SlideShare a Scribd company logo
1 of 52
Lexical Analysis and Lexical Analyzer Generators Chapter 3 COP5621 Compiler Construction Copyright Robert van Engelen, Florida State University, 2007-2009
The Reason Why Lexical Analysis is a Separate Phase ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Interaction of the Lexical Analyzer with the Parser Lexical Analyzer Parser Source Program Token, tokenval Symbol Table Get next token error error
Attributes of Tokens Lexical analyzer < id , “ y ”> < assign , > < num , 31> < + , > < num , 28> < * , > < id , “ x ”> y := 31 + 28*x Parser token tokenval (token attribute)
Tokens, Patterns, and Lexemes ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Specification of Patterns for Tokens:  Definitions ,[object Object],[object Object],[object Object],[object Object],[object Object]
Specification of Patterns for Tokens:  String Operations ,[object Object],[object Object]
Specification of Patterns for Tokens:  Language Operations ,[object Object],[object Object],[object Object],[object Object],[object Object]
Specification of Patterns for Tokens:  Regular Expressions ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Specification of Patterns for Tokens:  Regular Definitions ,[object Object],[object Object]
Specification of Patterns for Tokens:  Regular Definitions ,[object Object],[object Object]
Specification of Patterns for Tokens:  Notational Shorthand ,[object Object],[object Object]
Regular Definitions and Grammars stmt      if   expr   then   stmt      if  expr   then   stmt   else   stmt         expr    term  relop   term      term term     id      num if      if   then      then   else      else relop      <      <=      <>      >      >=      =   id      letter ( letter  |  digit  ) *  num      digit +  ( . digit + )? (  E  ( +  - )?  digit +  )? Grammar Regular definitions
Coding Regular Definitions in  Transition Diagrams 0 2 1 6 3 4 5 7 8 return ( relop ,  LE ) return ( relop ,  NE ) return ( relop ,  LT ) return ( relop ,  EQ ) return ( relop ,  GE ) return ( relop ,  GT ) start < = > = > = other other * * 9 start letter 10 11 * other letter  or  digit return ( gettoken (),   install_id ()) relop      <  <=  <>  >  >=  = id      letter ( letter  digit  ) *
Coding Regular Definitions in Transition Diagrams: Code token nexttoken() {  while  (1) {   switch  (state) {   case  0: c = nextchar();   if  (c==blank || c==tab || c==newline) {   state = 0;   lexeme_beginning++;   }   else   if  (c==‘<’) state = 1; else   if  (c==‘=’) state = 5;   else   if  (c==‘>’) state = 6;   else  state = fail();   break ;   case  1:   …   case  9: c = nextchar();   if  (isletter(c)) state = 10;   else  state = fail();   break ;   case  10: c = nextchar();   if  (isletter(c)) state = 10;   else   if  (isdigit(c)) state = 10;   else  state = 11;   break ;   … int  fail() { forward = token_beginning; swith  (start) {   case   0: start =  9;  break ; case   9: start = 12;  break ;   case  12: start = 20;  break ;   case  20: start = 25;  break ;   case  25: recover();  break ;   default : /* error */ } return  start; } Decides the next start state to check
The Lex and Flex Scanner Generators ,[object Object],[object Object],[object Object]
Creating a Lexical Analyzer with Lex and Flex lex or flex compiler lex source program lex.l lex.yy.c input stream C compiler a.out sequence of tokens lex.yy.c a.out
Lex Specification ,[object Object],[object Object]
Regular Expressions in Lex x match the character  x    match the character  .   “ string ” match contents of string of characters   .  match any character except newline ^ match beginning of a line $ match the end of a line [xyz] match one character  x ,  y , or  z  (use   to escape  - )  [^xyz] match any character except  x ,  y , and  z   [a-z] match one of  a  to  z r * closure (match zero or more occurrences) r + positive closure (match one or more occurrences) r ?  optional (match zero or one occurrence) r 1 r 2 match  r 1  then  r 2  (concatenation) r 1 | r 2 match  r 1  or  r 2  (union) (  r  )  grouping r 1 r 2 match  r 1  when followed by  r 2 { d } match the regular expression defined by  d
