SlideShare a Scribd company logo
1 of 39
1
Topic 6: Differentiation
Jacques Text Book (edition 4 ):
Chapter 4
1.Rules of Differentiation
2.Applications
2
Differentiation is all about measuring change!
Measuring change in a linear function:
y = a + bx
a = intercept
b = constant slope i.e. the impact of a unit
change in x on the level of y
b = =
x
y


1
2
1
2
x
x
y
y


3
If the function is non-linear:
e.g. if y = x2
0
10
20
30
40
0 1 2 3 4 5 6
X
y=x2
x
y


=
1
2
1
2
x
x
y
y


gives slope of the line
connecting 2 points (x1, y1) and (x2,y2) on a
curve
 (2,4) to (4,16): slope = (16-4)
/(4-2) = 6
 (2,4) to (6,36): slope = (36-4)
/(6-2) = 8
4
The slope of a curve is equal to the slope of
the line (or tangent) that touches the curve
at that point
Total Cost Curve
0
5
10
15
20
25
30
35
40
1 2 3 4 5 6 7
X
y=x2
5
Example:A firms cost function is
Y = X2
X X Y Y
0
1
2
3
4
+1
+1
+1
+1
0
1
4
9
16
+1
+3
+5
+7
Y = X2
Y+Y = (X+X) 2
Y+Y =X2
+2X.X+X2
Y = X2
+2X.X+X2
– Y
since Y = X2
 Y = 2X.X+X2
X
Y


= 2X+X
The slope depends on X and X
6
The slope of the graph of a function
is called the derivative of the
function
• The process of differentiation involves
letting the change in x become arbitrarily
small, i.e. letting  x  0
• e.g if = 2X+X and X 0
•  = 2X in the limit as X 0
x
y
dx
dy
x
f
x 




 0
lim
)
(
'
7
the slope of the non-linear
function
Y = X2 is 2X
• the slope tells us the change in y that
results from a very small change in X
• We see the slope varies with X
e.g. the curve at X = 2 has a slope = 4
and the curve at X = 4 has a slope = 8
• In this example, the slope is steeper
at higher values of X
8
Rules for Differentiation
(section 4.3)
1. The Constant Rule
If y = c where c is a constant,
0

dx
dy
e.g. y = 10 then 0

dx
dy
9
2. The Linear Function Rule
If y = a + bx
b
dx
dy

e.g. y = 10 + 6x then
6

dx
dy
10
3. The Power Function Rule
If y = axn
, where a and n are constants
1

 n
x
.
a
.
n
dx
dy
i) y = 4x => 4
4 0

 x
dx
dy
ii) y = 4x2
=> x
dx
dy
8

iii) y = 4x-2
=>
3
8 

 x
dx
dy
11
4. The Sum-Difference Rule
If y = f(x)  g(x)
dx
)]
x
(
g
[
d
dx
)]
x
(
f
[
d
dx
dy


If y is the sum/difference of two or more
functions of x:
differentiate the 2 (or more) terms
separately, then add/subtract
(i) y = 2x2
+ 3x then 3
4 
 x
dx
dy
(ii) y = 5x + 4 then 5

dx
dy
12
5. The Product Rule
If y = u.v where u and v are functions of x,
(u = f(x) and v = g(x) ) Then
dx
du
v
dx
dv
u
dx
dy


13
Examples
If y = u.v dx
du
v
dx
dv
u
dx
dy


i) y = (x+2)(ax2
+bx)
    
bx
ax
b
ax
x
dx
dy




 2
2
2
ii) y = (4x3
-3x+2)(2x2
+4x)
  
















 





 3
12
4
2
4
4
2
3
4 2
2
3
x
x
x
x
x
x
dx
dy
14
6. The Quotient Rule
• If y = u/v where u and v are functions of x
(u = f(x) and v = g(x) ) Then
2
v
dx
dv
u
dx
du
v
dx
dy


15
 
 
     
   2
2
4
2
4
1
2
1
4
4
2











x
x
x
x
dx
dy
x
x
y
2
v
dx
dv
u
dx
du
v
dx
dy
then
v
u
y
If



Example 1
16
7. The Chain Rule
(Implicit Function Rule)
• If y is a function of v, and v is a function of
x, then y is a function of x and
dx
dv
.
dv
dy
dx
dy

