors (SMRs) are nuclear power plants that smaller in size (300 MWe or ...
367613365 Reactors for NPPs Under Construction ‐by region: Asia ‐Far EastAsia ‐Middle East and SouthEU 27Other EuropeAmeri...
NMR ‐SR 
technics
Nuclear Magnetic 
Resonance 
Spectroscopy 
http://en.wikipedia.org/wiki/Nuclear_magnetic_resonance 
Superconducting magnet...
Now we have both 600 and 300 MHzAvanceBruckerNMR spectrometersin disposition of my laboratory 
Avance‐300 Bruker 
Avance‐6...
Nuclei in operation 
Nucleus 
Spin 
γ, MHz/T 
Natural Abundance 
Relative Sensitivity 
1H 
1/2 
42.576 
99.985 
100 
2H 
1...
• 
Number and type of NMR active atoms 
• 
Distances between nuclei 
• 
Angles between bonds 
• 
Motions in solution 
• 
S...
99gTc‐NMR (TcO4: O‐16, O‐17, O‐18) 
99Tc NMR (67.55MHz) spectrum of 0.2 M NaTcO4solution in recycled water containing ∼72%...
O‐17 NMR 
• 
In water enriched in O‐17 
280300320340130,4130,8131,2131,6132,0 КССВ 17O-99Tc КССВ 99Tc-17ONH4TcO4H0=7.04ТлТ...
Tc‐NMR 
ChemShifts in TcO4 ‐Puce hunting 
• 
Solutions 
• 
Ionic pair formation 
• 
Receptor Complexes 
Others 
• 
TcO4 –T...
99TcЯМР, CDCl3 
UV, dichloroethane 
Imine-amide macrocycle 
log(β11) = 3.2 
log(β11) = 5.1 
Cyclo[8]pyrrole·2(HCl) 
log(β1...
Кривые обратного 99TcЯМР титрования для рецепторов L1 (а) (экспортированы из программы HYPER NMR2006. О –эксперимент, лини...
Кривые обратного 99TcЯМР титрования для рецепторов L2 (б) (экспортированы из программы HYPER NMR2006. О –эксперимент, лини...
Chemical shift 
http://www.cem.msu.edu/~reusch/VirtualText/Spectrpy/nmr/nmr1.htm
Chemical shift 
δ=(f‐fref)/fref
Intramolecularmode 
• 
The Berry pseudorotationis a classical mechanism for interchanging axial and equatorial ligands in ...
Pseudorotationvia the Berry mechanism 
• 
Single‐crystal X‐ray studiesindicate that the PF5molecule has two disƟnct types ...
Berry pseudorotation: NMR‐31P in PF5 
Yellow atoms are axial 
Blue atoms are axial 
http://fluorine.ch.man.ac.uk/pics/berr...
E
NMR‐99Tc in 3 –13 M H2SO4[Tc] = 0.001M 
-10409014019024029034035791113 NMR-99Tc shift , ppm c(H2SO4), M0 ppm = 0,05M KTcO4
99Tc‐NMR Tc(VII) in HClO4 
разбавление водойC(HClO4)δ, ppm11,37124,0551188,810,666010,3336,2410,039,99,743,39,47-1,449,22-...
99Tc‐NMR Tc(VII) in HClO4разбавление водойC(HClO4)δ, ppm11,37124,0551188,810,666010,3336,2410,039,99,743,39,47-1,449,22-4,...
Solid State NMR 
Characterization of the Structure of solidPertechnicAcid HTcO4 
Solid state 99Tc‐NMR of HTcO4(solid) 
Pro...
Solid‐State NMR Characterization of Electronic Structure in DitechnetiumHeptoxide 
• 
Herman Cho, W.A. de Jong, A.P. Satte...
• 
NMR spectrum of Tc metal powder obtained by FT of free induction decay accumulated after excitation of the spin system ...
• 
99Tc NMR study of bimetallic Ru‐Tc samples supported at different supports i.e.: g‐Al2O3 , SiO2, MgO, TiO2has shown tha...
Synchrotron Radiation as a Tool 
ISTR 2011 Moscow 
Electromagnetic radiation generated by ultrarelativisticelectrons/posit...
Advantages compared to standard X‐ray sources 
• 
Intensity/Brightness higher by 6‐10 orders of magnitude 
• 
Continuum sp...
EUROPEAN SR
EUROPEAN SYNCHROTRONS incl. MOSCOW
European 
synchrotron 
Radiation 
Facility, 
Grenoble, 
France 
Production 
of X-rays in synchrotron
European synchrotron 
ESRF 
Electron energy: 
6 Gev
Bending magnets 
Undulators
• 
Siberian Center for Synchrotron Radiation(BINP, Novosibirsk) since 1970‐ies: Storage ringsVEPP‐3 (2 GeV, 120 mA), VEPP‐...
• 
Basics and typical applications of 
‐EXAFS/XANES‐SAXS‐XRD 
• 
Combined application of X‐ray techniques to structural di...
SYNCHROTRON DIAGNOSTICS OF Radioactive and Functional Materialsin National Research Center “Kurchatov Institute” Departmen...
ISTR 2011 Moscow 
Kurchatov Synchrotron Source 
Linac 
Booster 
Main storage 
ring 
Control room
10.5010.7511.0011.2511.5011.7512.00Pt L3Re L2 Fluorescence Yield Photon Energy, keVRe L3 
2. Diffraction 
1. Spectroscopy ...
KSRC X-ray stations 
1 
ProteinCrystallography 
2 
PrecisionX-rayOptics 
3 
X-rayCrystallographyandPhysicalMaterialsScienc...
Characteristics of the beamline 
TypeEnergy interval, keVΔE/E 
Si(111)5‐1910‐4 
Si(220)8‐3510‐4 
Monochromator is driven b...
In‐situcell for functional materials 
3‐component gas mixtures 
• 
Inerts: He, N2, Ar 
• 
Oxidation and reduction:O2, H2 
...
He closed‐cycle refrigerator (SHI, Japan) 
Minimum temperature achieved10.0К + precise termostabilization up to room tempe...
Combined use ofXAFS, XRD and SAXS• 
XANES‐oxidation state of heavy atoms + coordination symmetry 
• 
EXAFS‐local neighborh...
X‐ray absorption spectroscopy: basics 
ISTR 2011 Moscow
Fermi 
level 
HOMO 
LUMO 
XANES: origin 
Vacuumlevel 
Core electronlevel 
Valenceband 
Forbidden gap 
Conductionband 
XANE...
Photoionized atom 
Neighbor atom 
Photoelectron wave 
Back-scattered photoelectronwave 
Single scattering 
Multiple scatte...
)(/22222))(2sin(),( )( )(krkjjjjjjjjeekkrkfkrNkSkλσϕπχ−−+=Σ 
χ-normalized background-subtracted EXAFS-signal 
k–photoelect...
EXAFS/XANES: implementation at SMS 
Detection modes:transmission(ion chambers) 
fluorescence yield( NaI(Tl) scintillation ...
