Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.
When	
  Data	
  Become	
  News	
  
	
  
	
  
A	
  content	
  analysis	
  of	
  data	
  journalism	
  pieces	
  
	
  
	
  
...
Introduc4on:	
  ‘Big	
  Data’	
  and	
  the	
  Data-­‐Driven	
  Society	
  
•  Double	
  relevance	
  of	
  ‘big	
  data’	...
Literature	
  Review:	
  Research	
  on	
  Data	
  Journalism	
  (#ddj)	
  
A	
  “rapidly	
  growing	
  body”	
  (Lewis,	
...
Research	
  Objec4ves	
  
Focus	
  on	
  the	
  output	
  of	
  #ddj	
  to	
  beher	
  understand	
  its	
  reporAng	
  st...
Methodology:	
  Sample	
  
•  Nominees	
  for	
  the	
  Data	
  Journalism	
  Award	
  (issued	
  annually	
  by	
  the	
 ...
Methodology:	
  Codebook	
  
•  Standardised	
  ‘hand-­‐made’	
  content	
  analysis	
  (e.g.,	
  Krippendorff,	
  2013;	
 ...
Results:	
  Organisa4ons	
  and	
  Staff	
  Involved	
  
•  Dominance	
  of	
  newspapers:	
  42.5	
  %	
  (of	
  all	
  ca...
Results:	
  Topics	
  Covered	
  and	
  Formal	
  Elements	
  
•  Most	
  important	
  topic:	
  poliAcs	
  (48.3	
  %),	
...
Results:	
  Kinds	
  of	
  Data	
  
2013	
  
(n	
  =	
  55)	
  
2014	
  
(n	
  =	
  64)	
  
Awarded	
  
(2013	
  +	
  2014...
Example:	
  Sociodemographic	
  Data	
  
Loosen/Reimer/Schmidt	
  	
   10	
  
Mapping	
  Australia’s	
  Census	
  (2013):	...
Results:	
  Kinds	
  of	
  Data	
  
2013	
  
(n	
  =	
  55)	
  
2014	
  
(n	
  =	
  64)	
  
Awarded	
  
(2013	
  +	
  2014...
Example:	
  Personal	
  Data	
  
Loosen/Reimer/Schmidt	
  	
   12	
  
Your	
  Olympic	
  Athlete	
  Body	
  Match	
  (2013...
Results:	
  Sources	
  and	
  Access	
  to	
  Data	
  
Loosen/Reimer/Schmidt	
  	
   13	
  
•  Sources:	
  official	
  insAt...
 
	
  
2013	
  
(n	
  =	
  56)	
  
2014	
  
(n	
  =	
  64)	
  
Awarded	
  
(2013	
  +	
  2014)	
  
(n	
  =	
  15)	
  
Tota...
Example:	
  Connec4ons	
  and	
  Flows	
  
Loosen/Reimer/Schmidt	
  	
   15	
  
Rede	
  de	
  Escândalos	
  (2013):	
  hhp...
Results:	
  Visualisa4ons	
  &	
  Interac4ve	
  features	
  
•  Mainly	
  pictures	
  (60.0	
  %),	
  simple	
  staAc	
  c...
Conclusion:	
  The	
  ‘Typical’	
  #ddj	
  Piece	
  
The	
  ‘typical’	
  data-­‐driven	
  piece…	
  
•  is	
  published	
 ...
Conclusion:	
  Tendencies	
  of	
  Development	
  
•  Data	
  journalism	
  is	
  increasingly	
  personnel	
  intensive	
...
Thank	
  you!	
  
Wiebke	
  Loosen	
  /	
  Julius	
  Reimer	
  /	
  Fenja	
  Schmidt	
  
@wloosen	
  	
  	
  	
  @julius_r...
References	
  
Anderson,	
  Chris	
  W.	
  (2013).	
  Towards	
  a	
  sociology	
  of	
  computaAonal	
  and	
  algorithmi...
Nächste SlideShare
Wird geladen in …5
×

When Data Become News. A Content Analysis of Data Journalism Pieces.

Presentation by Wiebke Loosen, Julius Reimer & Fenja Schmidt held at The Future of Journalism Conference: Risks, Threats and Opportunities, Sep 10th 2015, Cardiff

When Data Become News. A Content Analysis of Data Journalism Pieces.