17
Examples
i) y = (ax2
+ bx)½
let v = (ax2
+ bx) , so y = v½
   
b
ax
.
bx
ax
dx
dy




2
2
1 2
1
2
ii) y = (4x3
+ 3x – 7 )4
let v = (4x3
+ 3x – 7 ), so y = v4
   
3
12
7
3
4
4 2
3
3



 x
.
x
x
dx
dy
dx
dv
.
dv
dy
dx
dy

18
8. The Inverse Function Rule
• Examples
If x = f(y) then
dy
dx
dx
dy 1

i) x = 3y2
then
y
dy
dx
6
 so y
dx
dy
6
1

ii) y = 4x3
then
2
12x
dx
dy
 so 2
12
1
x
dy
dx

19
Differentiation in Economics
Application I
• Total Costs = TC = FC + VC
• Total Revenue = TR = P * Q
•  = Profit = TR – TC
• Break even:  = 0, or TR = TC
• Profit Maximisation: MR = MC
20
Application I: Marginal Functions
(Revenue, Costs and Profit)
•
Calculating Marginal Functions
 
dQ
TR
d
MR 
 
dQ
TC
d
MC 
21
Example 1
• A firm faces the
demand curve P=17-
3Q
• (i) Find an
expression for TR in
terms of Q
• (ii) Find an
expression for MR in
terms of Q
Solution:
TR = P.Q = 17Q – 3Q2
  Q
dQ
TR
d
MR 6
17


22
Example 2
A firms total cost curve is given by
TC=Q3- 4Q2+12Q
(i) Find an expression for AC in terms of Q
(ii) Find an expression for MC in terms of Q
(iii) When does AC=MC?
(iv) When does the slope of AC=0?
(v) Plot MC and AC curves and comment on
the economic significance of their
relationship
23
Solution
(i) TC = Q3
– 4Q2
+ 12Q
Then, AC =
TC
/ Q = Q2
– 4Q + 12
(ii) MC =
  12
8
3 2


 Q
Q
dQ
TC
d
(iii) When does AC = MC?
Q2
– 4Q + 12 = 3Q2
– 8Q + 12
 Q = 2
Thus, AC = MC when Q = 2
24
Solution continued….
(iv) When does the slope of AC = 0?
  4
2 
 Q
dQ
AC
d
= 0
 Q = 2 when slope AC = 0
(v) Economic Significance?
MC cuts AC curve at minimum point…
25
9. Differentiating Exponential Functions
If y = exp(x) = ex
where e = 2.71828….
then
x
e
dx
dy

More generally,
If y = Aerx
then ry
rAe
dx
dy rx


26
Examples
1) y = e2x
then dx
dy
= 2e2x
2) y = e-7x
then dx
dy
= -7e-7x
27
10. Differentiating Natural Logs
Recall if y = ex
then x = loge y = ln y
If y = ex
then
x
e
dx
dy
 = y
From The Inverse Function Rule
y = ex
 y
dy
dx 1

Now, if y = ex
this is equivalent to writing
x = ln y
Thus, x = ln y  y
dy
dx 1

28
More generally,
if y = ln x  x
dx
dy 1

NOTE: the derivative of a natural log
function does not depend on the co-efficient
of x
Thus, if y = ln mx  x
dx
dy 1

29
Proof
 if y = ln mx m>0
 Rules of Logs  y = ln m+ ln x
 Differentiating (Sum-Difference rule)
x
x
dx
dy 1
1
0 


30
Examples
1) y = ln 5x (x>0)  x
dx
dy 1

2) y = ln(x2
+2x+1)
let v = (x2
+2x+1) so y = ln v
Chain Rule:  dx
dv
.
dv
dy
dx
dy

 
2
2
1
2
1
2



 x
.
x
x
dx
dy
 
 
1
2
2
2
2




x
x
x
dx
dy
31
3) y = x4
lnx
Product Rule: 
3
4
4
1
x
.
x
ln
x
x
dx
dy


= x
ln
x
x 3
3
4
 =  
x
ln
x 4
1
3

4) y = ln(x3
(x+2)4
)
Simplify first using rules of logs
 y = lnx3
+ ln(x+2)4
 y = 3lnx + 4ln(x+2)
2
4
3



x
x
dx
dy
32
Applications II
• how does demand change with a change in
price……
• ed=
= P
P
Q
Q 