1152511550115751160011625116500.00.51.01.52.0 Normalized Absorbtion, a.u. Photon Energy, eV Pt Pt2+ Pt3+ Pt4+ Pt L36.536.5...
Application to Tc 
Tc K‐edge XANES
Application to Re 
Re L3‐edge XANES
01234561.4 Tc-C 1.76Å6.0 Tc-Tc 2.72Å TcCx |FT(k3χ(k))| R, ÅTc12 Tc-Tc 2.72Å 
Tc METAL & Tc CARBIDE
01234560.3 Re-C 2.14Å1.0 Re-C 2.46Å1.1 Re-Re 2.62Å 3.1 Re-Re 2.73Å ReCx |FT(k3χ(k))| R, ÅRe12 Re-Re 2.75Å 
Re METAL & Re C...
PYROMETALLURGY 
REPROCESSING OF SPENT FUEL
Structures of Tc halogenidesin solutions and melts1) fundamental studies of cluster Tc compounds2) Analyses of possible sp...
а 
б 
в 
а-МоноядерныйбромидныйкомплексTcK-крайk3-взвешенныйEXAFSспектрипреобразованиеФурьеспектра(Me4N)2TcBr6: 
Tc-Br:N=5...
XAFS analysis of electrode surface after corrosion 
Æ 
Determination of eventual Tc oxide: ‐In 1 M HCl(E= 800 mV) 
‐In 1 M...
XANES 
No pre‐edge : No TcO4‐sorbed on electrode. 
No shift of edge for 1M HCl , shifted (~1 eV) at pH = 2.5 
Æ 
Product o...
ÆEXAFS analysis also confirm presence of Tc metal on surface electrode after corrosion . 
Æ 
No oxide detected. 
EXAFS aft...
NEXT : • 
SAXS
X‐ray detector (0D,1D, 2D) I(s) 
Scattering vector s = k1 ‐k0 
s = 4πsin θ/ λ= 2π/ d 
Sample in the transmission geometry ...
ISTR 2011 Moscow 
Indirect FT 
I(s) –experimentalscattering 
curve 
P(r) –volumedistributionof hard spheres
ISTR 2011 Moscow 
SAXS: implementation at SMS 
Sample-to-detectordistance,mm 
2θmin-2θmax,° 
qmin-qmax,nm-1 
E=25keV 
qmin...
1 . Small‐angle diffraction on mesostructured materials 
2 . SAXS application: aqueous colloids 
p.e. ‐of Tc sulfide nanop...
Examples of combined structural studies
E
E
E
E
Сдвиг ЯМР сигнала в нанодисперсном 
образце 20% Tc/g‐Al2O3 (Рис. 4а) составляет 
7406 м.д., что на 600 м.д. превышает 
зна...
• 
99Tc ЯМР спектр образцы 5% Tc/γ‐ Al2O3при 295 K; 
• 
(a) SW1.7 МГц, число сканов 250000, (b) SW250 кГц, число сканов 64...
V.F. Peretrukhin, G.T. Seaborg, N..N. Krot, LNL, Berkley, 1998 
3
Periodic Table and heptavalent state of elements 
‰ 
Period is variable :2, 8, 8, 18, 18, 32…? 
‰ 
Zones of implacability ...
• 
Interatomic distances in metals/simple matter A.Wells “Struct.Inorg.Chem.” 
• 
Lost :P,S, Br, I, Po, At, Fr, Ra, Ac, Np...
Synthesis and the types of An(VII) 
• 
CrystallinecompoundsofAn(VII)canbepreparedbydeepoxidationofactinidesinstronglyalkal...
MAnO4(·nH2O) (M–alkali metal) 
• 
It was estimated by N.N. Krot and the followers that the transuranium(VII) compounds lik...
BaUO4structural type compounds 
• 
Lattice parameters for different U(VI), Np(VI) (lit. data) and Np(VII) compounds (IPCE ...
IR spectral data indicates Np‐O and Np=O difference 
Evident splitting at the CsNpO4spectrum indicates/supports the presen...
Mossbauer spectra of Np(VII) compounds 
• 
1 –CsNpO4 
• 
2 –Na3NpO4(OH)2*nH2O 
• 
3 –Li5 NpO6 
• 
4 –frozen solution of Np...
Inthisway: 
Transuranic(VII) MAnO4(·nH2O) compounds are completely different : 
from 
MXO4xnH2O(X–elementsofthe7thGroupfro...
100 
Isostructural: 
LiBrO4∙3H2O 
LiClO4∙ 3H2O 
LiMnO4∙ 3H2O 
LiTcO4∙6/2H2O6/2=3 
LiReO4∙1.5H2O 
LiReO4∙ H2O 
‐ 
Analogous...
101 
Isostructural pertechnetate salts withcation : anion = 1:1 
Cation 
Anion 
ClO4- 
MnO4- 
ReO4- 
[Li · 6/2Н2O]+ 
+ 
+ ...
Anionic chain [(Np2O8)(OH)2]n4n‐in the structure 
of Li[Co(NH3)6][(Np2O8)(OH)2]∙2H2O 
(Burns J., Baldwin W., Stokely J. In...
The first Pu(VII) single crystal 
13
14
Na4[AnO4(OH)2](OH)∙2H2O 
Np1‐O1 1.891(2)Pu1‐O1 1.8824(15) 
Np1‐O2 1.888(2) Pu1‐O2 1.8805(18) 
Np1‐O3 1.917(2) Pu1‐O3 1.910...
Several mixed cation compounds of Np(VII) and Pu(VII) 
NaRb2[NpO4(OH)2]∙4H2O(I):a=8.2323(2),b=13.4846(3),c=9.9539(2)Å,β=10...
Selected interatomic distances and torsion angles 
in the structures I –VI : 
IIIIIIIVVVI 
Bond(Å) 
An=O 1.8790(12)2×1.869...
RecentlyanewwayforNp(VII)compoundpreparationwasproposedbyFedosseevandco-workers[(2008)]: electrochemicaloxidationinacetate...
Pu(VII) compounds 
are close structural and chemical analogues 
of Np(VII) ones 
19
Tc(VII) & Pu(VII), Np(VII) 
Pu(VII) and Tc(VII) are different in (cry,ele)‐structure, 
ligand arrangement, stability and c...
Periodic Table and heptavalent state of elements 
‰ 
Period is variable :2, 8, 8, 18, 18, 32…? 
‰ 
Zones of implacability ...
An(VII) ‐Tc&Re(VII) 
• 
Structural and chemical data obtained in recent years by X‐ray‐s‐ c, IR and EXAFS investigations o...
BessonovPerminovKrot, GrigorievPeretrukhinGermanCzerwinskiPoineau 
Thank you for your Attention!
ISTR‐2014
Thank you for your attention !
