Diese Präsentation wurde erfolgreich gemeldet.
Die SlideShare-Präsentation wird heruntergeladen. ×

Temperature Monitoring System with remote calibration capability

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Nächste SlideShare
Lm35
Lm35
Wird geladen in …3
×

Hier ansehen

1 von 33 Anzeige

Weitere Verwandte Inhalte

Diashows für Sie (20)

Ähnlich wie Temperature Monitoring System with remote calibration capability (20)

Anzeige

Aktuellste (20)

Temperature Monitoring System with remote calibration capability

  1. 1. IEEE International Conference on Advances in Mechanical, Industrial, Automation and Management Systems (AMIAMS-2017) February 3-5, 2017 Abhishek Singh Shakya, DRDL, HYD Velpuru Sri Kashyap, DRDL, HYD
  2. 2. Present day temperature monitoring systems Objective of the proposed system Targeted Area Of Application System Overview & Implementation System Hardware Temperature Calibration Methodology  Traditional  Proposed Remote Calibration Characterization Advantages Limitations & Conclusion
  3. 3. WIRELESS HART BASED WITH REAL-TIME DATA LOGGING Wi-Fi BASED WITH ALARM SYSTEM ETHERNET & Wi-Fi BASED WITH MULTI CHANNEL DATA LOGGING BLUETOOTH & APP BASED & many more. But none of them cater the need of “REMOTE CALIBRATION”
  4. 4. To design a temperature monitoring system with the following features : Remote Calibration Capability Dual Mode Operation  Wired Mode  Wireless Mode Real Time Data Logging Customized Graphical User Interface
  5. 5. Missile Propellants
  6. 6.  Monitoring temperature of missile propellants in storage units and conditioning chambers  Solid Propellants  Double Base- (Nitrocellulose+ Nitro Glycerin)  Composite- (HTPB + APC + Al)  Composite Modified Based Propellant ( NC + NG + AP + Al)  Liquid Propellants  Gasoline + RFNA Solid Propellant Inside the motor
  7. 7. K –TYPE SURFACE MOUNT THERMOCOUPLE REMOTETERMINALBASETERMINAL BASETERMINALREMOTETERMINAL
  8. 8. Peltier Heater and Temperature Sensor Circuitry CJC and Amplifier Circuitry Consists of microcontroller which runs the control algorithm Wireless and Wired Network Interface Wireless and Wired Network Interface PC that runs the GUI to display and log real time data REMOTE TERMINAL BASE TERMINAL
  9. 9. Microcontroller - Arduino Mega 2560 CJC & Amplifier - AD-595 Peltier Heater - TEC-12706 Temperature Sensor - K-Type Surface Mount MOSFET Circuit - IRFZ44N ZigBee Modules - ZigBee Series 2 Ethernet Card - Arduino Ethernet Shield
  10. 10. Based on Atmega 2560 microcontroller Operating Voltage is 5V 10 bit Analog to Digital Converter 54 Digital Pins (15 PWM pins) 16 Analog Pins Flash Memory 256 Kb
  11. 11. Built in Instrumentation amplifier and cold junction compensator Supply Range:- +/- 5V to +/-15V Output:- 10 mV/ C Thermoelectric cooling module also known as Peltier heater When DC power is applied heat transfer takes place from one side of the module to the other, creating a cold side and hot side. Maximum Operating Temperature:- 138 C
  12. 12. Range:- 0 to 1250 degree centigrade Accuracy:- +/- 0.1 degree centigrade +/- 1 degree centigrade N-Channel MOSFET Max Drain- Source Voltage - 55 V Max Gate- Source Voltage- 10 V
  13. 13. Transreceiver module based on IEEE 802.15.4 standard Range:- Indoor - 40 m Outdoor - 100 m Data Transfer rate :- 250 kbps Based on W5100 Ethernet Chip with 16K buffer Connection Speed: 10/100 Mb Network stack capable of both TCP and UDP
  14. 14. 1)Temperature Sensing & Amplification  Thermocouples - K-Type Surface Mount  CJC & Amplification - AD595 IC 2)Remote Calibration  Peltier Heater - TEC-12706  N-channel Mosfet - IRFZ44N 3)Data Hand Out  ZigBee - ZigBee Series 2  Ethernet - Ethernet Shield
  15. 15. MOSFET 1) TEMPERATURE SENSING AND AMPLIFICATION
  16. 16.  FIXED POINT  Calibration is carried out against a triple, melting or boiling point of a substance.  Measuring sensor is inserted into a closed cell which holds temperature constant for a long duration.  COMPARISON  Calibration is carried in comparison with a reference sensor usually four times the accuracy of the measuring sensor .  The measuring sensor is placed inside/on the calibrating device. 2) REMOTE CALIBRATION  CALIBRATION METHODOLOGY
