Wir haben unsere Datenschutzbestimmungen aktualisiert. Klicke hier, um dir die _Einzelheiten anzusehen. Tippe hier, um dir die Einzelheiten anzusehen.
Aktiviere deine kostenlose 30-tägige Testversion, um unbegrenzt zu lesen.
Erstelle deine kostenlose 30-tägige Testversion, um weiterzulesen.
Herunterladen, um offline zu lesen
Asthma is a common chronic disease that affects millions of people in the world. The most common signs and symptoms of asthma are cough, breathlessness, wheeze, chest tightness and respiratory rate. These signs and symptoms can’t be measured accurately since they consist of various types of uncertainties such as vagueness, imprecision, randomness, ignorance, incompleteness. Consequently, traditional disease suspicion, which is carried out by the physician, is unable to deliver accurate results. Hence, this paper presents the design, development and application of a decision support system to assess asthma suspicion under uncertainty. Belief Rule-Base Inference Methodology Using the Evidential Reasoning Approach (RIMER) was adopted to develop this expert system that is named as Belief Rule Based Expert System (BRBES). The system has the capability to handle various types of uncertainties both in knowledge representation and inference procedures. The knowledgebase of this system was constructed by taking account of real patient data and expert’s opinion. The practical case studies were used to validate this system. It was observed that the system generated results are more effective and reliable in terms of accuracy than the results generated by a manual system.
Asthma is a common chronic disease that affects millions of people in the world. The most common signs and symptoms of asthma are cough, breathlessness, wheeze, chest tightness and respiratory rate. These signs and symptoms can’t be measured accurately since they consist of various types of uncertainties such as vagueness, imprecision, randomness, ignorance, incompleteness. Consequently, traditional disease suspicion, which is carried out by the physician, is unable to deliver accurate results. Hence, this paper presents the design, development and application of a decision support system to assess asthma suspicion under uncertainty. Belief Rule-Base Inference Methodology Using the Evidential Reasoning Approach (RIMER) was adopted to develop this expert system that is named as Belief Rule Based Expert System (BRBES). The system has the capability to handle various types of uncertainties both in knowledge representation and inference procedures. The knowledgebase of this system was constructed by taking account of real patient data and expert’s opinion. The practical case studies were used to validate this system. It was observed that the system generated results are more effective and reliable in terms of accuracy than the results generated by a manual system.
Sie haben diese Folie bereits ins Clipboard „“ geclippt.
Sie haben Ihre erste Folie geclippt!
Durch Clippen können Sie wichtige Folien sammeln, die Sie später noch einmal ansehen möchten. Passen Sie den Namen des Clipboards an, um Ihre Clips zu speichern.Die SlideShare-Familie hat sich gerade vergrößert. Genießen Sie nun Zugriff auf Millionen eBooks, Bücher, Hörbücher, Zeitschriften und mehr von Scribd.
Jederzeit kündbar.Unbegrenztes Lesevergnügen
Lerne schneller und intelligenter von Spitzenfachleuten
Unbegrenzte Downloads
Lade es dir zum Lernen offline und unterwegs herunter
Außerdem erhältst du auch kostenlosen Zugang zu Scribd!
Sofortiger Zugriff auf Millionen von E-Books, Hörbüchern, Zeitschriften, Podcasts und mehr.
Lese und höre offline mit jedem Gerät.
Kostenloser Zugang zu Premium-Diensten wie TuneIn, Mubi und mehr.
Wir haben unsere Datenschutzbestimmungen aktualisiert, um den neuen globalen Regeln zum Thema Datenschutzbestimmungen gerecht zu werden und dir einen Einblick in die begrenzten Möglichkeiten zu geben, wie wir deine Daten nutzen.
Die Einzelheiten findest du unten. Indem du sie akzeptierst, erklärst du dich mit den aktualisierten Datenschutzbestimmungen einverstanden.
Vielen Dank!