2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture
2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture
2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture
2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture
2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture
Nächste SlideShare
Wird geladen in …5
×

2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

600 Aufrufe

Veröffentlicht am

Recent progres in nuclear energy and sciences
NMR of radioactive materials, Exafs, XANES, actinide hypothesis

Veröffentlicht in: Bildung
  • Als Erste(r) kommentieren

2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

  1. 1. Recent advances in nuclear chemistry III Schoolof Energetic and Nuclear Chemistry Biological and Chemical Research Centre University of Warsaw, Poland Konstantin German Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences (IPCE RAS), Moscow, Russia Medical institute REAVIZ
  2. 2. Scope • Nuclear prospects in Russia • NMR for radioactive materials analyses • Sync Radiation • Actinide hypothesis verification
  3. 3. Homo sapience sp. was the most efficient one in applying technologies to improving its life Economist Kenneth Boulding(1956) : one who believes that exponential growth could be eternal in the limited world is either mad or economist Neand.sp. sp. Cosmo sp. Coal Oil
  4. 4. Petroleum energeticswiki : • Themodern historyof petroleum began in the 19thcentury with the refining ofparaffinfrom crude oil. The Scottish chemistJames Youngin 1847 noticed a naturalpetroleumseepage in theRiddingscolliery‐Derbyshire. He distilled a light thin oil suitable for use as lamp oil, at the same time obtaining a thicker oil suitable for lubricating machinery. • In 1848, Young set up a small business refining the crude oil. The new oils were successful, but the supply of oil from the coal mine soon began to fail (eventually being exhausted in 1851). • Great sceptisismto petroliumburning was shown by D. Mendeleev… • Once started it will once stop WHAT After… ?
  5. 5. Discovery of radioactivity and estimation of its importance Becquerel • In 1896 found out that Uranium ore is emitting some new kind of rays. Curie and Sklodowska • FrenchphysicistPierreCurieandhisyoungPoleassistant(radio)chemistMariaSklodowskain1898foundoutthatnewRadiumsamplesaremorehotcomparedtotheenvironmentsformanymonths.Theyconcluded:radioactivityisnewandveryimportantsourceofenergyandproposeditsusageformedical, pharmaceutical,…,purposes. • Vernadsky in Russia in 1920 predicted that Ra and allied matter could be a very important key for new energetic in the World scale.
  6. 6. 2014 ‐60thanniversary of the First World NPP • The first NPP was constructed in Obninsk, Russia , the first grid connection on June 26, 1954 providing the new city of Obninsk with electricity. • The power plant remained active until April 29, 2002 when it was finally shut down. • The single reactor unit at the plant,AM‐1had a total electrical capacity of 6MW and a net capacity of around 5 MWe. Thermal output was 30MW. • It was a prototype design using a graphite moderator and water coolant. This reactor was a forerunner of the RBMK reactors.
  7. 7. Potential of nuclear • To use the full potential of U (and Pu bred from it) requires fast‐neutron reactors • The stock of depleted UO2in the world when used in fast reactors will provide the energy equivalent to 4X1011t oil http://www.world‐nuclear‐news.org
  8. 8. Fast neutron reactors• Fast neutron reactors are a technological step beyond conventional power reactors. • They offer the prospect of vastly more efficient use of uranium resources and the ability to burn actinides which are otherwise the long‐lived component of high‐level nuclear wastes. • Some 20 reactors were operated and 400 reactor‐years experience has been gained in operating them. • Generation IV reactor designs are largely FNRs, and international collaboration on FNR designs is proceeding with high priority.
  9. 9. Fast reactors with diff. coolants: LLMC (Na), HLMC (Pb, LBE = Pb‐Bi) • FN types: • BN‐60 • Brest‐300 • BN‐600 • Shevchenko • Phoenix • Superphenix • BN‐800 • BN‐1200 ‐project • FR = the key to really closed nuclear fuel cycle LBE = Lead‐Bismuth eutectic
  10. 10. Fast reactors in Russia and ChinaBeloyarskNPP CEFR ‐China • The single reactor now in operation was a BN‐600 fast breeder reactor, generating 600 MWe. (1980 –2014) • Liquid Sodium is a coolant. • Fuel: 369 assemblies, each consisting of 127 fuel rods with an enrichment of 17–26% U‐235. • It was the largest Fast reactorin service in the world. Three turbines are connected to the reactor. Reactor core ‐1.03 m tall , Diameter = 2.05 m. • China's experimental fast neutron reactor CEFR has been connected to the electricity grid in 2011 •
  11. 11. FastBN‐800withmixedUO2‐PuO2fuelandsodium‐ sodiumcoolantstarted2014inRussia. Fast BN‐1200 reactor with breeding ratio of 1.2 to 1.35 for (U,Pu)O2fuel and 1.45 for UN (nitride) fuel, Mean burn‐up 120 MWtXdXkg. BN‐1200 is due for construction by 2020 with Heavy Liquid Metallic Coolant (Pb‐Bi) http://www.world‐nuclear‐news.org
  12. 12. Generation IVreactor design • The generation IVlead‐cooled fast reactorfeatures a fast neutron spectrum, molten Pbor Pb‐Bi eutectic coolant. • Options include a range of plant ratings, including a number of 50 to 150Mweunits featuring long‐life, pre‐ manufactured cores. • Modular arrangements rated at 300 to 400MWe, and a large monolithic plant rated at 1,200MWe. The fuel is metal ornitride‐based containing U andtransuranics. • A smaller capacity LFR such as SSTAR can be cooled by naturalconvection, larger proposals (ELSY) use forced circulation in normal power operation, but with natural circulation emergency cooling. • The reactor outlet coolant temperature is typically in the range of 500 to 600°C, possibly ranging over 800°C.
  13. 13. •Develop and demonstrate fast reactor technology that can be commercially deployed •Focus on sodium fast reactors because of technical maturity •Improve economics by using innovative design features, simplified safety systems, and improved system reliability •Advanced materials development •Nuclear data measurements and uncertainty reduction analyses for key fast reactor materials •Work at Los Alamos focuses on advanced materials development, nuclear data measurements, and safety analyses Fast Reactors Program in USA * ‐Gordon JarvinenVIII International Workshop ‐Fundamental Plutonium Properties . September 8‐12, 2008
  14. 14. Some of the concepts developed in the past or under development nowadays are the following: • —In the Russian Federation, the small 75–100 MW(e) LBE cooled power fast reactor SVBR˗75/100 • —In Belgium, the 100 MW(th) multipurpose fast neutron spectrum MYRRHA facility, being designed to operate in both critical and subcritical mode • —In Japan, a small power reactor cooled by lead‐bismuth and fuelled with metallic and nitride fuel featuring extra long life time; a 150 MW(e) lead‐bismuth cooled fast reactor concept Pb‐Bi cooled direct boiling water fast reactor (PBWFR)) featuring direct contact steam generators (‘steam‐lift effect’ of lead‐bismuth coolants); and a medium sized lead‐ bismuth cooled fast reactor, lower breeding ratios in a Japanese scenario from 2030–2050 on • —In the USA, the modular lead‐bismuth cooled STAR‐LM concept featuring natural circulation and the lead or lead‐bismuth cooled Small, Sealed, Transportable, Autonomous Reactor(SSTAR) concept rated 10–100 MW(e) • —In Japan and the USA, the lead‐bismuth cooled encupsulatednuclear heat source (ENHS) concept, featuring natural circulation in both primary and intermediate circuits • —In China, a lead‐bismuth cooled and thorium fuelled fast reactor concept • —In the Republic of Korea, a lead cooled fast reactor dedicated to utilization and transmutation of long lived isotopes in the spent fuel
  15. 15. Small Modular Reactors (SMRs) • Small Modular Reactors (SMRs) are nuclear power plants that smaller in size (300 MWe or less) than current generation base load plants (1,000 MWe or higher). • These smaller, compact designs are factory‐ fabricated reactors that can be transported by truck or rail to where they are in need.