= Q
P
.
P
Q


price
in
change
al
proportion
demand
in
change
al
proportion
33
Point elasticity of demand
ed = Q
P
.
dP
dQ
ed is negative for a downward sloping demand
curve
–Inelastic demand if | ed |<1
–Unit elastic demand if | ed |=1
–Elastic demand if | ed |>1
34
Example 1
Find ed of the function Q= aP-b
ed = Q
P
.
dP
dQ
ed = b
b
aP
P
.
baP 


 1
= b
aP
P
.
P
baP
b
b





ed at all price levels is –b
35
Example 2
If the (inverse) Demand equation is
P = 200 – 40ln(Q+1)
Calculate the price elasticity of demand
when Q = 20
 Price elasticity of demand: ed = Q
P
.
dP
dQ
<0
 P is expressed in terms of Q,
1
40



Q
dQ
dP
 Inverse rule  40
1



Q
dP
dQ
 Hence, ed = Q
P
.
40
1
Q
 < 0
 Q is 20  ed = 20
78.22
.
40
21
 = -2.05
(where P = 200 – 40ln(20+1) = 78.22)
36
Application III: Differentiation of Natural
Logs to find Proportional Changes
The derivative of log(f(x)) 
f’(x)
/f(x), or the
proportional change in the variable x
i.e. y = f(x), then the proportional  x
= y
.
dx
dy 1
= dx
)
y
(ln
d
Take logs and differentiate to find
proportional changes in variables
37
1) Show that if y = x
, then x
y
.
dx
dy 

1
and this  derivative of ln(y) with respect to x.
Solution:
1
1
1 


 x
.
y
y
.
dx
dy
= x
x
.
y


1
= x
y
.
.
y

1
= x

38
Solution Continued…
Now ln y = ln x
Re-writing  ln y = lnx
 x
x
.
dx
)
y
(ln
d 



1
Differentiating the ln y with respect to x gives
the proportional change in x.
39
Example 2: If Price level at time t is
P(t) = a+bt+ct2
Calculate the rate of inflation.
Solution:
The inflation rate at t is the proportional
changeinp
2
2
1
ct
bt
a
ct
b
dt
)
t
(
dP
.
)
t
(
P 



Alternatively,
differentiating the log of P(t) wrt t directly
lnP(t) = ln(a+bt+ct2
)
where v = (a+bt+ct2
) so lnP = ln v
Using chain rule,
 
2
2
ct
bt
a
ct
b
dt
)
t
(
P
ln
d





More Related Content

What's hot

What's hot (10)

Chapter 7
Chapter  7Chapter  7
Chapter 7
 
INCOTERMS
INCOTERMSINCOTERMS
INCOTERMS
 
Chemical Reactions.ppt
Chemical Reactions.pptChemical Reactions.ppt
Chemical Reactions.ppt
 
Partial differentiation
Partial differentiationPartial differentiation
Partial differentiation
 
Chemical reactions
Chemical reactionsChemical reactions
Chemical reactions
 
Critical points
Critical pointsCritical points
Critical points
 
Application of Derivatives
Application of DerivativesApplication of Derivatives
Application of Derivatives
 
Hedonism
HedonismHedonism
Hedonism
 
Phys111_lecture04.ppt
Phys111_lecture04.pptPhys111_lecture04.ppt
Phys111_lecture04.ppt
 
First order linear differential equation
First order linear differential equationFirst order linear differential equation
First order linear differential equation
 

Similar to Topic5

DIFFERENTIATION Integration and limits (1).pptx
DIFFERENTIATION Integration and limits (1).pptxDIFFERENTIATION Integration and limits (1).pptx
DIFFERENTIATION Integration and limits (1).pptxOchiriaEliasonyait
 
Applications of Differential Calculus in real life
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life OlooPundit
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Asad Bukhari
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Nur Kamila
 
Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Fatini Adnan
 
Convergence Criteria
Convergence CriteriaConvergence Criteria
Convergence CriteriaTarun Gehlot
 
01. Differentiation-Theory & solved example Module-3.pdf
01. Differentiation-Theory & solved example Module-3.pdf01. Differentiation-Theory & solved example Module-3.pdf
01. Differentiation-Theory & solved example Module-3.pdfRajuSingh806014
 
Differential calculus
Differential calculusDifferential calculus
Differential calculusChit Laplana
 
Chapter 1 (math 1)
Chapter 1 (math 1)Chapter 1 (math 1)
Chapter 1 (math 1)Amr Mohamed
 
Solutions Manual for College Algebra Concepts Through Functions 3rd Edition b...
Solutions Manual for College Algebra Concepts Through Functions 3rd Edition b...Solutions Manual for College Algebra Concepts Through Functions 3rd Edition b...
Solutions Manual for College Algebra Concepts Through Functions 3rd Edition b...RhiannonBanksss
 