  1. 1. When  Data  Become  News       A  content  analysis  of  data  journalism  pieces       Wiebke  Loosen,  Julius  Reimer  &  Fenja  Schmidt   @wloosen    @julius_reimer    @Fen_Ja       The  Future  of  Journalism  Conference:  Risks,  Threats  and  OpportuniAes|  Cardiff  |  2015  
  2. 2. Introduc4on:  ‘Big  Data’  and  the  Data-­‐Driven  Society   •  Double  relevance  of  ‘big  data’  and  the  data-­‐driven  society  for   journalism:     -­‐ Topic  worth  covering:  show  related  developments  and  their  consequences   to  make  them  understandable  and  publicly  debatable   -­‐ The  ‘computaAonal  turn’  affects  pracAces  of  news  producAon       à  Emergence  of  a  new  journalisAc  sub-­‐field  ‘computaAonal/   data(-­‐driven)  journalism’  (cf.  Coddington,  2015;  Fink/Anderson,   2015;  Lewis,  2015)   Loosen/Reimer/Schmidt     2  
  3. 3. Literature  Review:  Research  on  Data  Journalism  (#ddj)   A  “rapidly  growing  body”  (Lewis,  2015:  322)  of  studies  focusing  on:   1.  Defining  what  #ddj  is  (e.g.,  Anderson,  2013;  Appelgren/Nygren,  2014;   Coddington,  2015;  Fink  &  Anderson,  2015;  Gray  et  al.,  2012)   Presumed  key  characterisAcs:   -­‐  (Usually  large)  sets  of  quanAtaAve  (digital)  data   -­‐ VisualisaAon  (maps,  bar  charts,  etc.)   -­‐ ParAcipaAon  and  crowdsourcing   -­‐ Open  data  and  open  source       2.  Researching  what  actors  in  the  field  do  and  think  (Appelgren/Nygren,  2014;   De  Maeyer  et  al.,  2015;  Fink  /Anderson,  2015;  Parasie,  2014;  Parasie/Dagiral,   2013;  Karlsen/Stavelin,  2014;  Weinacht/Spiller,  2014)     à    No  systemaAcally  gathered  insights  regarding  data  journalism  as   “an  emerging  form  of  storytelling”  (Appelgren/Nygren,  2014:  394)   Loosen/Reimer/Schmidt     3  
  4. 4. Research  Objec4ves   Focus  on  the  output  of  #ddj  to  beher  understand  its  reporAng  styles  and   data  sources:   à  Map  actual  occurrence  and  classify  different  types  of  presumed  key   characterisAcs  in  data-­‐driven  pieces:     -­‐ Data  sets  and  data  processing   -­‐ VisualisaAon  elements   -­‐ InteracAve  features   à  Determine  topics  covered   à  IdenAfy  media  organisaAons  which  are  parAcularly  acAve  in  the  field   Loosen/Reimer/Schmidt     4  
  5. 5. Methodology:  Sample   •  Nominees  for  the  Data  Journalism  Award  (issued  annually  by  the  Global   Editors‘  Network)  2013  and  2014  (following  Lanosga,  2014;  Wahl-­‐Jorgensen,   2013a,  2013b)   •  ParAcular  sample  with  a  ‘double  bias’  (special  group,  self-­‐selected)  and  a   ‘double  advantage’    (defined  as  #ddj  by  experts  in  the  field,  seen  as  ‘gold   standard’  that  could  influence  further  development)     Loosen/Reimer/Schmidt     Submissions   Nominated   projects   Projects  suited   for  analysis   Award-­‐winning  projects     (%  of  analysed  projects)   2013   >300   72   56   6  (10.7)   2014   520   75   64   9  (14.1)   Total   >820   147   120   15  (12.5)   5  