Example Lex Specification 1 %{ #include <stdio.h> %} %% [0-9]+  { printf(“%s”, yytext); } .|  { } %% main() { yylex(); } Contains the matching lexeme Invokes the lexical analyzer lex spec.l gcc lex.yy.c -ll ./a.out < spec.l Translation rules
Example Lex Specification 2 %{ #include <stdio.h> int ch = 0, wd = 0, nl = 0; %} delim  [ ]+ %%   { ch++; wd++; nl++; } ^{delim}  { ch+=yyleng; } {delim}  { ch+=yyleng; wd++; } .  { ch++; } %% main() { yylex(); printf(&quot;%8d%8d%8d&quot;, nl, wd, ch); } Regular definition Translation rules
Example Lex Specification 3 %{ #include <stdio.h> %} digit  [0-9] letter  [A-Za-z] id  {letter}({letter}|{digit})* %% {digit}+  { printf(“number: %s”, yytext); } {id}  { printf(“ident: %s”, yytext); } .  { printf(“other: %s”, yytext); } %% main() { yylex();  } Regular definitions Translation rules
Example Lex Specification 4 %{ /* definitions of manifest constants */ #define LT (256) … %} delim  [ ] ws  {delim}+ letter  [A-Za-z] digit  [0-9] id  {letter}({letter}|{digit})* number  {digit}+({digit}+)?(E[+]?{digit}+)? %% {ws}  { } if  {return IF;} then  {return THEN;} else  {return ELSE;} {id}  {yylval = install_id(); return ID;} {number}  {yylval = install_num(); return NUMBER;} “<“  {yylval = LT; return RELOP;} “<=“  {yylval = LE; return RELOP;} “ =“  {yylval = EQ; return RELOP;} “ <>“  {yylval = NE; return RELOP;} “>“  {yylval = GT; return RELOP;} “ >=“  {yylval = GE; return RELOP;} %% int install_id() … Return token to parser Token attribute Install  yytext  as identifier in symbol table
Design of a Lexical Analyzer Generator ,[object Object],[object Object],regular expressions NFA DFA Simulate NFA to recognize tokens Simulate DFA to recognize tokens Optional
Nondeterministic Finite Automata ,[object Object]
Transition Graph ,[object Object],0 start a 1 3 2 b b a b S  = {0,1,2,3}   = { a , b } s 0  = 0 F  = {3}
Transition Table ,[object Object], (0, a ) = {0,1}  (0, b ) = {0}  (1, b ) = {2}  (2, b ) = {3} State Input a Input b 0 {0, 1} {0} 1 {2} 2 {3}
The Language Defined by an NFA ,[object Object],[object Object],[object Object]
Design of a Lexical Analyzer Generator: RE to NFA to DFA s 0 N ( p 1 ) N ( p 2 ) start   N ( p n )  … p 1 {  action 1  } p 2 {  action 2  } … p n {  action n  } action 1 action 2 action n Lex specification with regular expressions NFA DFA Subset construction
From Regular Expression to NFA (Thompson’s Construction) N ( r 2 ) N ( r 1 ) f i  f a i f i N ( r 1 ) N ( r 2 ) start start start     f i start N ( r ) f i start    a r 1  r 2 r 1 r 2 r *  
Combining the NFAs of a Set of Regular Expressions 2 a 1 start 6 a 3 start 4 5 b b 8 b 7 start a b a {  action 1  } abb {  action 2  }   a * b + {  action 3  } 2 a 1 6 a 3 4 5 b b 8 b 7 a b 0 start   
Simulating the Combined NFA Example 1 2 a 1 6 a 3 4 5 b b 8 b 7 a b 0 start    Must find the  longest match : Continue until no further moves are possible When last state is accepting: execute action action 1 action 2 action 3 a b a a none action 3 0 1 3 7 2 4 7 7 8
Simulating the Combined NFA Example 2 2 a 1 6 a 3 4 5 b b 8 b 7 a b 0 start    When two or more accepting states are reached, the first action given in the Lex specification is executed action 1 action 2 action 3 a b b a none action 2 action 3 0 1 3 7 2 4 7 5 8 6 8
Deterministic Finite Automata ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Example DFA 0 start a 1 3 2 b b b b a a a A DFA that accepts ( a  b )* abb
Conversion of an NFA into a DFA ,[object Object],[object Object]
