Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.
N/A
Katja Kevic, Sebastian C. Müller, Thomas Fritz, and Harald C. Gall
Collaborative Bug Triaging
CHASE „13, San Francisco...
Motivation
How to support developers for collaborative bug triaging?
2
bug
bug
bug
bug bug
bug
Related Work
• Source code analysis [e.g. MCDonald 2000]
• «One out of four bug reports required
dicussion and negotiation...
Related Work
• Source code analysis [e.g. MCDonald 2000]
• «One out of four bug reports required
dicussion and negotiation...
Collaborative Bug
Triaging
Collaboration
IR + change set analysis
Allow change set investigation
5
Information Retrieval –
Finding similar Bugs
0.78
0.72
0.71
cosine similarity
threshold
> 0.7
6
Information Retrieval –
Finding similar Bugs
0.78
cosine similarity
threshold
7
> 0.75
Information Retrieval –
Finding similar Bugs
0.78
0.72
0.71
cosine similarity
threshold
8
> 0.6
Change Set Analysis –
Finding Potential Experts
0.71
0.78
0.72
5.46
1.44
4.28
9
Developer 1
Developer 2
Developer 3
7
Chan...
Prototype: Analysis
10
Prototype: Context
11
Collaboration
12
Evaluation
• Applied in our own software projects
• Future work: user studies
13
Summary
14
Collaboration
IR + change set analysis
Allow change set investigation
For more details visit:
http://www.ifi.uz...
References
15
J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?,” in
Proceedings of the 28th International Co...
Nächste SlideShare
Wird geladen in …5
×

Collaborative Bug Triaging

543 Aufrufe

Veröffentlicht am

This approach supports bug triaging on a multi-touch table to foster collaboration.

Veröffentlicht in: Bildung
  • Als Erste(r) kommentieren

  • Gehören Sie zu den Ersten, denen das gefällt!

Collaborative Bug Triaging

  1. 1. N/A Katja Kevic, Sebastian C. Müller, Thomas Fritz, and Harald C. Gall Collaborative Bug Triaging CHASE „13, San Francisco – May 25, 2013
  2. 2. Motivation How to support developers for collaborative bug triaging? 2 bug bug bug bug bug bug
  3. 3. Related Work • Source code analysis [e.g. MCDonald 2000] • «One out of four bug reports required dicussion and negotiation..» [Carstensen, 1995] 3J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?,” in Proceedings of the 28th International Conference on Software Engineering, ICSE ‟06. D. W. McDonald and M. S. Ackerman, “Expertise recommender: a flexible recommendation system and architecture,” in Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work, CSCW ‟00, Carstensen, P. H., Sorensen, C. and Tuikka, T., Let's talk about bugs! Scandanavian Journal of Information Systems, 1995. 7,1 33-54. • Information Retrieval or Machine Learning [e.g. Anvik 2006]
  4. 4. Related Work • Source code analysis [e.g. MCDonald 2000] • «One out of four bug reports required dicussion and negotiation..» [Carstensen, 1995] 4J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?,” in Proceedings of the 28th International Conference on Software Engineering, ICSE ‟06. D. W. McDonald and M. S. Ackerman, “Expertise recommender: a flexible recommendation system and architecture,” in Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work, CSCW ‟00, Carstensen, P. H., Sorensen, C. and Tuikka, T., Let's talk about bugs! Scandanavian Journal of Information Systems, 1995. 7,1 33-54. • Information Retrieval or Machine Learning [e.g. Anvik 2006]
  5. 5. Collaborative Bug Triaging Collaboration IR + change set analysis Allow change set investigation 5
  6. 6. Information Retrieval – Finding similar Bugs 0.78 0.72 0.71 cosine similarity threshold > 0.7 6
  7. 7. Information Retrieval – Finding similar Bugs 0.78 cosine similarity threshold 7 > 0.75
  8. 8. Information Retrieval – Finding similar Bugs 0.78 0.72 0.71 cosine similarity threshold 8 > 0.6
  9. 9. Change Set Analysis – Finding Potential Experts 0.71 0.78 0.72 5.46 1.44 4.28 9 Developer 1 Developer 2 Developer 3 7 Change set 1 2 Change set 2 2 Change set 3 4 Change set 4 Similar bug 1 Similar bug 2 Similar bug 3
  10. 10. Prototype: Analysis 10
  11. 11. Prototype: Context 11
  12. 12. Collaboration 12
  13. 13. Evaluation • Applied in our own software projects • Future work: user studies 13
  14. 14. Summary 14 Collaboration IR + change set analysis Allow change set investigation For more details visit: http://www.ifi.uzh.ch/seal/people/kevic/researchprojects/CollabBugTriaging.html
  15. 15. References 15 J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?,” in Proceedings of the 28th International Conference on Software Engineering, ICSE ‟06, (New York, NY, USA), pp. 361–370, ACM, 2006. D. W. McDonald and M. S. Ackerman, “Expertise recommender: a flexible recommendation system and architecture,” in Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work, CSCW ‟00, (New York, NY, USA), pp. 231–240, ACM, 2000. Carstensen, P. H., Sorensen, C. and Tuikka, T., Let's talk about bugs! Scandanavian Journal of Information Systems, 1995. 7,1 33-54.

×