  16. 16. 367613365 Reactors for NPPs Under Construction ‐by region: Asia ‐Far EastAsia ‐Middle East and SouthEU 27Other EuropeAmerica Sources: IAEA‐PRIS, MSC 2011
  17. 17. NMR ‐SR technics
  18. 18. Nuclear Magnetic Resonance Spectroscopy http://en.wikipedia.org/wiki/Nuclear_magnetic_resonance Superconducting magnets 21.5 T Earth’s magnetic field 5 x 10‐5T NMR
  19. 19. Now we have both 600 and 300 MHzAvanceBruckerNMR spectrometersin disposition of my laboratory Avance‐300 Bruker Avance‐600 Bruker D3‐12 NMR‐600MHz (12.3 AV600_CHEM) OPERATED BY THE GROUP OF PROF. V.P. TARASOV, DR. G. KIRAKOSYAN AND V.A. IL’IN
  20. 20. Nuclei in operation Nucleus Spin γ, MHz/T Natural Abundance Relative Sensitivity 1H 1/2 42.576 99.985 100 2H 1 6.536 0.015 0.96 3He 1/2 32.433 .00013 44 13C 1/2 10.705 1.108 1.6 17O 3/2 5.772 0.037 2.9 19F 1/2 40.055 100 83.4 23Na 3/2 11.262 100 9.3 31P 1/2 17.236 100 6.6 39K 3/2 1.987 93.08 .05 99Tc 9/2 0 (99.8) 36Cl 2 0 (30) !
  21. 21. • Number and type of NMR active atoms • Distances between nuclei • Angles between bonds • Motions in solution • Sternheimerconst • QQC • Etc… Information obtained by NMR • Organic substances • Radioactive materials • Ga‐complexes • Etc…
  22. 22. 99gTc‐NMR (TcO4: O‐16, O‐17, O‐18) 99Tc NMR (67.55MHz) spectrum of 0.2 M NaTcO4solution in recycled water containing ∼72% H218O at 298K. 2702802903003103203303400,400,410,420,430,44NH4Tc16O318O99Tc NMR H0=7.04TлТемпература, Т К Изотопный сдвиг ЯМР 99Тс, м.д.
  23. 23. O‐17 NMR • In water enriched in O‐17 280300320340130,4130,8131,2131,6132,0 КССВ 17O-99Tc КССВ 99Tc-17ONH4TcO4H0=7.04ТлТемпература, Т К КССВ, Гц
  24. 24. Tc‐NMR ChemShifts in TcO4 ‐Puce hunting • Solutions • Ionic pair formation • Receptor Complexes Others • TcO4 –TcO6 • Tc metal • TcO2
  25. 25. 99TcЯМР, CDCl3 UV, dichloroethane Imine-amide macrocycle log(β11) = 3.2 log(β11) = 5.1 Cyclo[8]pyrrole·2(HCl) log(β12) = 3.8 log(β12)= 6.0 99Tc-NMRtitration, Bu4N+ 99TcO4–in CDCl3 99Tc-NMR strengths • Clear signal • Good correlation withUV KolesnikovG.V., German K.E, KirakosyanG., TananaevI.G., UstynyukYu.A., KhrustalevV.N., KatayevE.A. // Org.Biomol.Chem. ‐2011.
  26. 26. Кривые обратного 99TcЯМР титрования для рецепторов L1 (а) (экспортированы из программы HYPER NMR2006. О –эксперимент, линии –расчетные кривые, черная –апроксимацияконстанты, синяя –конц. TBA99TcO4, красная –конц. комплекса хозяин –гость). УФ‐вид
  27. 27. Кривые обратного 99TcЯМР титрования для рецепторов L2 (б) (экспортированы из программы HYPER NMR2006. О –эксперимент, линии –расчетные кривые, черная –подгон константы, синяя –конц. TBA99TcO4, красная –конц. комплекса хозяин –гость). УФ‐вид
  28. 28. Chemical shift http://www.cem.msu.edu/~reusch/VirtualText/Spectrpy/nmr/nmr1.htm
  29. 29. Chemical shift δ=(f‐fref)/fref
  30. 30. Intramolecularmode • The Berry pseudorotationis a classical mechanism for interchanging axial and equatorial ligands in molecules with trigonalbipyramidalgeometry • PF5 • IF5 Intermolecular mode • Tarasovexchange in TcO4‐ TcO6 exchange spectra Exchange spectra
  31. 31. Pseudorotationvia the Berry mechanism • Single‐crystal X‐ray studiesindicate that the PF5molecule has two disƟnct types of P−F bonds (axial and equatorial): the length of an axial P−F bond is 158.0 pm and the length of an equatorial P−F bond is 152.2 pm. Gas‐phaseelectron diffractionanalysis gives similar values: the axial P−F bonds are 158 pm long and the equatorial P−F bonds are 153 pm long. • Fluorine‐19 NMRspectroscopy, even at temperatures as low as −100 °C, fails to distinguish the axial from the equatorial fluorine environments. • The apparent equivalency arises from the low barrier for pseudorotationvia theBerry mechanism, by which the axial and equatorial fluorine atoms rapidly exchange positions.The apparent equivalency of the F centers in PF5was first noted by Gutowsky.[2]The explanation was first described byR. Stephen Berry. • Berry pseudorotationinfluences the19F NMR spectrum of PF5since NMR spectroscopy operates on amillisecondtimescale. Electron diffraction and X‐ray crystallography do not detect this effect as the solid state structures are, relative to a molecule in solution, static and can not undergo the necessary changes in atomic position.