Bahan ajar kalkulus integral
Bahan ajar kalkulus integralBahan ajar kalkulus integral
Bahan ajar kalkulus integralgrand_livina_good
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniquesKrishna Gali
 
Quadratic Function Presentation
Quadratic Function PresentationQuadratic Function Presentation
Quadratic Function PresentationRyanWatt
 
graphs of functions 2
 graphs of functions 2 graphs of functions 2
graphs of functions 2larasati06
 
Differential Calculus
Differential Calculus Differential Calculus
Differential Calculus OlooPundit
 
maths jee formulas.pdf
maths jee formulas.pdfmaths jee formulas.pdf
maths jee formulas.pdfGARRYB4
 

Similar to Topic5 (20)

DIFFERENTIATION Integration and limits (1).pptx
DIFFERENTIATION Integration and limits (1).pptxDIFFERENTIATION Integration and limits (1).pptx
DIFFERENTIATION Integration and limits (1).pptx
 
Applications of Differential Calculus in real life
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01
 
Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)
 
Convergence Criteria
Convergence CriteriaConvergence Criteria
Convergence Criteria
 
01. Differentiation-Theory & solved example Module-3.pdf
01. Differentiation-Theory & solved example Module-3.pdf01. Differentiation-Theory & solved example Module-3.pdf
01. Differentiation-Theory & solved example Module-3.pdf
 
Differential calculus
Differential calculusDifferential calculus
Differential calculus
 
Chapter 1 (math 1)
Chapter 1 (math 1)Chapter 1 (math 1)
Chapter 1 (math 1)
 
exponen dan logaritma
exponen dan logaritmaexponen dan logaritma
exponen dan logaritma
 
Integration
IntegrationIntegration
Integration
 
Solutions Manual for College Algebra Concepts Through Functions 3rd Edition b...
Solutions Manual for College Algebra Concepts Through Functions 3rd Edition b...Solutions Manual for College Algebra Concepts Through Functions 3rd Edition b...
Solutions Manual for College Algebra Concepts Through Functions 3rd Edition b...
 
2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf
 
DIFFERENTIATION
DIFFERENTIATIONDIFFERENTIATION
DIFFERENTIATION
 
Bahan ajar kalkulus integral
Bahan ajar kalkulus integralBahan ajar kalkulus integral
Bahan ajar kalkulus integral
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniques
 
Quadratic Function Presentation
Quadratic Function PresentationQuadratic Function Presentation
Quadratic Function Presentation
 
graphs of functions 2
 graphs of functions 2 graphs of functions 2
graphs of functions 2
 
Differential Calculus
Differential Calculus Differential Calculus
Differential Calculus
 
maths jee formulas.pdf
maths jee formulas.pdfmaths jee formulas.pdf
maths jee formulas.pdf
 

Recently uploaded

Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 

Recently uploaded (20)

Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 

Topic5

  • 1. 1 Topic 6: Differentiation Jacques Text Book (edition 4 ): Chapter 4 1.Rules of Differentiation 2.Applications
  • 2. 2 Differentiation is all about measuring change! Measuring change in a linear function: y = a + bx a = intercept b = constant slope i.e. the impact of a unit change in x on the level of y b = = x y   1 2 1 2 x x y y  
  • 3. 3 If the function is non-linear: e.g. if y = x2 0 10 20 30 40 0 1 2 3 4 5 6 X y=x2 x y   = 1 2 1 2 x x y y   gives slope of the line connecting 2 points (x1, y1) and (x2,y2) on a curve  (2,4) to (4,16): slope = (16-4) /(4-2) = 6  (2,4) to (6,36): slope = (36-4) /(6-2) = 8
  • 4. 4 The slope of a curve is equal to the slope of the line (or tangent) that touches the curve at that point Total Cost Curve 0 5 10 15 20 25 30 35 40 1 2 3 4 5 6 7 X y=x2
  • 5. 5 Example:A firms cost function is Y = X2 X X Y Y 0 1 2 3 4 +1 +1 +1 +1 0 1 4 9 16 +1 +3 +5 +7 Y = X2 Y+Y = (X+X) 2 Y+Y =X2 +2X.X+X2 Y = X2 +2X.X+X2 – Y since Y = X2  Y = 2X.X+X2 X Y   = 2X+X The slope depends on X and X
  • 6. 6 The slope of the graph of a function is called the derivative of the function • The process of differentiation involves letting the change in x become arbitrarily small, i.e. letting  x  0 • e.g if = 2X+X and X 0 •  = 2X in the limit as X 0 x y dx dy x f x       0 lim ) ( '
  • 7. 7 the slope of the non-linear function Y = X2 is 2X • the slope tells us the change in y that results from a very small change in X • We see the slope varies with X e.g. the curve at X = 2 has a slope = 4 and the curve at X = 4 has a slope = 8 • In this example, the slope is steeper at higher values of X
  • 8. 8 Rules for Differentiation (section 4.3) 1. The Constant Rule If y = c where c is a constant, 0  dx dy e.g. y = 10 then 0  dx dy
  • 9. 9 2. The Linear Function Rule If y = a + bx b dx dy  e.g. y = 10 + 6x then 6  dx dy
  • 10. 10 3. The Power Function Rule If y = axn , where a and n are constants 1   n x . a . n dx dy i) y = 4x => 4 4 0   x dx dy ii) y = 4x2 => x dx dy 8  iii) y = 4x-2 => 3 8    x dx dy
  • 11. 11 4. The Sum-Difference Rule If y = f(x)  g(x) dx )] x ( g [ d dx )] x ( f [ d dx dy   If y is the sum/difference of two or more functions of x: differentiate the 2 (or more) terms separately, then add/subtract (i) y = 2x2 + 3x then 3 4   x dx dy (ii) y = 5x + 4 then 5  dx dy
  • 12. 12 5. The Product Rule If y = u.v where u and v are functions of x, (u = f(x) and v = g(x) ) Then dx du v dx dv u dx dy  
  • 13. 13 Examples If y = u.v dx du v dx dv u dx dy   i) y = (x+2)(ax2 +bx)      bx ax b ax x dx dy      2 2 2 ii) y = (4x3 -3x+2)(2x2 +4x)                            3 12 4 2 4 4 2 3 4 2 2 3 x x x x x x dx dy
  • 14. 14 6. The Quotient Rule • If y = u/v where u and v are functions of x (u = f(x) and v = g(x) ) Then 2 v dx dv u dx du v dx dy  
  • 15. 15              2 2 4 2 4 1 2 1 4 4 2            x x x x dx dy x x y 2 v dx dv u dx du v dx dy then v u y If    Example 1
  • 16. 16 7. The Chain Rule (Implicit Function Rule) • If y is a function of v, and v is a function of x, then y is a function of x and dx dv . dv dy dx dy 
  • 17. 17 Examples i) y = (ax2 + bx)½ let v = (ax2 + bx) , so y = v½     b ax . bx ax dx dy     2 2 1 2 1 2 ii) y = (4x3 + 3x – 7 )4 let v = (4x3 + 3x – 7 ), so y = v4     3 12 7 3 4 4 2 3 3     x . x x dx dy dx dv . dv dy dx dy 
  • 18. 18 8. The Inverse Function Rule • Examples If x = f(y) then dy dx dx dy 1  i) x = 3y2 then y dy dx 6  so y dx dy 6 1  ii) y = 4x3 then 2 12x dx dy  so 2 12 1 x dy dx 
  • 19. 19 Differentiation in Economics Application I • Total Costs = TC = FC + VC • Total Revenue = TR = P * Q •  = Profit = TR – TC • Break even:  = 0, or TR = TC • Profit Maximisation: MR = MC
  • 20. 20 Application I: Marginal Functions (Revenue, Costs and Profit) • Calculating Marginal Functions   dQ TR d MR    dQ TC d MC 