 -closure  and  move  Examples 2 a 1 6 a 3 4 5 b b 8 b 7 a b 0 start     -closure ({0}) = {0,1,3,7} move ({0,1,3,7}, a ) = {2,4,7}  -closure ({2,4,7}) = {2,4,7} move ({2,4,7}, a ) = {7}  -closure ({7}) = {7} move ({7}, b ) = {8}  -closure ({8}) = {8} move ({8}, a ) =   a b a a none Also used to simulate NFAs 0 1 3 7 2 4 7 7 8
Simulating an NFA using  -closure  and  move S  :=   -closure ({ s 0 }) S prev  :=     a  :=  nextchar () while   S        do S prev  :=  S S  :=   -closure ( move ( S,a )) a  :=  nextchar () end do if  S prev      F        then execute  action in S prev return  “yes” else return  “no”
The Subset Construction Algorithm Initially,   -closure ( s 0 ) is the only state in  Dstates  and it is unmarked while  there is an unmarked state  T  in  Dstates   do mark  T for  each input symbol  a        do U  :=   -closure ( move ( T,a )) if   U  is not in  Dstates   then add  U  as an unmarked state to  Dstates end if Dtran [ T , a ] :=  U end do end do
Subset Construction Example 1 0 start a 1 10 2 b b a b 3 4 5 6 7 8 9         A start B C D E b b b b b a a a a Dstates A = {0,1,2,4,7} B = {1,2,3,4,6,7,8} C = {1,2,4,5,6,7} D = {1,2,4,5,6,7,9} E = {1,2,4,5,6,7,10} a
Subset Construction Example 2 2 a 1 6 a 3 4 5 b b 8 b 7 a b 0 start    a 1 a 2 a 3 Dstates A = {0,1,3,7} B = {2,4,7} C = {8} D = {7} E = {5,8} F = {6,8} A start a D b b b a b b B C E F a b a 1 a 3 a 3 a 2  a 3
Minimizing the Number of States of a DFA A start B C D E b b b b b a a a a a A start B D E b b a a b a a
From Regular Expression to DFA Directly ,[object Object],[object Object]
From Regular Expression to DFA Directly (Algorithm) ,[object Object],[object Object],[object Object]
From Regular Expression to DFA Directly: Syntax Tree of  ( a | b )* abb# * | 1 a 2 b 3 a 4 b 5 b # 6 concatenation closure alternation position number (for leafs   )
From Regular Expression to DFA Directly: Annotating the Tree ,[object Object],[object Object],[object Object],[object Object]
From Regular Expression to DFA Directly: Annotating the Tree Node  n nullable ( n ) firstpos ( n ) lastpos ( n ) Leaf   true   Leaf  i false { i } { i } | /   c 1   c 2 nullable ( c 1 ) or nullable ( c 2 ) firstpos ( c 1 )  firstpos ( c 2 ) lastpos ( c 1 )  lastpos ( c 2 ) • /   c 1   c 2 nullable ( c 1 )  and nullable ( c 2 ) if  nullable ( c 1 )  then   firstpos ( c 1 )     firstpos ( c 2 ) else  firstpos ( c 1 ) if  nullable ( c 2 )  then   lastpos ( c 1 )     lastpos ( c 2 ) else  lastpos ( c 2 ) * | c 1 true firstpos ( c 1 ) lastpos ( c 1 )
From Regular Expression to DFA Directly: Syntax Tree of  ( a | b )* abb# {6} {1, 2, 3} {5} {1, 2, 3} {4} {1, 2, 3} {3} {1, 2, 3} {1, 2} {1, 2} * {1, 2} {1, 2} | {1} {1} a {2} {2} b {3} {3} a {4} {4} b {5} {5} b {6} {6} # nullable firstpos lastpos 1 2 3 4 5 6
From Regular Expression to DFA Directly:  followpos for  each node  n  in the tree  do if  n  is a cat-node with left child  c 1  and right child  c 2   then for  each  i  in  lastpos ( c 1 )  do followpos ( i ) :=  followpos ( i )     firstpos ( c 2 ) end do else if  n  is a star-node for  each  i  in  lastpos ( n )  do followpos ( i ) :=  followpos ( i )     firstpos ( n ) end do end if end do
From Regular Expression to DFA Directly: Algorithm s 0  :=  firstpos ( root ) where  root  is the root of the syntax tree Dstates  := { s 0 } and is unmarked while  there is an unmarked state  T  in  Dstates   do mark  T for  each input symbol  a         do let  U  be the set of positions that are in  followpos ( p ) for some position  p  in  T , such that the symbol at position  p  is  a if  U  is not empty and not in  Dstates   then add  U  as an unmarked state to  Dstates end if Dtran [ T,a ] :=  U end do end do
From Regular Expression to DFA Directly: Example 1,2,3 start a 1,2, 3,4 1,2, 3,6 1,2, 3,5 b b b b a a a 1 2 3 4 5 6 Node followpos 1 {1, 2, 3} 2 {1, 2, 3} 3 {4} 4 {5} 5 {6} 6 -
Time-Space Tradeoffs Automaton Space (worst case) Time (worst case) NFA O (  r  ) O (  r  x  ) DFA O (2 | r | ) O (  x  )