  32. 32. Berry pseudorotation: NMR‐31P in PF5 Yellow atoms are axial Blue atoms are axial http://fluorine.ch.man.ac.uk/pics/berry.gif http://pubs.acs.org/doi/pdf/10.1021/ed083p336.2 Mechanisms that interchange axial and equatorial atoms in fluxional processes: Illustration of the Berry Pseudorotation, the Turnstile, and the Lever Mechanisms via Animation of Transition State Normal VibrationalModes
  33. 33. E
  34. 34. NMR‐99Tc in 3 –13 M H2SO4[Tc] = 0.001M -10409014019024029034035791113 NMR-99Tc shift , ppm c(H2SO4), M0 ppm = 0,05M KTcO4
  35. 35. 99Tc‐NMR Tc(VII) in HClO4 разбавление водойC(HClO4)δ, ppm11,37124,0551188,810,666010,3336,2410,039,99,743,39,47-1,449,22-4,38,97-6,28,74-7,38,22-8,457,33-8,454,13-3,463,07-2,242,07-1,1300
  36. 36. 99Tc‐NMR Tc(VII) in HClO4разбавление водойC(HClO4)δ, ppm11,37124,0551188,810,666010,3336,2410,039,99,743,39,47-1,449,22-4,38,97-6,28,74-7,38,22-8,457,33-8,454,13-3,463,07-2,242,07-1,1300
  37. 37. Solid State NMR Characterization of the Structure of solidPertechnicAcid HTcO4 Solid state 99Tc‐NMR of HTcO4(solid) Provide some similarity to Re2O7*2H2O Gives evidence for the absence of TcO4 ! Charge separated structure favorable
  38. 38. Solid‐State NMR Characterization of Electronic Structure in DitechnetiumHeptoxide • Herman Cho, W.A. de Jong, A.P. Sattelberger, F. Poineau, K. R. Czerwinski ‐J. AM. CHEM. SOC. •NMR parameters were computed for the central molecule of a (Tc2O7)17 cluster using standard ZORA‐optimized all‐electron QZ4P basis sets for the central molecule and DZ basis sets for the surrounding atoms. •The magnitudes of the predicted tensor principal values appear to be uniformly largerthan those observed experimentally, but the discrepancies were within the accuracy of the approximation methods used. •The convergence of the calculated and measured NMR data suggests that the theoretical analysis has validity for the quantitative understanding of structural, magnetic, and chemical properties of Tc(VII) oxides in condensed phases.
  39. 39. • NMR spectrum of Tc metal powder obtained by FT of free induction decay accumulated after excitation of the spin system was recorded and used as a reference for analyses of technetium states supported onto the surfaces and formed in Tc‐Ru alloys/intermetalics. • Knight shift of technetium metal is a linear function of temperature, K(ppm) = 7305 ‐1.52 x T. nQ(99Tc) = 230 kHz at 293 K, CQ(99Tc) = 5.52 MHz. Typical NMR‐99Tc spectra of a ‐metal powder ( Ф80‐150 μm) b –nano‐dimensional Tc metal Ф = 50 nm
  40. 40. • 99Tc NMR study of bimetallic Ru‐Tc samples supported at different supports i.e.: g‐Al2O3 , SiO2, MgO, TiO2has shown that for all the supports (except for TiO2), there is an intense signal at –30 –40 ppm arising from the TcO2
  41. 41. Synchrotron Radiation as a Tool ISTR 2011 Moscow Electromagnetic radiation generated by ultrarelativisticelectrons/positrons traveling along circular orbits in light charged particles accelerators
  42. 42. Advantages compared to standard X‐ray sources • Intensity/Brightness higher by 6‐10 orders of magnitude • Continuum spectrum from IR to hard X‐rays • High natural collimation • Tunable polarization • Partial coherence
  43. 43. EUROPEAN SR
  44. 44. EUROPEAN SYNCHROTRONS incl. MOSCOW
  45. 45. European synchrotron Radiation Facility, Grenoble, France Production of X-rays in synchrotron
  46. 46. European synchrotron ESRF Electron energy: 6 Gev
  47. 47. Bending magnets Undulators
  48. 48. • Siberian Center for Synchrotron Radiation(BINP, Novosibirsk) since 1970‐ies: Storage ringsVEPP‐3 (2 GeV, 120 mA), VEPP‐4(5 GeV, 40 mA) –both1stgeneration(ε~300 nm∙rad)11 beamlines. • Kurchatov Synchrotron Radiation Source(Moscow) in operatiionsince early 2000‐ies Siberia‐1 (booster, 450 MeV) –3 VUV beamlines, Siberia‐ 2 –dedicated2ndgeneration source(2.5 GeV, 300 mA, ε~75 nm∙rad), 16beamlines. • ZelenogradSynchrotron Rad. Facility (LukinIPP)–under construction• DubnaElectron SynchrotronDELSI (JINR) –project development • International collaboration: • Russian‐German beamlineat BESSY II and Russian involvement in ESRF consortium, • Russian part in EuropeanXFEL project (X‐ray free‐electron lasers ‐M. Kovalchuk(NRC "Kurchatov Institute", Moscow), A. Svinarenko(OJSC RUSNANO,Moscow)(4thgenerationsource) Synchrotron sources in Russia
  49. 49. • Basics and typical applications of ‐EXAFS/XANES‐SAXS‐XRD • Combined application of X‐ray techniques to structural diagnostics of nano/materials SR sources in Russia
  50. 50. SYNCHROTRON DIAGNOSTICS OF Radioactive and Functional Materialsin National Research Center “Kurchatov Institute” Department Head ‐Yan Zubavichus 10 years in user mode
  51. 51. ISTR 2011 Moscow Kurchatov Synchrotron Source Linac Booster Main storage ring Control room
  52. 52. 10.5010.7511.0011.2511.5011.7512.00Pt L3Re L2 Fluorescence Yield Photon Energy, keVRe L3 2. Diffraction 1. Spectroscopy 3. Imaging Synchrotron techniques include Especially protein structure solutions Unique : Structures in solutions and polymers
  53. 53. KSRC X-ray stations 1 ProteinCrystallography 2 PrecisionX-rayOptics 3 X-rayCrystallographyandPhysicalMaterialsScience 4 MedicalImaging 6 Energy-DispersiveEXAFS 7 StructuralMaterialsScience(SMS) 8 X-raySmallAngleDiffractionCinema(bioobjects) 9 RefractionOptics&X-rayFluorescenceAnalysis 10 X-rayTopography&Microtomography VUV stations 11 X-rayPhotoelectronSpectroscopy 12 OpticalspectroscopyforCondensedMatter 13 Luminescence&OpticalInvestigations Technological stations 14 X-rayStandingWavesforLangmuir-BlodgettFilms 15 MolecularBeamEpitaxy 16 LIGA