  • 21. 21 Example 1 • A firm faces the demand curve P=17- 3Q • (i) Find an expression for TR in terms of Q • (ii) Find an expression for MR in terms of Q Solution: TR = P.Q = 17Q – 3Q2   Q dQ TR d MR 6 17  
  • 22. 22 Example 2 A firms total cost curve is given by TC=Q3- 4Q2+12Q (i) Find an expression for AC in terms of Q (ii) Find an expression for MC in terms of Q (iii) When does AC=MC? (iv) When does the slope of AC=0? (v) Plot MC and AC curves and comment on the economic significance of their relationship
  • 23. 23 Solution (i) TC = Q3 – 4Q2 + 12Q Then, AC = TC / Q = Q2 – 4Q + 12 (ii) MC =   12 8 3 2    Q Q dQ TC d (iii) When does AC = MC? Q2 – 4Q + 12 = 3Q2 – 8Q + 12  Q = 2 Thus, AC = MC when Q = 2
  • 24. 24 Solution continued…. (iv) When does the slope of AC = 0?   4 2   Q dQ AC d = 0  Q = 2 when slope AC = 0 (v) Economic Significance? MC cuts AC curve at minimum point…
  • 25. 25 9. Differentiating Exponential Functions If y = exp(x) = ex where e = 2.71828…. then x e dx dy  More generally, If y = Aerx then ry rAe dx dy rx  
  • 26. 26 Examples 1) y = e2x then dx dy = 2e2x 2) y = e-7x then dx dy = -7e-7x
  • 27. 27 10. Differentiating Natural Logs Recall if y = ex then x = loge y = ln y If y = ex then x e dx dy  = y From The Inverse Function Rule y = ex  y dy dx 1  Now, if y = ex this is equivalent to writing x = ln y Thus, x = ln y  y dy dx 1 
  • 28. 28 More generally, if y = ln x  x dx dy 1  NOTE: the derivative of a natural log function does not depend on the co-efficient of x Thus, if y = ln mx  x dx dy 1 
  • 29. 29 Proof  if y = ln mx m>0  Rules of Logs  y = ln m+ ln x  Differentiating (Sum-Difference rule) x x dx dy 1 1 0   
  • 30. 30 Examples 1) y = ln 5x (x>0)  x dx dy 1  2) y = ln(x2 +2x+1) let v = (x2 +2x+1) so y = ln v Chain Rule:  dx dv . dv dy dx dy    2 2 1 2 1 2     x . x x dx dy     1 2 2 2 2     x x x dx dy
  • 31. 31 3) y = x4 lnx Product Rule:  3 4 4 1 x . x ln x x dx dy   = x ln x x 3 3 4  =   x ln x 4 1 3  4) y = ln(x3 (x+2)4 ) Simplify first using rules of logs  y = lnx3 + ln(x+2)4  y = 3lnx + 4ln(x+2) 2 4 3    x x dx dy
  • 32. 32 Applications II • how does demand change with a change in price…… • ed= = P P Q Q   = Q P . P Q   price in change al proportion demand in change al proportion
  • 33. 33 Point elasticity of demand ed = Q P . dP dQ ed is negative for a downward sloping demand curve –Inelastic demand if | ed |<1 –Unit elastic demand if | ed |=1 –Elastic demand if | ed |>1
  • 34. 34 Example 1 Find ed of the function Q= aP-b ed = Q P . dP dQ ed = b b aP P . baP     1 = b aP P . P baP b b      ed at all price levels is –b
  • 35. 35 Example 2 If the (inverse) Demand equation is P = 200 – 40ln(Q+1) Calculate the price elasticity of demand when Q = 20  Price elasticity of demand: ed = Q P . dP dQ <0  P is expressed in terms of Q, 1 40    Q dQ dP  Inverse rule  40 1    Q dP dQ  Hence, ed = Q P . 40 1 Q  < 0  Q is 20  ed = 20 78.22 . 40 21  = -2.05 (where P = 200 – 40ln(20+1) = 78.22)
  • 36. 36 Application III: Differentiation of Natural Logs to find Proportional Changes The derivative of log(f(x))  f’(x) /f(x), or the proportional change in the variable x i.e. y = f(x), then the proportional  x = y . dx dy 1 = dx ) y (ln d Take logs and differentiate to find proportional changes in variables
  • 37. 37 1) Show that if y = x , then x y . dx dy   1 and this  derivative of ln(y) with respect to x. Solution: 1 1 1     x . y y . dx dy = x x . y   1 = x y . . y  1 = x 
  • 38. 38 Solution Continued… Now ln y = ln x Re-writing  ln y = lnx  x x . dx ) y (ln d     1 Differentiating the ln y with respect to x gives the proportional change in x.
  • 39. 39 Example 2: If Price level at time t is P(t) = a+bt+ct2 Calculate the rate of inflation. Solution: The inflation rate at t is the proportional changeinp 2 2 1 ct bt a ct b dt ) t ( dP . ) t ( P     Alternatively, differentiating the log of P(t) wrt t directly lnP(t) = ln(a+bt+ct2 ) where v = (a+bt+ct2 ) so lnP = ln v Using chain rule,   2 2 ct bt a ct b dt ) t ( P ln d    