  6. 6. Methodology:  Codebook   •  Standardised  ‘hand-­‐made’  content  analysis  (e.g.,  Krippendorff,  2013;   Lombard  et  al.,  2002)   Loosen/Reimer/Schmidt     Dimensions   V  No.   Categories  of  analysis   Formal  characterisAcs   V  1-­‐13   Medium,  topic,  language,  length  &  no.   of  related  arAcle(s),  no.  of  people   involved,  external  partners,  …   Dataset   V  14-­‐22   Type  of  data  source,  access  to  data,   kind  of  data,  geographical  &  temporal   reference,  changeability  of  dataset,   unit  of  analysis,  addiAonal  info     Analysis  and  journalisAc   ediAng  of  content   V  23-­‐26   Personalized  case  example,  criAcism,   visualisaAon,  purpose  of  analysis     Context  of  use   V  27-­‐29   InteracAve  funcAons,  online  access  to   the  database,  opportuniAes  of  further   interacAon/communicaAon     6  
  7. 7. Results:  Organisa4ons  and  Staff  Involved   •  Dominance  of  newspapers:  42.5  %  (of  all  cases)   •  Rise  of  magazines  (7.1  %  à  17.2  %)  and  of  invesAgaAve  journalisAc   organisaAons  (14.3  %  à  25  %)     •  Data  journalism  is  mostly  a  collaboraAve  effort:      -­‐  On  average  five  authors/contributors    -­‐  Increase  from  2013  to  2014    -­‐  External  partners  menAoned  in  35  %  of  all  cases   Loosen/Reimer/Schmidt     7  
  8. 8. Results:  Topics  Covered  and  Formal  Elements   •  Most  important  topic:  poliAcs  (48.3  %),  osen  in  combinaAon  with  financial   aspects   •  Societal  issues:  33.3  %;  health  &  science:  21.7  %;  business  &  economy:  20  %     •  Mostly  combinaAon  of  visualisaAon(s)  with  one  (48.3  %)  or  more  (34.2  %)   accompanying  texts   •  Personalised  case  example  as  a  way  to  counter  abstractness  of  quanAtaAve   data      -­‐  In  total  40.8  %  of  the  pieces      -­‐  Lower  rates  for  economic  and  educaAon  topics  (20.8  %  and  22.2  %)   Loosen/Reimer/Schmidt     8  
  9. 9. Results:  Kinds  of  Data   2013   (n  =  55)   2014   (n  =  64)   Awarded   (2013  +  2014)   (n  =  15)   Total   (n  =  119)   Freq   %     Freq   %   Freq   %   Freq   %   Financial  data   25   45.5   29   45.3   8   53.5   54   45.4   Geo  data   26   47.3   25   39.1   6   40.0   51   42.9   Measured  values   19   34.5   28   43.8   4   26.7   47   39.5   Sociodemographic  data   21   38.2   16   25.0   4   26.7   37   31.1   Personal  data   12   21.8   21   32.8   5   33.3   33   27.7   Metadata   7   12.7   13   20.3   1   6.7   20   16.8   Poll  raAngs  /  survey  data   8   14.5   7   10.9   1   6.7   15   12.6   Other  data   -­‐   -­‐   -­‐   -­‐   1   6.7   2   1.7   Loosen/Reimer/Schmidt     9  
  10. 10. Example:  Sociodemographic  Data   Loosen/Reimer/Schmidt     10   Mapping  Australia’s  Census  (2013):  hhp://www.smh.com.au/data-­‐point/census-­‐2012  (9.9.15)    
  11. 11. Results:  Kinds  of  Data   2013   (n  =  55)   2014   (n  =  64)   Awarded   (2013  +  2014)   (n  =  15)   Total   (n  =  119)   Freq   %     Freq   %   Freq   %   Freq   %   Financial  data   25   45.5   29   45.3   8   53.5   54   45.4   Geo  data   26   47.3   25   39.1   6   40.0   51   42.9   Measured  values   19   34.5   28   43.8   4   26.7   47   39.5   Sociodemographic  data   21   38.2   16   25.0   4   26.7   37   31.1   Personal  data   12   21.8   21   32.8   5   33.3   33   27.7   Metadata   7   12.7   13   20.3   1   6.7   20   16.8   Poll  raAngs  /  survey  data   8   14.5   7   10.9   1   6.7   15   12.6   Other  data   -­‐   -­‐   -­‐   -­‐   1   6.7   2   1.7   Loosen/Reimer/Schmidt     11  
  12. 12. Example:  Personal  Data   Loosen/Reimer/Schmidt     12   Your  Olympic  Athlete  Body  Match  (2013):  hhp://www.bbc.co.uk/news/uk-­‐19050139  (9.9.15)    