  54. 54. Characteristics of the beamline TypeEnergy interval, keVΔE/E Si(111)5‐1910‐4 Si(220)8‐3510‐4 Monochromator is driven by stepper motors(1‘‘ discrete steps) • Ionization chambers+ KEITHLEY 6487 • Scintillation counter withNaI(Tl) crystals •Linear gas‐filled detectorCOMBI‐1(“Burevestnik”, St. Petersburg) • 2D‐detectorImagingPlate (FujiFilmBAS2025) • Semiconducting detector(pureGe) Maximum3×3 мм2 Minimum10×10 μm2 Step of translations~4 μm ~ 0.5×108 photons/mm2with energy bandwidth Δλ/λ=10‐4 Monochromators: Detectors: Beam dimensions: Photon flux:
  55. 55. In‐situcell for functional materials 3‐component gas mixtures • Inerts: He, N2, Ar • Oxidation and reduction:O2, H2 • Catalytic substrate: CO, CH4, etc. • Vacuum 10 Pa 20‐550oC Thermostabilization through the heating current & thermocouple feedback±1oC 4 ×350 W Cooling down to ‐130oC with a flow of cold N2 gas
  56. 56. He closed‐cycle refrigerator (SHI, Japan) Minimum temperature achieved10.0К + precise termostabilization up to room temperature
  57. 57. Combined use ofXAFS, XRD and SAXS• XANES‐oxidation state of heavy atoms + coordination symmetry • EXAFS‐local neighborhoodof a given heavy atom• XRD‐long‐range order, phase composition, size of crystallites • SAXS‐size and shape of nanoparticlesor pores in a range of 1‐100 nm
  58. 58. X‐ray absorption spectroscopy: basics ISTR 2011 Moscow
  59. 59. Fermi level HOMO LUMO XANES: origin Vacuumlevel Core electronlevel Valenceband Forbidden gap Conductionband XANESprobestheenergydistributionofcertainsymmetry- allowedMOsorDOSfeaturesabovetheFermilevel Fermi‘sgolden rule: μ ~ |<f | V | i>|2, f,i–wave functions of the final and initial states,V –dipole moment operator
  60. 60. Photoionized atom Neighbor atom Photoelectron wave Back-scattered photoelectronwave Single scattering Multiple scattering EXAFS: origin Local-structrureparametersofthecentralatom canberetrievedfromEXAFS Initial state: electron on the core level Final state: outgoing photoelectron wave Interference
  61. 61. )(/22222))(2sin(),( )( )(krkjjjjjjjjeekkrkfkrNkSkλσϕπχ−−+=Σ χ-normalized background-subtracted EXAFS-signal k–photoelectron vector modulus (≡2π/λ) S –Extrinsic loss coefficient(0.7-1.0) N–coordination number in thej-thcoordination sphere r–interatomic distance f–backscattering amplitude ϕ–phase shift σ –Debye-Waller factors λ −photoelectron mean-free path
  62. 62. EXAFS/XANES: implementation at SMS Detection modes:transmission(ion chambers) fluorescence yield( NaI(Tl) scintillation counter, detection limit down to0.005 mass.%) Data processing: IFEFFIT (Athena, Artemis, Hephaestus и др.) withab initiotheoretical phase and amplitude functions fromFEFF8, GNXAS Ab initioXANES spectra simulation withFEFF8 , FDMNES, FitIt, etc. Absorption edges measuredover 2004‐2014 К‐edges: Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Br, Y, Zr, Nb, Mo, Tc, Ru, Pd, Ag, Cd, In, Te L3‐edges: Ba, La, Ce, Nd, Pr, Sm, Eu, Gd, Hf, Ta, W, Re, Pt, Au, Hg, Pb, Bi, U, Pu
  63. 63. 1152511550115751160011625116500.00.51.01.52.0 Normalized Absorbtion, a.u. Photon Energy, eV Pt Pt2+ Pt3+ Pt4+ Pt L36.536.546.556.566.576.586.596.606.61 Mn2+ (MnCl2 6H2O) Mn3+ (Mn2O3) Mn4+ (MnO2) Mn7+ (KMnO4) Photon Energy, keVMn K1635016400164500.00.61.2 Normalized Absorption, a.u. Photon Energy, eV Bi0 Bi3+ (Bi2O3) Bi3+ (Bi(NO3)3.2H2O) Bi5+ (NaBiO3) Bi L1 XANES Information retrieved fromXANES: • Effective oxidation state • Coordination polyhedron symmetry Data analysis: “fingerpring” approach –comparison with reference spectra + theoretical simulations 1s→3d,4p 2p3/2→4d 2s→6p
  64. 64. Application to Tc Tc K‐edge XANES
  65. 65. Application to Re Re L3‐edge XANES
  66. 66. 01234561.4 Tc-C 1.76Å6.0 Tc-Tc 2.72Å TcCx |FT(k3χ(k))| R, ÅTc12 Tc-Tc 2.72Å Tc METAL & Tc CARBIDE
  67. 67. 01234560.3 Re-C 2.14Å1.0 Re-C 2.46Å1.1 Re-Re 2.62Å 3.1 Re-Re 2.73Å ReCx |FT(k3χ(k))| R, ÅRe12 Re-Re 2.75Å Re METAL & Re CARBIDE
  68. 68. PYROMETALLURGY REPROCESSING OF SPENT FUEL
  69. 69. Structures of Tc halogenidesin solutions and melts1) fundamental studies of cluster Tc compounds2) Analyses of possible species in PRORYV technology (chloride melts) Tc K‐край k3‐weight EXAFS spectra and its Fourier transform for Tc (+4, +2,5, +2) halogenides (Cl, Br)
  70. 70. а б в а-МоноядерныйбромидныйкомплексTcK-крайk3-взвешенныйEXAFSспектрипреобразованиеФурьеспектра(Me4N)2TcBr6: Tc-Br:N=5,8(4),R=2,51(2)Å,σ2=0,004Å2,ΔE0=-16,9(5)eV, б-Биядерныйкластер Tc K-край k3- взвешенный EXAFS и соответствующее преобразование Фурье спектра K3Tc2Cl8 EXAFS структурные параметры K3Tc2Cl8(лучшая из полученных предварительных аппроксимаций): Tc-TcN=1,66(3), R=2.20(2) Åσ2=0,0069 Å2ΔE0= -1.1(9) eV Tc-ClN=2,2(4), R=2,46(2) Åσ2=0,0107 Å2, в-Спектр и Tc K-край k3-взвешенный EXAFS для полиядерногохлоридного кластера (Me4N)3[Tc6(μ-Cl)6Cl6]Cl2, для которого не удалось получить удовлетворительного преобразования Фурье в рамках FEFF-5 приближения Spectra EXAFSof complex Tc halogenides
  71. 71. XAFS analysis of electrode surface after corrosion Æ Determination of eventual Tc oxide: ‐In 1 M HCl(E= 800 mV) ‐In 1 M NaCl, pH= 2.5 (E= 700 mV) XAFS measurement of: NH4TcO4, TcO2, Tc metal for comparison Layer carefully removed and analyzed by XAFS. SEM x 50 Before After pH =2.5, 1 M NaCl, E = 700 mV during 1 hour M. Ferrier, F. Poineau,G.W. ChinthakaSilva, E. Mausolfand K. Czerwinski “Electrochemical Behavior of Metallic Technetium in Aqueous Media” : ISTR-2008. Port Elizabeth, South Africa.
  72. 72. XANES No pre‐edge : No TcO4‐sorbed on electrode. No shift of edge for 1M HCl , shifted (~1 eV) at pH = 2.5 Æ Product on electrode after corrosion : mainly Tc metal. 1 M NaCl, pH = 2.5 1M HCl First deriv.