More Related Content

What's hot

A simple approach of lexical analyzers
A simple approach of lexical analyzersA simple approach of lexical analyzers
A simple approach of lexical analyzersArchana Gopinath
 
5.2 primitive recursive functions
5.2 primitive recursive functions5.2 primitive recursive functions
5.2 primitive recursive functionsSampath Kumar S
 
Principle source of optimazation
Principle source of optimazationPrinciple source of optimazation
Principle source of optimazationSiva Sathya
 
Lecture 01 introduction to compiler
Lecture 01 introduction to compilerLecture 01 introduction to compiler
Lecture 01 introduction to compilerIffat Anjum
 
Syntax Analysis in Compiler Design
Syntax Analysis in Compiler Design Syntax Analysis in Compiler Design
Syntax Analysis in Compiler Design MAHASREEM
 
Python: Modules and Packages
Python: Modules and PackagesPython: Modules and Packages
Python: Modules and PackagesDamian T. Gordon
 
Lexical Analysis - Compiler design
Lexical Analysis - Compiler design Lexical Analysis - Compiler design
Lexical Analysis - Compiler design Aman Sharma
 
Compiler Design
Compiler DesignCompiler Design
Compiler DesignMir Majid
 
Intermediate code generation1
Intermediate code generation1Intermediate code generation1
Intermediate code generation1Shashwat Shriparv
 
Lecture 02 lexical analysis
Lecture 02 lexical analysisLecture 02 lexical analysis
Lecture 02 lexical analysisIffat Anjum
 

What's hot (20)

Recognition-of-tokens
Recognition-of-tokensRecognition-of-tokens
Recognition-of-tokens
 
A simple approach of lexical analyzers
A simple approach of lexical analyzersA simple approach of lexical analyzers
A simple approach of lexical analyzers
 
5.2 primitive recursive functions
5.2 primitive recursive functions5.2 primitive recursive functions
5.2 primitive recursive functions
 
Principle source of optimazation
Principle source of optimazationPrinciple source of optimazation
Principle source of optimazation
 
Lecture 01 introduction to compiler
Lecture 01 introduction to compilerLecture 01 introduction to compiler
Lecture 01 introduction to compiler
 
Syntax Analysis in Compiler Design
Syntax Analysis in Compiler Design Syntax Analysis in Compiler Design
Syntax Analysis in Compiler Design
 
Java(Polymorphism)
Java(Polymorphism)Java(Polymorphism)
Java(Polymorphism)
 
Python: Modules and Packages
Python: Modules and PackagesPython: Modules and Packages
Python: Modules and Packages
 