  13. 13. Results:  Sources  and  Access  to  Data   Loosen/Reimer/Schmidt     13   •  Sources:  official  insAtuAons  (67.5  %),  other  non-­‐commercial   organisaAons  (44.2  %),  own  sources  (18.3  %)   •  Mostly  data  that  is  publicly  available  (41.7  %),  access  to  data  osen  not   indicated  (40  %)  
  14. 14.     2013   (n  =  56)   2014   (n  =  64)   Awarded   (2013  +  2014)   (n  =  15)   Total   (n  =  120)   Freq   %   Freq   %   Freq   %   Freq   %   Compare  values   46   82.1   56   87.5   15   100.0   102   85.0   Show  changes  over  Ame   26   46.4   30   46.9   8   53.3   56   46.7   Show  connecAons  and   flows   18   32.1   23   35.9   4   26.7   41   34.2   Show  hierarchy   8   14.3   6   9.4   1   6.7   14   11.7   Results:  Purpose  of  Analysis   Loosen/Reimer/Schmidt     14  
  15. 15. Example:  Connec4ons  and  Flows   Loosen/Reimer/Schmidt     15   Rede  de  Escândalos  (2013):  hhp://veja.abril.com.br/infograficos/painel_rede_escandalos/   network_of_scandals.html  (9.9.15)    
  16. 16. Results:  Visualisa4ons  &  Interac4ve  features   •  Mainly  pictures  (60.0  %),  simple  staAc  charts  (54.2  %),  and  maps   (49.2  %)   •  Rarely  animated  visualisaAons  (15.8  %),  no  case  without  visualisaAon   •  CombinaAon  of  more  than  two  different  kinds  of  visualisaAons     (74.2  %),  osen  simple  staAc  charts  with  pictures  (31.7  %)  or  a  map   (27.5  %)   •  InteracAve  funcAons:  mostly  zoom  and  details  on  demand  (55.8  %),   filtering  (51.7  %)    -­‐  18.3  %  of  cases  have  no  interacAve  funcAons  at  all    -­‐  The  average  piece  contains  1.55  different  interacAve  features     Loosen/Reimer/Schmidt     16  
  17. 17. Conclusion:  The  ‘Typical’  #ddj  Piece   The  ‘typical’  data-­‐driven  piece…   •  is  published  by  a  newspaper,   •  covers  a  poliAcal  topic,   •  relies  on  public  data  from  official  sources,   •  builds  its  story  on  financial  and/or  geodata  –  preferably  collected  on  a   naAonal  scale,   •  is  based  on  a  simple  unit  of  analysis  such  as  single  persons,   •  compares  values  in  order  to  show  differences  and  similariAes  between   different  objects  of  study  (e.g.,  people  of  different  gender,  neighbourhoods)   •  combines  two  types  of  visualisaAons  –  preferably  pictures  with  maps  or   simple  charts,   •  allows  the  user  to  zoom  into  a  map,  request  details  and/or  to  filter  data.   Loosen/Reimer/Schmidt     17  
  18. 18. Conclusion:  Tendencies  of  Development   •  Data  journalism  is  increasingly  personnel  intensive  –  at  least  as  far  as   our  parAcular  sample  is  concerned     •  Significant  increase  of  stories  building  on  data  from  non-­‐commercial   organisaAons  (e.g.  universiAes,  NGOs,  research  insAtutes)  between   2013  and  2014  à  #ddj  increasingly  discovers  new  data  sources   •  Awarded  stories  are  more  likely  to  refer  to  data  on  a  naAonal  level;   stories  from  2014  are  less  likely  to  draw  on  regional  data  than  those   from  2013  à  news  value  of  data   •  Awarded  stories  are  less  likely  to  contain  no  interacAve  funcAons     •  Results  for  DJA  2015  will  show  if  we  can  idenAfy  any  clearer  lines  of   developments   Loosen/Reimer/Schmidt     18  