  73. 73. ÆEXAFS analysis also confirm presence of Tc metal on surface electrode after corrosion . Æ No oxide detected. EXAFS after corrosion XRD [5] C.N R (Å) C.N R( Å) Tc0-Tc1 10 2.72 12 <2.71> Tc0-Tc2 6 3.83 6 3.85 Tc0-Tc3 8 4.76 8 4.73 pH =2.5 EXAFS
  74. 74. NEXT : • SAXS
  75. 75. X‐ray detector (0D,1D, 2D) I(s) Scattering vector s = k1 ‐k0 s = 4πsin θ/ λ= 2π/ d Sample in the transmission geometry 2θ k0 k1 s Point/Linear collimation Monochro‐ matic X‐ray source SAXS: Basics
  76. 76. ISTR 2011 Moscow Indirect FT I(s) –experimentalscattering curve P(r) –volumedistributionof hard spheres
  77. 77. ISTR 2011 Moscow SAXS: implementation at SMS Sample-to-detectordistance,mm 2θmin-2θmax,° qmin-qmax,nm-1 E=25keV qmin-qmax,nm-1 E=6keV 120 0.95-45.00 4.2–179 1–43 500 0.23-13.50 1–59 0.24–14.2 1000 0.11-6.84 0.5–30 0.12–7,1 2390 0.05-2.87 0.2–12.7 0.05-3 Only transmission geometry (no GISAXS for the moment) Scattering vectoris oriented vertically; sample‐to‐detector distance up to 2.5 m; Photon energy5‐30 keV(the possibility to employ anomalous scattering) Treatment of experimental data: GNOM, MIXTURE, DAMMIN, SAXSFIT, IsGISAXS, Fit2D (for preliminary data processing of 2D images) Simulation: Single size distribution of spherical particlesR=20±4 Å IsGISAXS GNOM
  78. 78. 1 . Small‐angle diffraction on mesostructured materials 2 . SAXS application: aqueous colloids p.e. ‐of Tc sulfide nanoparticles 3 . Quantitative interpretation of the SAXS curve for not‐interacting particles and aggregates (DAMMIN)
  79. 79. Examples of combined structural studies
  80. 80. E
  81. 81. E
  82. 82. E
  83. 83. E
  84. 84. Сдвиг ЯМР сигнала в нанодисперсном образце 20% Tc/g‐Al2O3 (Рис. 4а) составляет 7406 м.д., что на 600 м.д. превышает значение сдвига в порошке металлического технеция с диаметром частиц 50–100 μм. Линия с шириной на половине высоты ~1 kHz имеет Лоренцевский вид и не имеет саттелитной структуры, связанной с квадрупольными взаимодействиями первого порядка, типичными для ГПУ решеток. Для технециевой фольги толщиной 20μм спектр 99Tc ЯМР показывает, что позиция центральной компоненты очень близка к аналогичной позиции в образце микродисперсного порошка, хотя 8 саттелитов практически не выражены в результате высокой дефектности решетки кристаллитов фольги, связанной с многократными последовательными механическими обработками (прокаткой). Отсутствие квадрупольной структуры в нанодисперсном образце ясно указывает на кубическую решетку фазы металличекого технеция. Значительное увеличение сдвига Найта в нандисперсном образце может отражать изменение плотности состояний на уровне Ферми по сравнению с микродисперсным образцом металлического технеция с ГПУ решеткой [7].
  85. 85. • 99Tc ЯМР спектр образцы 5% Tc/γ‐ Al2O3при 295 K; • (a) SW1.7 МГц, число сканов 250000, (b) SW250 кГц, число сканов 64000 •99Tc ЯМРспектры: (a) образца20% Tc/γ‐ Al2O3при295 K; SW 500 кГц, числосканов191000, D00.5s ; (b) порошкаметаллическогоTc сдиаметромчастиц50–100 μм, SW 2.5 мГц, числосканов50000, D00.5s.
  86. 86. V.F. Peretrukhin, G.T. Seaborg, N..N. Krot, LNL, Berkley, 1998 3
  87. 87. Periodic Table and heptavalent state of elements ‰ Period is variable :2, 8, 8, 18, 18, 32…? ‰ Zones of implacability exist ‰ For huge part ‐It works ! ! ! VII
  88. 88. • Interatomic distances in metals/simple matter A.Wells “Struct.Inorg.Chem.” • Lost :P,S, Br, I, Po, At, Fr, Ra, Ac, Np, Pu, Am, Cm, Bk, Cf TRU 5 Detailed fig In: Jarvinen et all Plutonium
  89. 89. Synthesis and the types of An(VII) • CrystallinecompoundsofAn(VII)canbepreparedbydeepoxidationofactinidesinstronglyalkalineconditions. • Bothinteractionofsolidcomponentsandalsoconductingtheoxidationinalkalinesolutions. • CompoundsofAn(VII)arestableonlyinstrongalkali,andrapidlydecomposeinneutraloracidicconditions. • An(VII)arequitevariableincomposition:formallytheycouldbeconsideredtocontainanionsAnO65-,AnO53-,[AnO4(OH)2]3- ,[An2O8(OH)2]4-andAnO4-butthelatterisnotsupportedbyX-rayanalyses. • AshortnumberofthesolidcompoundscontainingAnO65-, andAnO53-anionswereisostructuraltocorrespondingortho- andmeso-rhenatesReO65-,ReO53-(butnoanalogyinsolutions). 6
  90. 90. MAnO4(·nH2O) (M–alkali metal) • It was estimated by N.N. Krot and the followers that the transuranium(VII) compounds like MAnO4(·nH2O) (M–alkali metal) have the structures similar to uranates(VI) of alkali earth metals. • They contain shortened linear groupsAnO23+and O– bridges collecting all into anionic layers. Structural type of BaUO4. (Reis A.H. et al. JINC, 1976). 7
  91. 91. BaUO4structural type compounds • Lattice parameters for different U(VI), Np(VI) (lit. data) and Np(VII) compounds (IPCE data) • 1 –U compounds • 2 –Np compounds • Chemical properties of Np(VI) and Np(VII) compounds are different • LiReO4*1.5H2O contra LiTcO4*3H2O 8
  92. 92. IR spectral data indicates Np‐O and Np=O difference Evident splitting at the CsNpO4spectrum indicates/supports the presence of two types of Np‐O bonds: • O=Np=O • Np‐O‐Np In Li5NpO6all the Np‐O bonds are of the same nature 9