Unit VI
Unit VI Unit VI
Unit VI
 
Lexical Analysis - Compiler design
Lexical Analysis - Compiler design Lexical Analysis - Compiler design
Lexical Analysis - Compiler design
 
Input-Buffering
Input-BufferingInput-Buffering
Input-Buffering
 
Lexical analysis - Compiler Design
Lexical analysis - Compiler DesignLexical analysis - Compiler Design
Lexical analysis - Compiler Design
 
Multi Head, Multi Tape Turing Machine
Multi Head, Multi Tape Turing MachineMulti Head, Multi Tape Turing Machine
Multi Head, Multi Tape Turing Machine
 
Parsing
ParsingParsing
Parsing
 
Identifiers
Identifiers Identifiers
Identifiers
 
Heaps
HeapsHeaps
Heaps
 
Compiler Design
Compiler DesignCompiler Design
Compiler Design
 
Intermediate code generation1
Intermediate code generation1Intermediate code generation1
Intermediate code generation1
 
Lecture 02 lexical analysis
Lecture 02 lexical analysisLecture 02 lexical analysis
Lecture 02 lexical analysis
 
Strings in c++
Strings in c++Strings in c++
Strings in c++
 

Similar to Ch3

Similar to Ch3 (20)

Ch3.ppt
Ch3.pptCh3.ppt
Ch3.ppt
 
Ch3.ppt
Ch3.pptCh3.ppt
Ch3.ppt
 
02. chapter 3 lexical analysis
02. chapter 3   lexical analysis02. chapter 3   lexical analysis
02. chapter 3 lexical analysis
 
Ch3.ppt
Ch3.pptCh3.ppt
Ch3.ppt
 
Lecture 1 - Lexical Analysis.ppt
Lecture 1 - Lexical Analysis.pptLecture 1 - Lexical Analysis.ppt
Lecture 1 - Lexical Analysis.ppt
 
Chapter Two(1)
Chapter Two(1)Chapter Two(1)
Chapter Two(1)
 
compiler Design course material chapter 2
compiler Design course material chapter 2compiler Design course material chapter 2
compiler Design course material chapter 2
 
Lexicalanalyzer
LexicalanalyzerLexicalanalyzer
Lexicalanalyzer
 
Lexicalanalyzer
LexicalanalyzerLexicalanalyzer
Lexicalanalyzer
 
ANSI C REFERENCE CARD
ANSI C REFERENCE CARDANSI C REFERENCE CARD
ANSI C REFERENCE CARD
 
New compiler design 101 April 13 2024.pdf
New compiler design 101 April 13 2024.pdfNew compiler design 101 April 13 2024.pdf
New compiler design 101 April 13 2024.pdf
 
system software
system software system software
system software
 
Ch04
Ch04Ch04
Ch04
 
UNIT_-_II.docx
UNIT_-_II.docxUNIT_-_II.docx
UNIT_-_II.docx
 
12IRGeneration.pdf
12IRGeneration.pdf12IRGeneration.pdf
12IRGeneration.pdf
 
Ch8a
Ch8aCh8a
Ch8a
 
Compilers Design
Compilers DesignCompilers Design
Compilers Design
 
Ch 2.pptx
Ch 2.pptxCh 2.pptx
Ch 2.pptx
 
Chapter2CDpdf__2021_11_26_09_19_08.pdf
Chapter2CDpdf__2021_11_26_09_19_08.pdfChapter2CDpdf__2021_11_26_09_19_08.pdf
Chapter2CDpdf__2021_11_26_09_19_08.pdf
 
Lec1.pptx
Lec1.pptxLec1.pptx
Lec1.pptx
 

More from kinnarshah8888 (16)