  17. 17.  EXISTING CALIBRATION SYSTEM – (COMPARISON METHOD) A) DRY-WELL CALIBRATOR B) HOT PLATE CALIBRATOR
  18. 18.  Hot Surface Calibrator Test Chart S. No Set Temperature Thermistor (Reference Sensor ) Thermocouple (Measuring Sensor) Duration 1. 100oC 100oC 99.10oC 120 sec 2. 200oC 200oC 109.45oC 200 sec 3. 300oC 300oC 300.82oC 340 sec 4. 400oC 400oC 401.04oC 400 sec 5. 500oC 500oC 499.14oC 450 sec
  19. 19. ANALOGY PROPOSED SYSTEM EXISTING SYSTEM
  20. 20. IMPLEMENTATION OF REMOTE CALIBRATION
  21. 21. PROPOSED CALIBRATION SYSTEM  Uses peltier heater as a heat source  By varying the voltage drop across the peltier heater, temperature is varied.  Voltage drop across the peltier heater is varied by the channel conductivity of n-channel MOSFET  Channel conductivity is controlled by applying PWM output of the microcontroller at MOSFET gate.  The PWM output level of the microcontroller is controlled by the user through the GUI.
  22. 22. PWM OUTPUT LEVEL 𝑉𝑠 = 5𝑉 𝜏0 𝜏 𝑐 𝑉𝑒𝑓𝑓 = 𝑉𝑠 ∗ 𝜏0 𝜏 𝑐 𝑉 𝑒𝑓𝑓 𝑉𝑠 = 𝜏0 𝜏 𝑐 PWM output Level = 255 * 𝜏0 𝜏 𝑐 PWM output Level = 255 * 𝑉 𝑒𝑓𝑓 𝑉𝑠 To supply a 𝑽 𝒆𝒇𝒇 of 2V , PWM output Level = 255 * 𝑉 𝑒𝑓𝑓 5 = 255 * 2 5 = 102 𝜏0 𝜏 𝑐 Duty Cycle 𝑉𝑒𝑓𝑓 𝑉𝑠 Supply Voltage Effective Voltage
  23. 23. N- Channel Mosfet PWM OUTPUT
  24. 24.  Peltier Heater
  25. 25. Characterization of the Peltier Heater PWM LEVEL VS TEMPERATURE (V= 15 VOLT, 1 AMPS, DURATION = 60 SECONDS) S. No PWM level Effective Voltage (Veff) Thermocouple R1 Thermocouple M1 R1 - M1 (Difference) 1. 10 0.988 V 32.17oC 31.73oC 1.04 2. 20 1.24 V 41.46oC 40.13oC 1.32 3. 30 1.52 V 55.72oC 55.23oC 0.49 4. 40 1.75 V 63.54oC 62.56oC 0.98 5. 50 1.96 V 74.45oC 73.82oC 0.63 6. 60 2.14 V 95.31oC 94.11oC 1.2 7. 70 2.32 V 113.39oC 112.62oC 0.77 PWM LEVEL VS TEMPERATURE (V= 15 VOLT, 1 AMPS, DURATION = 120 SECONDS) S. No PWM level Effective Voltage (Veff) Thermocouple R1 Thermocouple M1 R1 - M1 (Difference) 1. 10 0.988 V 43.50oC 42.68oC 0.82 2. 20 1.24 V 48.80oC 47.90oC 0.98 3. 30 1.52 V 59.63oC 59.14oC 0.49 4. 40 1.75 V 68:91oC 68.43oC 0.48 5. 50 1.96 V 81.66oC 81.24oC 0.42 6. 60 2.14 V 97.26oC 96.39oC 0.87 7. 70 2.32 V 115.40oC 114.71oC 0.69
  26. 26. Proposed Calibration System Test Analysis PWM LEVEL VS TEMPERATURE (V= 20 VOLT, 1 AMPS, DURATION = 60 SECONDS) S. No PWM level Effective Voltage (VE) Thermocouple R1 Thermocouple M1 R1 - M1 (Difference) 1. 10 0.988 V 33.66oC 32.85oC 0.81 2. 20 1.24 V 43.80oC 43.11oC 0.69 3. 30 1.52 V 61.39oC 60.58oC 0.81 4. 40 1.75 V 79.90oC 79.11oC 0.79 5. 50 1.96 V 114.41oC 113.75oC 0.66 PWM LEVEL VS TEMPERATURE (V= 20 VOLT, 1 AMPS, DURATION = 120 SECONDS) S. No PWM level Effective Voltage (VE) Thermocouple R1 Thermocouple M1 R1 - M1 (Difference) 1. 10 0.988 V 46.43oC 45.77oC 0.66 2. 20 1.24 V 56.82oC 56.45oC 0.37 3. 30 1.52 V 71.45oC 70.82oC 0.63 4. 40 1.75 V 94.25oC 93.84oC 0.41 5. 50 1.96 V 115.59oC 115.14oC 0.45
  27. 27. 3) DATA HANDOUT
  28. 28. Graphical User Interface - Real Time Display & Data Logging
  29. 29. Graphical User Interface - Temperature Channel
  30. 30. Graphical User Interface - Calibration
  31. 31. ADVANTAGES Easy & Simple Setup Quick Heating Fast response rate Cost Efficient Can be used as a stand alone calibrator for low temperature applications
  32. 32. LIMITATIONS & CONCLUSION  The proposed system has a narrow application spectrum and a limited low temperature range.  Temperature Monitoring Systems are widely employed to monitor the temperature in rocket and missile propellant storage and conditioning chamber facilities.  The need for frugal and efficient remote calibration system for propellant storage units could be well catered and addressed by using this system.  Currently, there are no temperature monitoring systems with the feature of remote calibration in the market. This project will set a platform for implementation of remote calibration of temperature sensors in a cost effective way.  This proposed calibration system can also be used as a stand alone calibrator for low temperature range.
  33. 33. THANK YOU!

×