  93. 93. Mossbauer spectra of Np(VII) compounds • 1 –CsNpO4 • 2 –Na3NpO4(OH)2*nH2O • 3 –Li5 NpO6 • 4 –frozen solution of Np(VII) in 10M NaOH • Dots ‐experiment, curve – squared plotting
  94. 94. Inthisway: Transuranic(VII) MAnO4(·nH2O) compounds are completely different : from MXO4xnH2O(X–elementsofthe7thGroupfromPeriodicTable,Mn,Tc,Re,n=0,1,1.5,3) fromTc(VII)acid German,Peretrukhin2003 Poineau,German2010 fromRe(VII)acid BeyerH.etall. Angew.Chem.,1968 fromI(VII)acid fromCl(VII)acid Структурный тип BaUO4. (Reis A.H. et al. JINC, 1976). (Maruk A.Ya. et al. Russ. Coord. Chem.2011) and from TcO3+ Pertechnetyl Fluorosulfate, [TcO3][SO3F] –ZAAC, 2007 J.Supeł, U. Abram et all. Berlin, Freie Universität. 11
  95. 95. 100 Isostructural: LiBrO4∙3H2O LiClO4∙ 3H2O LiMnO4∙ 3H2O LiTcO4∙6/2H2O6/2=3 LiReO4∙1.5H2O LiReO4∙ H2O ‐ Analogous are absent More diffused 4d electrons in Re compared to 3d electrons in Tc
  96. 96. 101 Isostructural pertechnetate salts withcation : anion = 1:1 Cation Anion ClO4- MnO4- ReO4- [Li · 6/2Н2O]+ + + * Na+ – * + K+ – – + Rb+ – – + Cs+ – – + NH4+ – – + Ag+ – – + [(CH3)4N]+ + – + [(C3H7)4N]+ – * + [(C4H9)4N]+ * * * [(C6H5)3PNH2]+ * * + [C7H14N3]+ * * + [C7H10N3(C3H5)4]+ * * + [C7H10N3(C6H5)4]+ * * * [C6H8N]+ – * + [C4H10NO]+ – * + [CN3H6]+ + * + *Notdetermined.doesn’texists –NosimilaritytoTc +Isostructural
  97. 97. Anionic chain [(Np2O8)(OH)2]n4n‐in the structure of Li[Co(NH3)6][(Np2O8)(OH)2]∙2H2O (Burns J., Baldwin W., Stokely J. Inorg. Chem., 1973). 12 Np(VII) & I(VII) • Two types of Np in Np(VII) compound while only one Iin I(VII) • One bridging O in Np(VII) while two bridging O in I(VII) • Np(VII) is stable in alkali while I(VII) –in acids Neutral chains in HIO4. ( Smith, T. et all. Inorg.Chem., 1968)
  98. 98. The first Pu(VII) single crystal 13
  99. 99. 14
  100. 100. Na4[AnO4(OH)2](OH)∙2H2O Np1‐O1 1.891(2)Pu1‐O1 1.8824(15) Np1‐O2 1.888(2) Pu1‐O2 1.8805(18) Np1‐O3 1.917(2) Pu1‐O3 1.9109(15) Np1‐O4 1.880(2)Pu1‐O4 1.8811(19) Np1‐O5 2.315(2) Pu1‐O5 2.2952(19) Np1‐O6 2.362(2)Pu1‐O6 2.339(2) An‐OH distances are more sensible to actinide contraction than An=O distances 15
  101. 101. Several mixed cation compounds of Np(VII) and Pu(VII) NaRb2[NpO4(OH)2]∙4H2O(I):a=8.2323(2),b=13.4846(3),c=9.9539(2)Å,β=102.6161(12)°, sp.gr.P21/n,Z=4,R1[I>2σ(I)]=0.0179. NaRb2[NpO4(OH)2]∙4H2O(II):a=5.4558(2),b=12.4478(3),c=7.9251(2)Å,β=103.6310(13)°, sp.gr.P21/n,Z=2,R1[I>2σ(I)]=0.0218. NaCs2[NpO4(OH)2]∙4H2O(III):a=15.0048(4),b=9.1361(2),c=10.6747(3)Å,β=129.7361(9)°, sp.gr.C2/c,Z=4,R1[I>2σ(I)]=0.0148. NaRb5[PuO4(OH)2]2∙6H2O(IV):a=6.4571(1),b=8.2960(1),c=10.8404(2)Å,α=105.528(1),β=97.852(1),γ=110.949(1)°,sp.gr.P‐1,Z=2,R1[I>2σ(I)]=0.0189. NaRb2[PuO4(OH)2]∙4H2O(V):a=8.2168(2),b=13.4645(3),c=9.9238(2)Ǻ,β=102.6626(12)°, sp.gr.P21/n,Z=4,R1[I>2σ(I)]=0.0142. NaCs2[PuO4(OH)2]∙4H2O (VI):a= 11.1137(2), b=9.9004(2), c = 10.5390(2) Ǻ, β = 101.0946(11)°, sp. gr. C2/c, Z= 4, R1 [I > 2σ(I)] = 0.0138. Anion of [PuO4(OH)2]3‐ in the structure of IV 16
  102. 102. Selected interatomic distances and torsion angles in the structures I –VI : IIIIIIIVVVI Bond(Å) An=O 1.8790(12)2×1.8690(9) 2×1.8884(9)1.8695(15)1.8685(12)2×1.8868(15) 1.8855(13) 2×1.9138(9)2×1.8944(9)1.8724(15)1.8761(12)2×1.8876(14) 1.8955(13)1.8919(15) 1.8897(12) 1.9223(13)1.8985(16)1.9144(12) An‐O(OH)2.3259(13)2×2.3750(9)2×2.3643(9)2.3197(16)2.3083(13)2×2.3236(15) 2.3382(13)2.3556(15)2.3229(13) Angle(º)IIIIIIIVVVI H‐O…O‐H145(4)180133(4)39(4)140(3)48(5) 17
  103. 103. RecentlyanewwayforNp(VII)compoundpreparationwasproposedbyFedosseevandco-workers[(2008)]: electrochemicaloxidationinacetatesolutions. Thenewcompoundsof МNpO4·nH2Otype,whereМ–unichargedcationofalkalimetal,ammonium,silver,guanidiniumortetraalkylammonium and Np(VII)withbichargedcationsofalkalineearthmetals,andalsoCu,CdandZn. Allthesecompoundshavebeenthoroughlycharacterizedbymeansofchemicalanalyses,IRandUV-visspectroscopy.Thestudyconfirmed,that… 18
  104. 104. Pu(VII) compounds are close structural and chemical analogues of Np(VII) ones 19
  105. 105. Tc(VII) & Pu(VII), Np(VII) Pu(VII) and Tc(VII) are different in (cry,ele)‐structure, ligand arrangement, stability and chemical properties ! 1000 ppm
  106. 106. Periodic Table and heptavalent state of elements ‰ Period is variable :2, 8, 8, 18, 18, 32…? ‰ Zones of implacability exist ‰ For huge part ‐It works ! ! ! VII 4
  107. 107. An(VII) ‐Tc&Re(VII) • Structural and chemical data obtained in recent years by X‐ray‐s‐ c, IR and EXAFS investigations of the new compounds of • heptavalent neptunium and plutonium, • heptavalent technetium and rhenium • confirmtheearlierprevailingopinionabouttheabsenceofadeepsimilarityinphysico‐chemicalpropertiesbetweentheheptavalenttransuranicelementsandtheelementsofGroupVIIoftheshortformofthePeriodictableandtheformalnatureofsomeofthestructuralsimilaritiesamongtheconsideredheptavalentcompounds. • PrincipallyonecanattendtheformationofPu(VIII)butitisnottheaqueousmediathatcouldstanditsoxidizingpower. 20
  108. 108. BessonovPerminovKrot, GrigorievPeretrukhinGermanCzerwinskiPoineau Thank you for your Attention!
  109. 109. ISTR‐2014
  110. 110. Thank you for your attention !

×