Yuva Msp All
Yuva Msp AllYuva Msp All
Yuva Msp All
 
Yuva Msp Intro
Yuva Msp IntroYuva Msp Intro
Yuva Msp Intro
 
Ch6
Ch6Ch6
Ch6
 
Ch9c
Ch9cCh9c
Ch9c
 
Ch5a
Ch5aCh5a
Ch5a
 
Ch9b
Ch9bCh9b
Ch9b
 
Ch9a
Ch9aCh9a
Ch9a
 
Ch10
Ch10Ch10
Ch10
 
Ch7
Ch7Ch7
Ch7
 
Ch2
Ch2Ch2
Ch2
 
Ch4b
Ch4bCh4b
Ch4b
 
Ch4a
Ch4aCh4a
Ch4a
 
Ch8b
Ch8bCh8b
Ch8b
 
Ch5b
Ch5bCh5b
Ch5b
 
Ch4c
Ch4cCh4c
Ch4c
 
Ch1
Ch1Ch1
Ch1
 

Recently uploaded

ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProduct Anonymous
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...Neo4j
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century educationjfdjdjcjdnsjd
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...apidays
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024The Digital Insurer
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
 

Recently uploaded (20)

ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 

Ch3

  • 1. Lexical Analysis and Lexical Analyzer Generators Chapter 3 COP5621 Compiler Construction Copyright Robert van Engelen, Florida State University, 2007-2009
  • 2.
  • 3. Interaction of the Lexical Analyzer with the Parser Lexical Analyzer Parser Source Program Token, tokenval Symbol Table Get next token error error
  • 4. Attributes of Tokens Lexical analyzer < id , “ y ”> < assign , > < num , 31> < + , > < num , 28> < * , > < id , “ x ”> y := 31 + 28*x Parser token tokenval (token attribute)
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13. Regular Definitions and Grammars stmt  if expr then stmt  if expr then stmt else stmt   expr  term relop term  term term  id  num if  if then  then else  else relop  <  <=  <>  >  >=  = id  letter ( letter | digit ) * num  digit + ( . digit + )? ( E ( +  - )? digit + )? Grammar Regular definitions
  • 14. Coding Regular Definitions in Transition Diagrams 0 2 1 6 3 4 5 7 8 return ( relop , LE ) return ( relop , NE ) return ( relop , LT ) return ( relop , EQ ) return ( relop , GE ) return ( relop , GT ) start < = > = > = other other * * 9 start letter 10 11 * other letter or digit return ( gettoken (), install_id ()) relop  <  <=  <>  >  >=  = id  letter ( letter  digit ) *
  • 15. Coding Regular Definitions in Transition Diagrams: Code token nexttoken() { while (1) { switch (state) { case 0: c = nextchar(); if (c==blank || c==tab || c==newline) { state = 0; lexeme_beginning++; } else if (c==‘<’) state = 1; else if (c==‘=’) state = 5; else if (c==‘>’) state = 6; else state = fail(); break ; case 1: … case 9: c = nextchar(); if (isletter(c)) state = 10; else state = fail(); break ; case 10: c = nextchar(); if (isletter(c)) state = 10; else if (isdigit(c)) state = 10; else state = 11; break ; … int fail() { forward = token_beginning; swith (start) { case 0: start = 9; break ; case 9: start = 12; break ; case 12: start = 20; break ; case 20: start = 25; break ; case 25: recover(); break ; default : /* error */ } return start; } Decides the next start state to check
  • 16.
  • 17. Creating a Lexical Analyzer with Lex and Flex lex or flex compiler lex source program lex.l lex.yy.c input stream C compiler a.out sequence of tokens lex.yy.c a.out
  • 18.