  19. 19. Thank  you!   Wiebke  Loosen  /  Julius  Reimer  /  Fenja  Schmidt   @wloosen        @julius_reimer          @Fen_Ja  
  20. 20. References   Anderson,  Chris  W.  (2013).  Towards  a  sociology  of  computaAonal  and  algorithmic  journalism.  New  Media  &  Society,  15(7),  pp.  1005– 1021.   Appelgren,  Ester;  Nygren,  Gunnar  (2014).  Data  journalism  in  Sweden.  Introducing  new  methods  and  genres  of  journalism  into  “old”   organizaAons.  Digital  Journalism,  2(3),  pp.  394–405.   Coddington,  Mark  (2015).  Clarifying  journalism’s  quanAtaAve  turn.  A  typology  for  evaluaAng  data  journalism,  computaAonal   journalism,  and  computer-­‐assisted  reporAng.  Digital  Journalism,  3(3),  pp.  331–348.   De  Maeyer,  Juliehe;  Libert,  Manon;  Domingo,  David;  Heinderyckx,  François;  Le  Cam,  Florence  (2015).  WaiAng  for  data  journalism.  A   qualitaAve  assessment  of  the  anecdotal  take-­‐up  of  data  journalism  in  French-­‐speaking  Belgium.  Digital  Journalism,  3(3),  pp.  432– 446.   Fink,  Katherine;  Anderson,  Christopher  W.  (2015).  Data  journalism  in  the  United  States.  Beyond  the  “usual  suspects”.  Journalism   Studies,  6(4),  pp.  467–481.   Gray,  Jonathan;  Bounegru,  Liliana;  Chambers,  Lucy  (eds.)  (2012):  The  data  journalism  handbook.  How  journalists  can  use  data  to   improve  the  news.  (Early  release).  Sebastopol:  O’Reilly.   Karlsen,  Joakim;  Stavelin,  Eirik  (2014).  ComputaAonal  journalism  in  Norwegian  newsrooms.  Journalism  PracEce,  8(1),  pp.  34–48.   Krippendorff,  Klaus  (2013).  Content  analysis:  an  introducEon  to  its  methodology.  Los  Angeles:  SAGE.     Lanosga,  Gerry  (2014):  New  views  of  invesAgaAve  reporAng  in  the  twenAeth  century.  American  Journalism,  31(4),  pp.  490–506.   Lewis,  Seth  C.  (2015).  Journalism  in  an  era  of  big  data.  Digital  Journalism,  3(3),  pp.  321–330.   Lombard,  Mahhew;  Snyder-­‐Duch,  Jennifer;  Bracken,  Cheryl  Campanella  (2002):  Content  Analysis  in  Mass  CommunicaAon.  Assessment   and  ReporAng  of  Intercoder  Reliability.  Human  CommunicaEon  Research,  28(4),  pp.  587–604.   Parasie,  Sylvain  (2014).  Data-­‐driven  revelaAon?  Epistemological  tensions  in  invesAgaAve  journalism  in  the  age  of  “big  data”.  Digital   Journalism,  DOI:  10.1080/21670811.2014.976408.   Parasie,  Sylvain;  Dagiral,  Eric  (2013).  Data-­‐driven  journalism  and  the  public  good.  “Computer-­‐assistedreporters”  and  “programmer-­‐ journalists”  in  Chicago.  New  Media  &  Society,  15(6),  pp.  853–871.   Wahl-­‐Jorgensen,  Karin  (2013a)  SubjecAvity  and  story-­‐telling  in  journalism.  Examining  expressions  of  affect,  judgement  and   appreciaAon  in  Pulitzer  Prize-­‐winning  stories.  Journalism  Studies  14(3),  pp.  305–20.   Wahl-­‐Jorgensen,  Karin  (2013b):  The  strategic  ritual  of  emoAonality:  a  case  study  of  Pulitzer  Prize-­‐winning  arAcles.  Journalism  14(1),  pp.   129–45.   Weinacht,  Stefan;  Spiller,  Ralf  (2014).  Datenjournalismus  in  Deutschland.  Eine  exploraAve  Untersuchung  zu  Rollenbildern  von   Datenjournalisten  [Data-­‐journalism  in  Germany.  An  exploratory  study  on  the  role  concepAons  of  data-­‐journalists].  PublizisEk,  59(4),   pp.  411–433.     Loosen/Reimer/Schmidt     20  

×