  • 19. Regular Expressions in Lex x match the character x match the character . “ string ” match contents of string of characters . match any character except newline ^ match beginning of a line $ match the end of a line [xyz] match one character x , y , or z (use to escape - ) [^xyz] match any character except x , y , and z [a-z] match one of a to z r * closure (match zero or more occurrences) r + positive closure (match one or more occurrences) r ? optional (match zero or one occurrence) r 1 r 2 match r 1 then r 2 (concatenation) r 1 | r 2 match r 1 or r 2 (union) ( r ) grouping r 1 r 2 match r 1 when followed by r 2 { d } match the regular expression defined by d
  • 20. Example Lex Specification 1 %{ #include <stdio.h> %} %% [0-9]+ { printf(“%s”, yytext); } .| { } %% main() { yylex(); } Contains the matching lexeme Invokes the lexical analyzer lex spec.l gcc lex.yy.c -ll ./a.out < spec.l Translation rules
  • 21. Example Lex Specification 2 %{ #include <stdio.h> int ch = 0, wd = 0, nl = 0; %} delim [ ]+ %% { ch++; wd++; nl++; } ^{delim} { ch+=yyleng; } {delim} { ch+=yyleng; wd++; } . { ch++; } %% main() { yylex(); printf(&quot;%8d%8d%8d&quot;, nl, wd, ch); } Regular definition Translation rules
  • 22. Example Lex Specification 3 %{ #include <stdio.h> %} digit [0-9] letter [A-Za-z] id {letter}({letter}|{digit})* %% {digit}+ { printf(“number: %s”, yytext); } {id} { printf(“ident: %s”, yytext); } . { printf(“other: %s”, yytext); } %% main() { yylex(); } Regular definitions Translation rules
  • 23. Example Lex Specification 4 %{ /* definitions of manifest constants */ #define LT (256) … %} delim [ ] ws {delim}+ letter [A-Za-z] digit [0-9] id {letter}({letter}|{digit})* number {digit}+({digit}+)?(E[+]?{digit}+)? %% {ws} { } if {return IF;} then {return THEN;} else {return ELSE;} {id} {yylval = install_id(); return ID;} {number} {yylval = install_num(); return NUMBER;} “<“ {yylval = LT; return RELOP;} “<=“ {yylval = LE; return RELOP;} “ =“ {yylval = EQ; return RELOP;} “ <>“ {yylval = NE; return RELOP;} “>“ {yylval = GT; return RELOP;} “ >=“ {yylval = GE; return RELOP;} %% int install_id() … Return token to parser Token attribute Install yytext as identifier in symbol table
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29. Design of a Lexical Analyzer Generator: RE to NFA to DFA s 0 N ( p 1 ) N ( p 2 ) start   N ( p n )  … p 1 { action 1 } p 2 { action 2 } … p n { action n } action 1 action 2 action n Lex specification with regular expressions NFA DFA Subset construction
  • 30. From Regular Expression to NFA (Thompson’s Construction) N ( r 2 ) N ( r 1 ) f i  f a i f i N ( r 1 ) N ( r 2 ) start start start     f i start N ( r ) f i start    a r 1  r 2 r 1 r 2 r *  
  • 31. Combining the NFAs of a Set of Regular Expressions 2 a 1 start 6 a 3 start 4 5 b b 8 b 7 start a b a { action 1 } abb { action 2 } a * b + { action 3 } 2 a 1 6 a 3 4 5 b b 8 b 7 a b 0 start   
  • 32. Simulating the Combined NFA Example 1 2 a 1 6 a 3 4 5 b b 8 b 7 a b 0 start    Must find the longest match : Continue until no further moves are possible When last state is accepting: execute action action 1 action 2 action 3 a b a a none action 3 0 1 3 7 2 4 7 7 8
  • 33. Simulating the Combined NFA Example 2 2 a 1 6 a 3 4 5 b b 8 b 7 a b 0 start    When two or more accepting states are reached, the first action given in the Lex specification is executed action 1 action 2 action 3 a b b a none action 2 action 3 0 1 3 7 2 4 7 5 8 6 8
  • 34.
  • 35. Example DFA 0 start a 1 3 2 b b b b a a a A DFA that accepts ( a  b )* abb
  • 36.
  • 37.  -closure and move Examples 2 a 1 6 a 3 4 5 b b 8 b 7 a b 0 start     -closure ({0}) = {0,1,3,7} move ({0,1,3,7}, a ) = {2,4,7}  -closure ({2,4,7}) = {2,4,7} move ({2,4,7}, a ) = {7}  -closure ({7}) = {7} move ({7}, b ) = {8}  -closure ({8}) = {8} move ({8}, a ) =  a b a a none Also used to simulate NFAs 0 1 3 7 2 4 7 7 8
  • 38. Simulating an NFA using  -closure and move S :=  -closure ({ s 0 }) S prev :=  a := nextchar () while S   do S prev := S S :=  -closure ( move ( S,a )) a := nextchar () end do if S prev  F   then execute action in S prev return “yes” else return “no”
  • 39. The Subset Construction Algorithm Initially,  -closure ( s 0 ) is the only state in Dstates and it is unmarked while there is an unmarked state T in Dstates do mark T for each input symbol a   do U :=  -closure ( move ( T,a )) if U is not in Dstates then add U as an unmarked state to Dstates end if Dtran [ T , a ] := U end do end do
  • 40. Subset Construction Example 1 0 start a 1 10 2 b b a b 3 4 5 6 7 8 9         A start B C D E b b b b b a a a a Dstates A = {0,1,2,4,7} B = {1,2,3,4,6,7,8} C = {1,2,4,5,6,7} D = {1,2,4,5,6,7,9} E = {1,2,4,5,6,7,10} a
  • 41. Subset Construction Example 2 2 a 1 6 a 3 4 5 b b 8 b 7 a b 0 start    a 1 a 2 a 3 Dstates A = {0,1,3,7} B = {2,4,7} C = {8} D = {7} E = {5,8} F = {6,8} A start a D b b b a b b B C E F a b a 1 a 3 a 3 a 2 a 3
  • 42. Minimizing the Number of States of a DFA A start B C D E b b b b b a a a a a A start B D E b b a a b a a
  • 43.
  • 44.
  • 45. From Regular Expression to DFA Directly: Syntax Tree of ( a | b )* abb# * | 1 a 2 b 3 a 4 b 5 b # 6 concatenation closure alternation position number (for leafs  )
  • 46.
  • 47. From Regular Expression to DFA Directly: Annotating the Tree Node n nullable ( n ) firstpos ( n ) lastpos ( n ) Leaf  true   Leaf i false { i } { i } | / c 1 c 2 nullable ( c 1 ) or nullable ( c 2 ) firstpos ( c 1 )  firstpos ( c 2 ) lastpos ( c 1 )  lastpos ( c 2 ) • / c 1 c 2 nullable ( c 1 ) and nullable ( c 2 ) if nullable ( c 1 ) then firstpos ( c 1 )  firstpos ( c 2 ) else firstpos ( c 1 ) if nullable ( c 2 ) then lastpos ( c 1 )  lastpos ( c 2 ) else lastpos ( c 2 ) * | c 1 true firstpos ( c 1 ) lastpos ( c 1 )
  • 48. From Regular Expression to DFA Directly: Syntax Tree of ( a | b )* abb# {6} {1, 2, 3} {5} {1, 2, 3} {4} {1, 2, 3} {3} {1, 2, 3} {1, 2} {1, 2} * {1, 2} {1, 2} | {1} {1} a {2} {2} b {3} {3} a {4} {4} b {5} {5} b {6} {6} # nullable firstpos lastpos 1 2 3 4 5 6
  • 49. From Regular Expression to DFA Directly: followpos for each node n in the tree do if n is a cat-node with left child c 1 and right child c 2 then for each i in lastpos ( c 1 ) do followpos ( i ) := followpos ( i )  firstpos ( c 2 ) end do else if n is a star-node for each i in lastpos ( n ) do followpos ( i ) := followpos ( i )  firstpos ( n ) end do end if end do
  • 50. From Regular Expression to DFA Directly: Algorithm s 0 := firstpos ( root ) where root is the root of the syntax tree Dstates := { s 0 } and is unmarked while there is an unmarked state T in Dstates do mark T for each input symbol a   do let U be the set of positions that are in followpos ( p ) for some position p in T , such that the symbol at position p is a if U is not empty and not in Dstates then add U as an unmarked state to Dstates end if Dtran [ T,a ] := U end do end do
  • 51. From Regular Expression to DFA Directly: Example 1,2,3 start a 1,2, 3,4 1,2, 3,6 1,2, 3,5 b b b b a a a 1 2 3 4 5 6 Node followpos 1 {1, 2, 3} 2 {1, 2, 3} 3 {4} 4 {5} 5 {6} 6 -
  • 52. Time-Space Tradeoffs Automaton Space (worst case) Time (worst case) NFA O (  r  ) O (  r  x  ) DFA O (2 | r | ) O (  x  )